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Abstract—It is widely recognized that current policies for
allocating wireless spectrum have led to inefficiencies and under-
utilization. One proposed solution to this is to enable ”spectrum
markets”, which allow for entities to sell and/or lease spectrum
dynamically over time. In this paper we consider the design of
such a market and how this is influenced by the underlying
properties of the wireless medium. In particular, we focus
on the role of interference created by different agents who
may purchase the use of the same spectrum band at nearby
locations. Such interference can result in ”complementarities”
among the spectrum goods being traded, which complicates
the design of an efficient market mechanism. We give a simple
model for such complementarities and for which the efficient
allocation of spectrum assets to agents can be formulated as an
integer program. We characterize the computational complexity
of this problem and and the performance of two different linear
relaxations. We also comment on the optimal prices for such
markets.

I. INTRODUCTION

The continued growth of high-capacity wireless networks
depends critically on the availability of adequate radio spec-
trum. It is widely recognized that current spectrum policy,
which determines this availability, has several drawbacks, and
is inhibiting this growth. The radio spectrum is a regulated
resource, and in the U.S. has been partitioned among a
variety of wireless applications by the FCC. As a result,
much of the radio spectrum, which could be used to provide
broadband wireless services, is often idle or under-utilized
[1]. Various types of spectrum markets have been proposed
[2]–[8] to facilitate trading of spectrum assets and enable
efficient, flexible and dynamic allocation of radio spectrum
resources. The design of such market involves both technical
and economic issues. This is due primarily to the fact
that transmitting in the same spectrum at nearby locations
creates interference. This property of a wireless medium
differentiates spectrum goods from other common goods.
Namely, an entity’s value for a particular spectrum asset may,
because of interference, depend on the use of other nearby
assets. Allowing entities to purchase assets so as to preclude
another agent from using them to create interference would
mitigate this problem. This results in complementarities in
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”bundles” of spectrum assets (i.e., the value of a bundle of
assets may be greater than the sum of the values of each asset
alone). Instead of not using an asset to prevent interference,
an agent could also transmit utilizing some technique to
mitigate the interference on a neighboring asset which it
also owned, or even utilize transmitters in two adjacent
assets for some form of “cooperative” transmission scheme.
Such approaches would again lead to complementarities.
Complementarities for spectrum assets may also exist across
adjacent frequency bands (e.g., an agent may desire such
bands to limit out-of-band interference and enable simpler
receiver filters). In general, complementarities complicate the
design of an efficient market mechanism.

In this paper, we study a simple model for such comple-
mentarities in a spectrum market, with a focus on how these
effect the computation of an efficient allocation of spectrum
and the resulting optimal prices. The efficient allocation of
spectrum in the proposed model is formulated as an integer
program, which in general is shown to be NP hard. We
consider two different linear relaxations of the problem and
study the optimal solutions of these relaxations. The first
relaxation is shown to be not exact in even relatively small
networks. The second relaxation is shown to be stronger. We
also characterize classes of problems that are tractable. We
then provide a numerical study of several heuristic algorithms
for this problem and finally conclude with a discussion on
optimal market prices.

II. A MODEL FOR SPECTRUM ASSETS

Let 𝐶 denote the set of spectrum assets available within a
given geographic area. For example, each asset 𝑗 ∈ 𝐶 could
represent the right to exclusively transmit with a fixed power
mask over a given frequency band within a given geographic
area. 1 Our interest here is on a scenario where ∣𝐶∣ is large
so that there many such assets available to be allocated, and
these assets are small enough relative to the given power
mask that interference effects among them are significant.2

1A detailed discussion on the definitions of spectrum assets and structures
of spectrum market can be found in [9].

2Note this differs from most current spectrum auctions, in which the assets
being allocated are large (e.g. consisting of several states) and thus in general
interference effects between assets are typically minor.



Denote by 𝐴 the set of agents who wish to acquire
these assets. Pairs of interfering assets are represented via
an interference graph, in which 𝐶 is the set of nodes and
the set of edges 𝐸 corresponds to pairs of interfering assets
(modeling interference in space or frequency). Let 𝑟𝑖𝑗 denote
the revenue that agent 𝑖 accrues when assigned asset 𝑗 if
there is no interference from any other asset 𝑗′ such that
(𝑗, 𝑗′) ∈ 𝐸. As an initial model for interference, we assume
that if agent 𝑖 is assigned asset 𝑗 and agent 𝑞 ∕= 𝑖 is
assigned asset 𝑗′, where (𝑗, 𝑗′) ∈ 𝐸, then agent 𝑖 suffers an
interference cost of 𝑐𝑖𝑗𝑗′ and agent 𝑞 suffers an interference
cost of 𝑐𝑞𝑗′𝑗 .3 On the other hand if agent 𝑖 acquires both assets
𝑗 and 𝑗′, she will not have an interference cost. For example,
suppose that 𝑟𝑖𝑗 = 5, 𝑟𝑖𝑗′ = 0, and 𝑐𝑖𝑗𝑗′ = 2. Then, if agent
𝑖 acquires only band 𝑗, she will value it at 5− 2 = 3. If she
acquires only band 𝑗′, she will value it at 0, but acquiring
both 𝑗 and 𝑗′, her value will be 5, which exceeds the sum of
the values for 𝑗 and 𝑗′, i.e. these bands are complements.4

