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Reduced-Rank Signature–Receiver Adaptation
Yakun Sun and Michael L. Honig

Abstract— Interference in code-division multiple access
(CDMA) and multi-antenna systems can be avoided by choosing
a signature (in space and/or time), which lies in the direction
of least interference plus noise. If the interference statistics
are unknown a priori, then the signature can be adaptively
estimated with a training sequence. We present an iterative
scheme for joint signature–receiver adaptation with an adaptive
reduced-rank Multi-Stage Wiener Filter (MSWF) at the receiver.
We establish convergence of the iterative signature–receiver
optimization scheme for a single user with fixed interference,
and show that the limiting performance for any filter rank
D ≥ 2 is the same as that obtained with a full-rank receiver. To
reduce feedback requirements, we also consider joint signature–
receiver adaptation with a reduced-rank signature, which is
confined to a randomly chosen subspace. Numerical results are
presented for both single- and multi-user (group) adaptation,
which show that reduced-rank signature-receiver estimation can
achieve near-optimal performance with relatively little training
and low complexity.

Index Terms— Signature optimization, reduced-rank, CDMA,
adaptive receiver, interference avoidance.

I. INTRODUCTION

ONE of the main limitations on the capacity and per-
formance of wireless networks is interference. In ad-

dition to signal processing techniques at the receiver, which
can suppress interference, it is also possible to design the
transmitted waveform to avoid interference at the intended
receiver. Interference mitigation and avoidance becomes espe-
cially important in ad-hoc and peer-to-peer Direct Sequence
(DS)-Spread Spectrum (SS) networks, where power control
cannot be used to solve the near-far problem. Techniques for
interference avoidance can also be applied to multi-antenna,
or multi-input/multi-output (MIMO) channels. Whereas signa-
tures for DS-SS are defined in time, for a MIMO channel the
combining coefficients across transmitter antennas form a set
of spatial signatures.

Interference avoidance can be accomplished by choosing a
signature (in space and/or time), which lies in the direction of
least interference plus noise. An adaptive scheme to optimize
the signature of a single DS-SS user has been presented
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in [1], and group signature optimization for the multiple access
channel is discussed in [2], [3], [4], [5]. It has been shown
in [6] that, in the absence of multipath, the optimal (sum-
capacity achieving) signature sequences achieve the Welch
Bound Equality. Given an arbitrary set of sequences with
additive white Gaussian noise channels, it is shown in [3]
that the optimal signatures can be obtained through iterative
updates of signatures and receivers.

The optimal signature for a particular data stream can be
computed at the receiver given knowledge of the channel and
the interference-plus-noise covariance matrix. (This applies to
peer-to-peer networks as well as cellular.) In practice, the
optimal signature must be estimated with limited training,
which degrades performance. The amount of training may
be dictated by the availability of overhead capacity, and by
the channel (and interference) coherence time. Hence we seek
adaptive algorithms for signature estimation, which require
minimal training.∗

In this paper, we consider a synchronous multi-access
channel without multipath. This is mainly for convenience.
The signature adaptation scheme presented can also be applied
with asynchronous transmissions, and can be modified to
account for multipath, provided that the receiver knows the
channel. Furthermore, the adaptive algorithm for a single user
can be applied in more general networking scenarios (e.g.,
peer-to-peer). With a full-rank receiver, it has been shown
in [7] that for the multi-access channel, iterative signature–
receiver optimization in an asynchronous CDMA system pro-
vides the same capacity as that obtained in a synchronous
system.

We consider an iterative scheme for joint signature–receiver
optimization in which the receiver and transmitted signature
for a particular user are alternately optimized to maximize the
received Signal-to-Interference Plus Noise Ratio (SINR) until
convergence. In contrast with previous work, here we assume
a reduced-rank receiver, based on the Multi-Stage Wiener
Filter (MSWF) [8], which achieves full-rank performance with
relatively small rank, and requires less training than a full-
rank linear filter in an adaptive mode [9], [10], [11]. We show
that the optimal signature and associated output SINR with
the reduced-rank filter are the same as those with the full-
rank Minimum Mean Squared Error (MMSE) filter provided
that the rank of the reduced-rank filter is greater than one.
We also establish the convergence of the iterative algorithm
to this fixed point. We then study the performance of a joint
reduced-rank receiver and signature optimization with limited
training via simulation.

∗In what follows, signature and/or receiver ”optimization” assumes that the
channel and interference-plus-noise covariance matrix are known, whereas
signature and/or receiver ”adaptation” refers to the scenario in which the
receiver filter and/or signature(s) are estimated from a training sequence.
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Reduced-rank signature optimization is also considered in
which the signature is constrained to lie in a random sub-
space. Reducing the subspace dimension reduces the number
of parameters to estimate (e.g., a one-dimensional signature
subspace corresponds to conventional power control), and can
therefore reduce feedback requirements, but limits the degrees
of freedom available to avoid interference [13]. Our results
show that with limited training, the combined reduced-rank
receiver and reduced-rank signature can perform better than
using the reduced-rank technique at either the receiver or the
transmitter. Rank reduction also implies lower complexity.
As the amount of training increases, reduced- and full-rank
receivers give the same performance.

In addition to signature adaptation in the presence of
fixed (random) interference, we also consider group signature
adaptation with adaptive reduced-rank receivers for the multi-
access channel. That is, all users adapt their signatures.
We first show that when the users update their signatures
successively, the set of signatures converges to an optimal
set (i.e., that achieves the Welch Bound Equality). Numerical
results with simultaneous signature updates across users again
show that signature adaptation with reduced-rank receivers
(and signatures) can perform substantially better than the
corresponding full-rank estimation with limited training.

In the next section we present the system model and
the class of reduced-rank receivers considered. The iterative
algorithm for computing the jointly optimal signature and
reduced-rank receiver is presented in Section III, and an
adaptive version of the algorithm is presented in Section IV.
Group adaptation is discussed in Section V. Joint adaptation
of a reduced-rank signature with a reduced-rank receiver is
discussed in Section VI, and conclusions are presented in
Section VII.

II. SYSTEM MODEL AND REDUCED-RANK RECEIVER

In what follows, we will refer to a CDMA system with K
synchronous users and processing gain N . (In the presence of
multipath this is analogous to a MIMO system with K transmit
antennas and N receive antennas.) The N ×1 received vector
at time i is given by

r(i) =
K∑

k=1

skAkbk(i) + n(i) = SAb(i) + n(i) (1)

where sk is the normalized signature for user k (‖sk‖ = 1),
and S = [s1 s2 · · · sK ] is the N ×K signature matrix. At
time i, the transmitted symbol is bk(i) with E[|bk(i)|2] = 1,
Ak is the amplitude of each symbol, and A is the diagonal
amplitude matrix. The transmitted signal is corrupted by
complex white Gaussian noise n(i) with covariance σ2I.

We assume a linear receiver. The optimal (MMSE) receiver
for user k is then given by

ck = R−1sk =
(
S|A|2S† + σ2I

)−1
sk (2)

where (·)† denotes conjugate transpose. To reduce both the
amount of training needed to estimate the MMSE receiver in
an adaptive mode, and the complexity of the adaptive filter, we
consider a reduced-rank receiver filter in which the received
vector r(i) is projected onto a lower dimensional subspace.