A. Efficient Allocation

From an economic perspective a common objective of any
resource allocation is to maximize efficiency, meaning the
total utility (revenue minus cost) derived from the allocation
(e.g., summed over all agents requesting the resource). We
consider finding such an allocation for the model introduced
in the previous section. Let 𝑥𝑖𝑗 = 1 if agent 𝑖 ∈ 𝐴 is assigned
asset 𝑗 ∈ 𝐶 and zero otherwise. The efficient allocation
of assets to agents is then given by the following integer
program:

max
∑

𝑖∈𝐴

∑

𝑗∈𝐶

𝑟𝑖𝑗𝑥𝑖𝑗 −
∑

𝑖∈𝐴

∑

𝑗𝑗′∈𝐸

𝑐𝑖𝑗𝑗′(𝑥𝑖𝑗 − 𝑥𝑖𝑗′)
+ (1)

s.t.
∑

𝑖∈𝐴

𝑥𝑖𝑗 ≤ 1, ∀𝑗 ∈ 𝐶

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐶.

The objective function of this problem is concave but non-
differentiable. Note that if 𝑐𝑖𝑗𝑗′ = 0 ∀𝑖 ∈ 𝐴 and (𝑗, 𝑗′) ∈ 𝐸,
then Problem (1) becomes a simple allocation problem with-
out any complementarities. In this case one should simply
give each spectrum asset 𝑗 to the agent with the largest value
of 𝑟𝑖𝑗 . Our focus here is on cases where 𝑐𝑖𝑗𝑗′ > 0.

III. AN INITIAL LINEAR RELAXATION

To begin we consider the following natural linear relax-
ation of (1):

max
∑

𝑖∈𝐴

∑

𝑗∈𝐶

𝑟𝑖𝑗𝑥𝑖𝑗 −
∑

𝑖∈𝐴

∑

(𝑗,𝑗′)∈𝐸

𝑐𝑖𝑗𝑗′𝑑
𝑖
𝑗𝑗′ (2)

s.t.
∑

𝑖∈𝐴

𝑥𝑖𝑗 ≤ 1 ∀𝑗 ∈ 𝐶

𝑑𝑖
𝑗𝑗′ ≥ 𝑥𝑖𝑗 − 𝑥𝑖𝑗′ ∀𝑖 ∈ 𝐴, (𝑗, 𝑗′) ∈ 𝐸

𝑑𝑖
𝑗𝑗′ ≥ 0 ∀𝑖 ∈ 𝐴, (𝑗, 𝑗′) ∈ 𝐸,

3Note that in general we allow these costs to be directional so that 𝑐𝑖
𝑗𝑗′

need not be equal to 𝑐𝑖
𝑗′𝑗 .

4Here we are assuming that the given spectrum is scarce enough so that
if agent 𝑖 does not acquire it, then another agent will.

0 ≤ 𝑥𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐶

We next give two simple examples which show that even
for small networks, this relaxation may not be exact, i.e., it
may have fractional solutions. We will also see that fractional
solutions can happen regardless of the amount of interference.
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Fig. 1: A three agent/three asset example. Each shaded node denotes
the asset each user has positive revenue for. The dashed
arrows denote the interference a user would suffer without
having the corresponding neighboring asset.

The first example we consider is a scenario with three
agents (𝐴 = {1, 2, 3}) and three spectrum assets (𝐶 =
{1, 2, 3}) as illustrated in Figure 1. Assume that 𝑟11 = 𝑟22 =
𝑟33 = 𝑟 and 𝑟𝑖𝑗 = 0 if 𝑖 ∕= 𝑗, i.e. each agent 𝑖 only
has positive revenue for asset 𝑗 = 𝑖. Furthermore, assume
that when each agent 𝑖 is allocated asset 𝑖, she receives an
interference cost of 𝑐 if another agent is allocated asset 𝑖+1
mod 3, i.e. 𝑐121 = 𝑐232 = 𝑐313 = 𝑐. All other interference costs
are zero. consider the following fractional feasible solution to
Problem (2): set 𝑥11 = 𝑥12 = 𝑥22 = 𝑥23 = 𝑥33 = 𝑥31 = 1/2
and all of other 𝑥𝑖𝑗 = 0. This results in a total revenue of
3𝑟/2. Note that there is no interference cost incurred with this
solution. On the other hand, the feasible integer solutions
to this problem yields pay-offs of 𝑟, 3𝑟 − 3𝑐 and 2𝑟 − 𝑐.
Therefore, by comparing the total revenue, we conclude that
if 𝑐 > 1/2𝑟, then the preceding fractional solution is better
than any integral solution, i.e. the underlying LP’s solution
is fractional.

In the above example, the solution to the linear relaxation
in (2) is integral for small enough interference (i.e. small val-
ues of 𝑐), and fractional for large interference. In other words,
whether the linear relaxation is exact depends on the amount
of interference. We will next describe another example, in



which we show that whether the linear relaxation is exact
does not necessarily depend on the level of interference.

In this example we consider a problem with four agents
and four spectrum assets. The revenue and interference costs
of each agent are illustrated in Figure 2. Each agent wants
three consecutive assets and will receive interference if she
does not have all three.
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Fig. 2: An example with four agents and four assets. Each shaded
asset denotes the asset each user has positive revenue for.
Dashedarrows denotes the interference a user would suffer
without having the corresponding neighboring asset.

It can be seen that there are exactly three agents having
positive revenue for each asset, and dividing each asset evenly
among the agents with positive revenue for the cell (1/3 in
this case) can always achieve a revenue of 4𝑟, which is the
maximum revenue that can be achieved. But any integral
solution achieving a total revenue of 4𝑟 has to suffer some
interference. As a result, the 1/3-fractional solution is always
superior to any integral solution (with 𝑐 > 0). Note that
the above argument holds for any choice of interference
costs (which need not be symmetric). Therefore, even for
arbitrarily small interference, the relaxation can be inexact.

We also want to point out that fractional solutions can-
not necessarily be interpreted as frequency sharing or time
sharing. For example again consider the fractional solution
for the example in Figure 1, where two agents equally share
each asset. Consider implementing this solution using time
sharing for example by dividing the total time that an asset
is allocated into two equally sized time-slots. Next suppose
that agent 1 is allocated asset 1 during the first time-slot.
Then to not incur any interference costs (as in the fractional
solution) agent 1 should also be allocated asset 2 during the

first time-slot. by the same reasoning, agent 2 would then be
allocated assets 2 and 3 during the second time-slot (since
agent 1 is already allocated asset 2 during the first time-
slot). This would then require that agent 3 use slot 1 for
asset 3, but slot 2 for asset 1, in which case she would incur
an interference cost not accounted for in the solution to the
LP. A similar argument can be made for the infeasibility of
simple frequency sharing.

A. Extreme Points of the Relaxation

In this section, our attention will be focused on the extreme
points of the linear relaxation. We shall see that the number
of fractional extreme points may grow exponentially with
the size of the spectrum assets and the number of agents. It
is also a suggestion of the difficulty of solving the original
integer allocation problem.

Extreme points of the feasible region of the relaxation
problem are characterized by the following constraints:

∑
𝑖∈𝐴 𝑥𝑖𝑗 ≤ 1 ∀𝑗 ∈ 𝐶 (3)

𝑑𝑖
𝑗𝑗′ ≥ 𝑥𝑖𝑗 − 𝑥𝑖𝑗′ ∀𝑖 ∈ 𝐴, (𝑗, 𝑗′) ∈ 𝐸 (4)

𝑑𝑖
𝑗𝑗′ ≥ 0 ∀𝑖 ∈ 𝐴, (𝑗, 𝑗′) ∈ 𝐸 (5)

0 ≤ 𝑥𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐶 (6)

It takes a certain number of constraints to form an extreme
point. We also, by convenient abuse of notation, denote the
number of agents and the number of assets by 𝐴 and 𝐶.
Without any assumption of the topology, we consider all
possible edges between the nodes, i.e., the interference graph
is fully connected. So we have 𝐴𝐶 𝑥 variables and 𝐶(𝐶−1)
𝑑 variables. Therefore, we need 𝐴𝐶+𝐶(𝐶−1) independent
binding constraints to form an extreme point. Note that any
feasible integral solution gives us exactly this number of
binding constraints. Obviously, any feasible integral solution
is an extreme point.

We next consider general cases including fractional solu-
tions. Since for any 𝑑𝑖

𝑗𝑗′ we can always have either (4) or (5)
binding, we only need 𝐴𝐶 independent binding constraints
for 𝑥𝑖𝑗 . An observation is that if 𝑥𝑖𝑗 = 1, it also suggests that
𝑥𝑖′𝑗 = 0 ∀𝑖′ ∕= 𝑖, which offers 𝐴 constraints in total. So we
can ignore this asset and focus on the other 𝐶−1 assets as if
these were the only assets. Thus, without loss of generalities,
we assume 0 ≤ 𝑥𝑖𝑗 < 1 ∀𝑖 ∈ 𝐴𝑗 ∈ 𝐶. Note that (5) implies
𝑥𝑖𝑗 = 𝑥𝑖𝑗′ or 𝑑𝑖

𝑗𝑗′ = 0. Let 𝑆𝑖
𝑓 = {𝑗 : 0 < 𝑥𝑖𝑗 < 1} be

the set of assets which agent 𝑖 is assigned fractions. Define
a group of assets of agent 𝑖, 𝑐𝑖 = {𝑗 : 𝑥𝑖𝑗 = 𝜖𝑖} for some
0 < 𝜖𝑖 < 1. In other words, a group is the set of assets
which an agent is assigned the same fractional 𝑥𝑖𝑗 . Suppose
user 𝑖 has 𝑘𝑖 groups, then it can be seen that this provides
𝐶 − 𝑘𝑖 constraints. Note that a singleton group does not
provide any binding constraint. So summing over all agents’
groups, we have

∑
𝑖∈𝐴(𝐶 − 𝑘𝑖) = 𝐴𝐶 − ∑

𝑖∈𝐴 𝑘𝑖 binding
constraints. Together with 𝐶 constraints given in (3), we have
𝐴𝐶 −∑

𝑖∈𝐴 𝑘𝑖+𝐶 constraints. In order to form an extreme
point, we need 𝐴𝐶 −∑

𝑖∈𝐴 𝑘𝑖 + 𝐶 ≥ 𝐴𝐶, i.e.
∑

𝑖∈𝐴

𝑘𝑖 ≤ 𝐶. (7)



The inequality in (III-A) gives the condition for an extreme
point. In other words, the total number of groups can never
exceed 𝐶. This can also be understood from the view of
solving 𝐶 linear equations. Because for each group, there
is a variable associated with it. If it is an extreme point,
then we must be able to solve these variables from the linear
equations given in (3). Since there are at most 𝐶 linear
independent equations, we can solve for at most 𝐶 variables,
which correspond to 𝐶 groups.