Both the filtering and the filter estimation take place in the
subspace. Suppose the D-dimensional subspace, D < N ,
is spanned by the columns of the N × D matrix SD. The
projected received vector is given by

r̃(i) = S†
Dr(i) (3)

The output of the reduced-rank linear receiver is b̂k(i) =
c̃†kr̃(i), and the reduced-rank filter, which minimizes MSE =
E

[
|bk(i) − b̂k(i)|2

]
, is given by

c̃k = (S†
DRSD)−1S†

Dsk. (4)

We also have that

SINR =
|c̃†ksk|2
c̃†kRIc̃k

=
1

MSE
− 1, (5)

where the interference-plus-noise covariance matrix RI =
R − |Ak|2sks

†
k, so that minimizing the MSE is equivalent

to maximizing the SINR.
We consider the reduced-rank MSWF [8], which corre-

sponds to the projection matrix [9], [10]

SD = [sk Rsk · · · RD−1sk] (6)

That is, the columns of SD span a D-dimensional Krylov
space. A computationally efficient rank–recursive algorithm
can be used to compute the rank-D filter from the rank-(D−1)
filter [14].

III. SIGNATURE OPTIMIZATION WITH

REDUCED-RANK RECEIVER

Here we present an iterative algorithm for optimizing the
signature for user k with a reduced-rank receiver assuming
stationary interference (i.e., other signatures are fixed) with
known covariance matrix. With a full-rank MMSE receiver the
received SINR is given by SINR = s†kR

−1
I sk. To maximize

the SINR, the optimal signature is therefore chosen to be the
eigenvector of RI associated with the smallest eigenvalue. This
optimal signature can be computed at the receiver and relayed
back to the transmitter.

With a reduced-rank receiver, computation of the optimal
signature is not as straightforward, since the projection matrix
in (6) depends on the signature. However, we note that for
any fixed receiver ck, the optimal normalized signature (i.e.,
that minimizes MSE, or maximizes SINR in the presence
of fixed interference) is sk = ck/‖ck‖. Hence we propose
the following iterative scheme to optimize the signature and
reduced-rank receiver jointly. In each iteration, the transmitter
sends a packet containing training information. The receiver
computes the filter from the training and relays the normalized
filter to the transmitter as the signature for the next iteration.
The iterations stop when the desired accuracy is achieved.
In what follows the superscript denotes the iteration number.
The initial signature s(0)

k is chosen randomly, and ε is a
small positive constant, which determines the accuracy of the
calculation.
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Algorithm 1 Iterative signature-receiver optimization

Initialize: Choose random s(0)
k

repeat
for n = 0, 1, 2, · · ·

S(n)
D = [s(n)

k R(n)s(n)
k · · · R(n)D−1s(n)

k ] (7)

c(n)
k = S(n)

D c̃(n)

= S(n)
D

(
S(n)†

D R(n)S(n)
D

)−1

S(n)†
D s(n)

k (8)

s(n+1)
k =

c(n)
k

‖c(n)
k ‖

(9)

until ‖s(n+1)
k − s(n)

k ‖ < ε

We first consider a rank-1 (matched filter) receiver. In that
case S(n)

D = s(n)
k , and

c(n)
k = s(n)

k

(
s(n)†
k R(n)s(n)

k

)−1

s(n)†
k s(n)

k

=
1

s(n)†
k R(n)s(n)

k

s(n)
k

s(n+1)
k = s(n)

k

which means the initial signature is a fixed point of the al-
gorithm, and the performance does not improve with iteration
n. In contrast, for D ≥ 2, the following two theorems state
that the only stable fixed point of the iterative algorithm
corresponds to the optimal signature with the full-rank MMSE
filter.

Theorem 1: For any initial signature s(0)
k with ‖s(0)

k ‖ =
1, the iterative signature-receiver algorithm, given by Algo-
rithm 1, converges to a fixed point, where s(n)

k converges to
an eigenvector of RI.