As a special case, if 𝐴 = 𝐶 𝑘𝑖 > 0∀𝑖, then we have
𝑘𝑖 = 1∀𝑖. Namely, if the number of agents and the number
of assets are the same, and each agent has some fractional
𝑥’s, then each agent’s fractional 𝑥 is unique. However, for
general 𝐴 and 𝐶, there could be many ways of selecting 𝑘𝑖
to meet the condition in (III-A). As a result, there could be
many fractional extreme points as the number of agents and
number of assets grow. This suggests that solving the integer
allocation problem may be complex; we show that this is
indeed the case in the following section.

IV. COMPUTATIONAL COMPLEXITY

In this section we consider the computational complexity
of Problem (1) and show that in general the problem is NP
hard. We show this in two different cases. First for a general
version of the problem and then for a version where the
interference cost terms are required to be small.

Proposition 1: The spectrum asset allocation problem in
(1) is NP-hard.

Proof: We prove this by showing that any instance of
the maximum independent set problem can be transformed
into an instance of this problem. Suppose we want to find a
maximum independent set in a given graph 𝐺 = (𝑉, 𝐸). We
then construct an instance of the spectrum asset assignment
problem in which 𝐺 is the interference graph and 𝑁 repre-
sents the set of spectrum assets. Let the number of agents
be equal to the number of nodes in 𝐺. Set 𝑟𝑖𝑗 = 1 only if
the index of an agent and a cell agree, i.e., 𝑖 = 𝑗; otherwise
𝑟𝑖𝑗 = 0. Set 𝑐𝑖𝑗𝑗′ = 2 ∀𝑖 ∈ 𝐴 and (𝑗, 𝑗′) ∈ 𝐸. With these
values, it can be seen that in a optimal solution to (1) if agent
𝑖 is allocated spectrum asset 𝑖, then no other agents will be
allocated any neighboring asset to 𝑖. Thus a solution to (1)
must correspond to a maximum independent set in 𝐺. Since
the maximum independent set problem is NP-complete, the
result follows.

The previous proof required that the interference cost of
an agent between two neighboring assets be larger than the
revenue achieved by that agent from owning both of the
assets. In most spectrum markets, such a high interference
costs may seem unreasonable and one might hope that with
small enough interference that the complexity improves.
However, as the next proposition shows, even with arbitrarily
small interference costs, this problem can still be NP-hard.

Proposition 2: The spectrum asset allocation problem in
(1) is NP-hard even if the interference costs on each link is
arbitrarily small (relative to the revenue).

Proof: For this proof, we will show that any instance
of the Graph Partitioning problem can be transformed (in

polynomial time) into an instance of the spectrum asset
allocation problem with arbitrarily small interference costs.
Given a graph 𝐺 = (𝑉, 𝐸) and positive number 𝐾 ≥ 3, the
Graph Partitioning problem is to find a partition of 𝑉 in to
disjoint sets 𝑉1,...,𝑉𝑚 such that ∣𝑉𝑖∣ ≤ 𝐾 for all 1 ≤ 𝑖 ≤ 𝑚
and such that if 𝐸′ ⊂ 𝐸 is the set of edges that have two
endpoints in two different sets, then ∣𝐸′∣ is minimized, where
∣ ⋅ ∣ is the cardinality of the set. (see [10] for a general version
of this problem). This problem is NP-complete, even with the
restriction that 𝐾 = 3

We now give a transformation of the graph partitioning
problem with 𝐾 = 3 into the spectrum asset allocation
problem. Let 𝑉 be the set of spectrum assets and 𝐺 the
corresponding interference graph. For any 𝑉𝑖 ⊂ 𝑉 such
that ∣𝑉𝑖∣ ≤ 3, introduce an agent with 𝑟𝑖𝑗 = 𝑟0 only for
𝑗 ∈ 𝑉𝑖, and zero otherwise; also, set 𝑐𝑖𝑗𝑗′ = 𝑐0 for all
edges (𝑗, 𝑗′) ∈ 𝐸 such that 𝑗 ∈ 𝑉𝑖 or 𝑗′ ∈ 𝑉𝑖 or both. The
number of agents resulting from this 1

6𝑛3+𝑂(𝑛). Thus, this
transformation can be done in polynomial time. Furthermore,
assume 𝑟0 > 0 and 𝑐0 > 0 are chosen such that 𝑐0 is small
enough so that an agent’s revenue is always greater than the
costs she suffers, as well as the costs she imposes on the
agents owning the neighboring assets. This can always be
done and allows for 𝑐0 to be arbitrarily small relative to 𝑟0. As
a result of this choice, each asset 𝑗 will be allocated to some
agent with for which 𝑟𝑖𝑗 = 𝑟0. Hence, the first summation
term representing the total revenue across all assets in the
objective function in (1) becomes a constant (= ∣𝑉 ∣𝑟0) and
the optimal solution is that the one which minimizes the total
interference costs among the assets. Since all interference
costs are assumed to be equal, the total interference cost of
an assignment is the number of edges whose two end nodes
belong to different agents. By construction, the number of
assets assigned to a given agent will be no greater than 3
and hence the solution to this also a solution to the graph
partitioning problem.

V. COMPUTATIONALLY TRACTABLE SCENARIOS

From the discussion in Sections III and IV, it is shown that
Problem (1) may be computationally intractable. However,
we are able to identify two scenarios in which the integer
allocation problem can be solved in polynomial time. In the
first scenario, interference is small enough to be ignored. The
second scenario is for a special case of the interference graph,
namely when this graph is a line.

The first scenario we consider is to give conditions on
the interference costs and revenues so that a simple greedy
assignment of each asset to the agent who values it the most
is optimal. This is true in either of the following cases:
Case 1: If for each asset, there is only one agent has positive
revenue, and the revenue satisfies

𝑟𝑖𝑗 ≥
∑

𝑗′:(𝑗,𝑗′)∈𝐸

𝑐𝑖𝑗𝑗′ +
∑

𝑗′:(𝑗,𝑗′)∈𝐸

max
𝑖∈𝐴

𝑐𝑖𝑗′𝑗 , (8)

then the solution is integral, i.e., 𝑥𝑖𝑗 = 1 and 𝑥𝑖𝑗′ = 0
∀𝑗′ ∕= 𝑗.
Case 2: This is a generalization of Case 1. Suppose each



agent only has positive revenue for one asset, but there can
be many agents with positive revenue for the same asset.
If there is at least one agent’s revenue satisfying condition
in (8), then the solution is integral with 𝑥𝑖𝑗∗ = 1 where
𝑗∗ = argmax𝑗(𝑟𝑖𝑗 − ∑

𝑗′:(𝑗,𝑗′)∈𝐸 𝑐𝑖𝑗𝑗′). The result in Case
1 suggests that a asset should be allocated to a agent with
positive revenue. As a result, the agent who has asset 𝑗 in
the optimal solution will not have any neighboring assets by
the assumption. Therefore, among the agents with positive
revenue for asset 𝑗, the asset should be allocated to the
agent with the largest payoff (revenue minus costs).

In the second scenario (the line model), we model the
problem in a different way in order to see the tractability.
We use the term ”interval” to denote consecutive assets. Let
ℐ be the set of all intervals on the line (of all possible
lengths), and 𝑢𝑖(𝐼) be the utility of agent 𝑖 having interval
𝐼 . Here 𝑢𝑖(𝐼) denotes the revenue that agent 𝑖 gets if
she does not own the left or right neighboring assets, i.e.
𝑢𝑖(𝐼) =

∑
𝑗∈𝐼 𝑟𝑖𝑗 − 𝑐𝑖𝑗1(𝑗1−1)− 𝑐𝑖𝑗2(𝑗2+1), where 𝐼 = [𝑗1, 𝑗2].

Let 𝑥𝑖𝐼 = 1 if interval 𝐼 ∈ ℐ is assigned to agent 𝑖 ∈ 𝐴.
Then, the problem can be written as

max
∑

𝑖∈𝐴

∑

𝐼∈ℐ
𝑢𝑖(𝐼)𝑥𝑖𝐼 (9)

subject to

∑

𝑖∈𝐴

∑

𝐼∋𝑗

𝑥𝑖𝐼 ≤ 1 ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐶, 𝐼 ∈ ℐ

𝑥𝑖𝐼 ∈ {0, 1} ∀𝑖 ∈ 𝐴, 𝐼 ∈ ℐ

Lemma 1: The linear system defined by

∑

𝑖∈𝐴

∑

𝐼∋𝑗

𝑥𝑖𝐼 ≤ 1 ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐶, 𝐼 ∈ ℐ

0 ≤ 𝑥𝑖𝐼 ≤ 1, ∀𝑖 ∈ 𝐴, 𝐼 ∈ ℐ

has only integral extreme points.
This lemma holds simply because the constraint matrix

in (9) has the property of consecutive 1’s in each column.
As a result, the constraint matrix is totally unimodular [11].

Because of Lemma 1, the problem in (9) can be solved
by solving its linear relaxation. Namely, it can be solved
in polynomial time. Last, since the way in which 𝑢𝑖(⋅) is
defined, the solution to problem in (9) must be a solution to
the allocation problem in (1). Therefore, the integer allocation
problem in (1) can be solved in polynomial time in this case.

VI. AN ALTERNATIVE FORMULATION

In this section we consider a reformulation of 1 that
follows from replacing the (𝑥𝑖𝑗−𝑥𝑖𝑗′)

+ terms in the objective
with 𝑥𝑖𝑗(1 − 𝑥𝑖𝑗′). This yields the following equivalent

problem:

max
∑

𝑖∈𝐴

∑

𝑗∈𝐶

(𝑟𝑖𝑗 −
∑

𝑗𝑗′∈𝐸

𝑐𝑖𝑗𝑗′)𝑥𝑖𝑗 +
∑

𝑖∈𝐴

∑

𝑗𝑗′∈𝐸

𝑐𝑖𝑗𝑗′𝑥𝑖𝑗𝑥𝑖𝑗′

(10)

s.t.
∑

𝑖∈𝐴

𝑥𝑖𝑗 ≤ 1 ∀𝑗 ∈ 𝐶

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐶.

For each 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐶, let 𝑟𝑖𝑗 = (𝑟𝑖𝑗 −
∑

𝑗𝑗′∈𝐸 𝑐𝑖𝑗𝑗′);
these terms term in the objective can be interpreted as
the minimum revenue that agent 𝑖 can gain from asset 𝑗
(assuming that she receives interference from all neighboring
assets). The term 𝑐𝑖𝑗𝑗′𝑥𝑖𝑗𝑥𝑖𝑗′ can be viewed as the extra
revenue gained if agent 𝑖 receives two complementary assets
𝑗 and 𝑗′.

This yields the following linear relaxation:

max
∑

𝑖∈𝐴

∑

𝑗∈𝐶

𝑟𝑖𝑗𝑥𝑖𝑗

∑

𝑖∈𝐴

∑

𝑗𝑗′∈𝐸

𝑐𝑖𝑗𝑗′𝑧
𝑖
𝑗𝑗′ (11)

s.t.
∑

𝑖∈𝐴

𝑥𝑖𝑗 ≤ 1, ∀𝑗 ∈ 𝐶

𝑧𝑖𝑗𝑗′′ ≤ 𝑥𝑖𝑗 , ∀𝑖 ∈ 𝐴, (𝑗, 𝑗′) ∈ 𝐸

𝑧𝑖𝑗𝑗′ ≤ 𝑥𝑖𝑗′ , ∀𝑖 ∈ 𝐴, (𝑗, 𝑗′) ∈ 𝐸

0 ≤ 𝑥𝑖𝑗 ≤ 1, ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐶. (12)

The next lemma shows that this relaxation is equivalent to
the relaxation in (2) in terms of the solutions it generates.

Lemma 2: The relaxation in (2) and (11) have the same
optimal solution and the same set of optimal {𝑥𝑖𝑗} values.

Proof: Let {𝑥𝑖𝑗 , 𝑧
𝑖
𝑗𝑗′} be an optimal solution to Prob-

lem (11), with an objective value of 𝑓∗. Note that at any
optimal solution to Problem 11, it must be that

𝑧𝑖𝑗𝑗′ = min(𝑥𝑖𝑗 , 𝑥𝑖𝑗′). (13)

Consider assigning the same 𝑥𝑖𝑗 values to the variables in
Problem 2 and set

𝑑𝑖
𝑗𝑗′ = 𝑥𝑖𝑗 − 𝑧𝑖𝑗𝑗′

for all 𝑖 ∈ 𝐴 and 𝑗𝑗′ ∈ 𝐸. Using (13), it follows that this
choice of variables is feasible for Problem 2. Furthermore,
by construction it results in an objective value of 𝑓∗ for
Problem 2, i.e. the optimal solution to Problem 2 is no less
than the optimal solution to Problem 11.

To complete the proof, {𝑥𝑖𝑗 , 𝑑
𝑖
𝑗𝑗′} be an optimal solution

to Problem 2 with an objective value of 𝑔∗. We can transfer
this into a feasible solution to Problem 11 with an objective
value no less than 𝑔∗ using the same 𝑥𝑖𝑗 values and setting
𝑧𝑖𝑗𝑗′ = 𝑥𝑖𝑗 − 𝑑𝑖

𝑗𝑗′ (noting that at any optimal solution to
Problem 11 it must be that 𝑑𝑖

𝑗𝑗′ = (𝑥𝑖𝑗 − 𝑥𝑖𝑗′)
+).

So far this formulation does not appear to have any
advantages compared to the previous one. However, we will
next modify it by adding additional constraints, which will
result in a stronger formulation. To begin, consider Problem
(10) for the example with three spectrum assets shown in
Figure 1. In this example, it can be seen that the 𝑧𝑖𝑗𝑗′ variables
can be non-zero for at most one agent 𝑖, since if one agent



has 𝑧𝑖𝑗𝑗′ = 1 it must have both the 𝑗 and 𝑗′ spectrum assets
and so no other agent can have two assets. Based on this
observation, we can then add the following constraints to
Problem (11)

𝑧𝑖𝑗𝑗′ +
∑

𝑖′ ∕=𝑖

𝑧𝑖
′
𝑘𝑗 +

∑

𝑖′ ∕=𝑖

𝑧𝑖
′
𝑗′𝑘 ≤ 1, ∀𝑗𝑗′ ∈ 𝐸, 𝑖 ∈ 𝐴, (14)

where 𝑘 ∈ 𝐶 is the asset not included in the edge 𝑗𝑗′. Doing
this gives a stronger linear relaxation of Problem (10) for this
three node example. In particular, this additional constraint
eliminates the fractional optimal solution in the example for
𝑐 > 1/2𝑟 since achieving this solution would require that
𝑧121 = 𝑧232 = 𝑧313 = 1/2 and so violate (14). Indeed, it can
be shown that with these additional constraints the resulting
linear relaxation for any problem with three spectrum assets
will be exact.

Given an arbitrary interference graph 𝐺, we can add such
constraints as in (14) for any subgraph of 𝐺 which is also
a triangle. Next, we generalize this type of constraint to a
square graph as in Figure 2. For such a graph it can be seen
that the 𝑧𝑖𝑗𝑗′ variable can be non-zero for at most two agents,
and furthermore if one agent has more than one non-zero 𝑧𝑖𝑗𝑗′ ,
then it must be the only agent for which these variables are
non-zero. This can be encoded using the following constraints

𝑧𝑖𝑗𝑗′ + 𝑧𝑖𝑘𝑘′ +
∑

𝑖′ ∕=𝑖

𝑧𝑖
′
𝑙𝑙′ +

∑

𝑖′ ∕=𝑖

𝑧𝑖
′
𝑚𝑚′ ≤ 2, ∀𝑖 ∈ 𝐴, (15)

where 𝑗𝑗′, 𝑘𝑘′, 𝑙𝑙′ and 𝑚𝑚′ represent some permutation of
the edges in 𝐸 (one set of constraints is needed for each
of the six permutations in which 𝑗𝑗′ and 𝑘𝑘′ are not the
same). Again, it can be seen that adding such constraints
eliminates the fractional solution in the example. In an
arbitrary interference graph 𝐺, such constraints can be added
for any subgraph which is a square. Continuing in a similar
manner we could develop similar constraints for larger cycles.

VII. RING TOPOLOGIES

In this section we focus on a case where the interference
graph is a ring (this includes the examples in Figures 1 and 2
as special cases. For such a graph, we consider the relaxation
in (11). This relaxation may not be integral, however we will
show in the following that it is “nearly” integral and that we
can efficiently find a solution to the original integer program.

Number the nodes of 𝐺 consecutively 1, 2, 3, . . . , 𝐶. Then,
the only edges in 𝐸 are of the form (𝑢, 𝑢 + 1 mod 𝐶). In
this case, the constraints for (11) become (not including the
constraints that each variable be in [0, 1]:

∑

𝑖∈𝐴

𝑥𝑖𝑢 ≤ 1, ∀𝑢 ∈ 𝐶 (𝐺𝑢)

𝑧𝑖𝑢,𝑢+1 ≤ 𝑥𝑖𝑢 (𝑅𝑖𝑢)

𝑧𝑖𝑢−1,𝑢 ≤ 𝑥𝑖𝑢 (𝐿𝑖𝑢)

Lemma 3: Consider removing one of the assets, that is
pick a asset 𝑗 ∈ 𝐶 and an agent 𝑖 ∈ 𝐴 and set 𝑥𝑖𝑗 = 1 and
𝑥𝑘𝑗 = 0 for all 𝑘 ∕= 𝑗. The resulting constraint matrix given
by (𝐺𝑢), (𝑅𝑖𝑢), and (𝐿𝑖𝑢) for 𝑢 ∈ 𝐶 is totally unimodular.

Proof: To do this, we will use the Ghouila-Houri char-
acterization of totally unimodular matrices, which states that
for each subset of the constraints, 𝐻 , we need to find an
appropriate partition of the constraints into two sets 𝑅 (red)
and 𝐵 (blue) such that for all columns 𝑗, we have that
∣∑𝑖∈𝐵 𝑎𝑖𝑗 −

∑
𝑖∈𝑅 𝑎𝑖𝑗 ∣ = 0, 1.

In particular this would mean

1) 𝑅𝑖𝑢 and 𝐿𝑖,𝑢+1 (if they occur in 𝐻) must receive
different colors.

2) If 𝐺𝑢, 𝐿𝑖𝑢, 𝑅𝑖𝑢 ∈ 𝐻 , then they can all receive the same
color or 𝐺𝑢, 𝐿𝑖𝑢 or 𝐺𝑢, 𝑅𝑖𝑢 can receive the same color.

3) If only 𝐿𝑖𝑢 and 𝑅𝑖𝑢 occur in 𝐻 (But not 𝐺𝑢), they
must receive different colors.

4) If only 𝐺𝑢 and 𝐿𝑖𝑢 (𝑅𝑖𝑢) are in 𝐻 , they must receive
the same color.

To accomplish this, mark each 𝑢 ∈ 𝐶 such that (i) 𝐺𝑢 ∈ 𝐻 ,
and (ii) there is an 𝑖 such that either 𝑅𝑖𝑢 ∈ 𝐻 or 𝐿𝑖𝑢 ∈ 𝐻
but not both. Label each 𝑢 such that 𝐺𝑢 /∈ 𝐻 .

Pick the first consecutive string of 𝑢’s such that 𝐺𝑢 ∈ 𝐻
and color each 𝐺𝑢 blue and red alternating. Suppose the last
𝑢 in this string is colored Red. This string will terminate in a
string of labeled 𝑢’s. Then we pick up another string of 𝑢’s
for which 𝐺𝑢𝑖𝑛𝐻 . If the preceding string of labeled 𝑢’s is
of even length then color the first 𝑢 of the next string (with
𝐺𝑢𝑖𝑛𝐻) Red, otherwise color it Blue.

For each marked 𝑢, color 𝑅𝑖𝑢 (𝐿𝑖𝑢) with the same color
as the corresponding 𝐺𝑢. Observe that if 𝑢 and 𝑢 + 1 are
marked, and 𝑅𝑖𝑢 and 𝐿𝑖,𝑢+1 are in 𝐻 , they receive different
colors.

If 𝑢 is not marked but 𝐺𝑢 ∈ 𝐻 , then 𝐿𝑖𝑢 and 𝑅𝑖𝑢 are in
𝐻 . Color 𝐿𝑖𝑢 and 𝑅𝑖𝑢 with the same color as 𝐺𝑢. Observe
that if 𝑢 or 𝑢 − 1 are marked, then 𝑅𝑖𝑢 and 𝐿𝑖,𝑢+1 (as well
as the other possible pairs) receive different colors.

Consider now a 𝑢 such that 𝐺𝑢 is not in 𝐻 . Start with one
such that 𝐺𝑢−1 is in 𝐻 . Color 𝐿𝑖𝑢 with a color opposite to
that of 𝑅𝑖,𝑢−1. Color 𝑅𝑖𝑢 with the same color as 𝑅𝑖,𝑢−1. By
the parity condition, the colors line up at the start and end
of the string.

The above property immediately gives a polynomial algo-
rithms for solving the original integer program.

VIII. NUMERICAL RESULTS

In this section, we present some numerical results
which compare the total utility achieved by several natural
approximation schemes.

We consider a finite 𝐿1 × 𝐿2 grid of spectrum assets.
Namely, the underlying interference graph is a grid as in
Figure 3. We assume the interference cost is proportional to
the corresponding revenue of an agent for a given asset, i.e.,
𝑐𝑖𝑗𝑗′ = 𝜆𝑟𝑖𝑗 if 𝑗′ is a neighbor of 𝑗’s, where 0 ≤ 𝜆 ≤ 1 is a
constant factor. Also, we assume that an agent will have a
positive revenue for a cell with probability 𝑝, and zero with
probability 1 − 𝑝. Note that smaller 𝑝 will result in more
interference. Furthermore, the agents’ revenue is symmetric,
i.e., 𝑟𝑖𝑗 = 𝑟 if 𝑟𝑖𝑗 > 0, ∀𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐶, where 𝑟 is a
positive constant. We consider the following approximate
allocation schemes:



Fig. 3: Interference cost model with grid topology

Approximation 1: maximum revenue scheme. In the
maximum revenue scheme, a cell is assigned to the agent
who accrues most revenue from it (ignoring any interference
costs).
Approximation 2: round-up scheme. In the Round-up
scheme, assets are allocated based the solution to the linear
relaxation in (2). If the solution is fractional, then a asset is
assigned to the agent with the largest fraction.
Approximation 3: randomization scheme. In the
randomization scheme, the allocation is done based on
the solution to the linear relaxation in (2). If the solution
is fractional, then an asset is assigned to an agent with a
probability equal to the agent’s fraction.

In Figure 4, we show results for a system with
𝐿1 = 𝐿2 = 3, 𝐴 = 6 and 𝑟 = 15. The total utility is
plotted against 𝜆 for different allocation schemes with the
probability 𝑝 = 0.3 and 𝑝 = 0.8 respectively. Based on
the numerical results, it can be seen that the social welfare
of the integral solution and fractional solution are very
close. In other words, the linear relaxation gives a very
close upper bound on the social welfare of the spectrum
market. Moreover, the round-up scheme performs well
most of the time. However, the maximum revenue and
randomization schemes suffer performance degradation with
large interference (large 𝜆).

The linear relaxation and round-up scheme give upper
and lower bound on the social welfare that the integer
allocation can achieve. Thus, we show how the social
welfare gap between the two changes with different sizes
of network. In Figure 5, the social welfare gap between
the LP relaxation and the round-up scheme is plotted as
a percentage with a fixed number of agent, but different
network sizes. The results in the figure show that for small
𝑝, the gap is smaller in larger networks. Furthermore, the
gap increases with the amount of interference (the value of
𝜆).
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(b) 𝑝 = 0.8

Fig. 4: Social Welfare of various allocation schemes for a 3 × 3
lattice with six agents. (a)𝑝 = 0.3 (b)𝑝 = 0.8
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Fig. 5: Social welfare gap between LP relaxation and round-up
scheme with different size of grids with 𝐴 = 9 and 𝑟 = 15.
Top: 𝑝 = 0.3; Bottom: p=0.8.



IX. OPTIMAL MARKET PRICES

For a market model, the optimal market prices clear the
market, and achieve the optimal social welfare. The analysis
of the efficient allocation of the spectrum market can provide
suggestions for the optimal market prices. If an integer
problem can be solved through its linear relaxation, then
advantage of the exact linear programming formulation is
that the dual variables of the problem have an interpretation
as prices. Thus, a primal-dual algorithm can suggest how
prices should be adjusted to achieve the efficient allocation.

In Section III, it is shown that the linear relaxation in (2)
is not always exact. This suggests that for this relaxation,
there does not exist uniform per/cell prices which achieve
the optimal total utility. In other words, if the optimal
utility is the objective of the market, then the market has
to assign prices for bundles of spectrum assets, and price
differentiation among agents may be necessary as well.
Therefore, the complementarities not only make the efficient
market allocation difficult to compute, but also complicate
the design of optimal pricing schemes.

Nevertheless, in the scenarios where the round-up scheme
in Section VIII performs well (such as (a) in Figure 4, we can
still obtain an reasonably good approximation by using the
prices from the primal-dual iterations of the linear relaxation.

X. CONCLUSIONS

We have studied a simple stylized model for comple-
mentarities that may arise in spectrum markets. We have
focused mainly on determining an efficient assignment of
spectrum assets to agents. We have shown that in general
due to complementarities, this can be a computationally
challenging problem, however in several special cases it can
be solved efficiently. How relevant these computational issues
will be for a spectrum market will of course depend on the
number of spectrum assets available and the time-scale at
which the market operates. Here we have focused on simply
determining an efficient allocation given complete knowledge
of the agents revenues and costs. A possible direction for
future work is to consider a mechanism for acquiring this
information from potentially strategic agents. Another open
direction is to develop more refined models for interference
costs and study how various definitions of spectrum assets
influence these costs.
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