The proof is given in the appendix. For D = N , conver-
gence of the iterative algorithm to a fixed point follows directly
from the fact that the MMSE must decrease monotonically
with iterations n. However, showing this for D < N is not as
straightforward since the subspace in which the reduced-rank
receiver filter resides depends on s(n)

k , which changes with n.
Although Theorem 1 establishes the convergence of Al-

gorithm 1, the signature can converge to any eigenvector of
RI, whereas the optimal signature, which maximizes the re-
ceived SINR, is the eigenvector corresponding to the smallest
eigenvalue of RI. The following theorem implies that only
the optimal signature corresponds to a stable fixed point of
the iterative algorithm. That is, at any other fixed point, an
arbitrary small perturbation (e.g., caused by adaptation in
a noisy environment) will cause the algorithm to move the
signature towards the optimal signature.

Suppose the eigenvectors of RI are ordered as
u1,u2, · · · ,uN , which correspond to the eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λN , and the subspace spanned by
um, · · · ,un is denoted as Um:n. Let SINRD(x) be the
received SINR for the rank-D receiver as a function of the
signature for the desired user x.

Theorem 2: Given the signature un, for any λi < λn and
u ∈ Un+1:N , SINRD(un) < SINRD

(
un+εu

‖un+εu‖
)

for any ε �=

0.
The proof is given in the appendix. Theorem 2 states that the

received reduced-rank SINR increases if the signature moves
along any direction in Un+1:N . This implies that the only
stable fixed-point signature for the iterative algorithm is the
eigenvector corresponding to the smallest eigenvalue. Hence
the optimal signature with a reduced-rank receiver is the same
as that with a full-rank receiver, and the output SINRs are also
the same.

IV. SIGNATURE–RECEIVER ADAPTATION

We now consider the performance of joint signature–
receiver adaptation, in which the jointly optimal reduced-rank
receiver and signature are estimated from a finite training
sequence. Given T training symbols, the Least Squares (LS)
estimate of the full-rank MMSE receiver is

ĉk = R̂−1ŝk (10)

and the LS estimate of the reduced-rank receiver is

ˆ̃ck = (Ŝ†
DR̂ŜD)−1Ŝ†

D ŝk (11)

where R̂ and ŝk are estimated from the training sequence [9],
[11].† The receiver computes the jointly optimal signature and
receiver according to (8)-(9), and then relays the signature
back to the transmitter, which transmits the packet.

For the first iteration of (8)-(9) we estimate the covariance
matrix and signature as

R̂(1) =
1
T

T∑
i=1

r(1)(i)r(1)†(i) (12)

ŝ(1)
k =

1
T

T∑
i=1

r(1)(i)b(1)∗
k (i) (13)

In subsequent iterations, we can use the estimated signature
for the desired user to refine the estimate of the covariance
matrix in (8). That is, letting r(n)

I (i) = r(n)(i)−Aks
(n)
k b

(n)
k (i),

the received covariance matrix can be estimated as

R̂(n) =
1
T

T∑
i=1

r(n)
I (i)r(n)†

I (i) + |Ak|2s(n)
k s(n)†

k (14)

for n ≥ 2. The adaptive version of the iterative signature–
receiver algorithm is obtained by replacing the covariance ma-
trix in (8)-(9) by the estimated matrix. Numerical experiments
show that the estimate (14) gives better performance than (12)
when used throughout the iterations.

We now present some numerical results, which illustrate
the performance of joint signature–receiver adaptation with
a reduced-rank receiver. We assume a synchronous CDMA
system with 16 equal-power users, processing gain N = 24,
and background SNR = 10 dB. The receiver estimates the
covariance matrix using (12) in the first iteration and (14) in
subsequent iterations, and (8) and (9) are used to update the
signature in each transmission. (Note that the optimal signature
is orthogonal to the interfering signatures.) Figure 1 shows

†We focus on adaptation with training, as opposed to blind adaptation,
since an adaptive blind LS algorithm generally converges more slowly, and
is more complex with an unknown channel.
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Fig. 1. SINR vs training interval for single-user joint signature–receiver
adaptation.

SINR versus training for an adaptive user in the presence of
fixed interference. In each case, the iterative algorithm is run
until the relative increase in received SINR for the adapting
user is less than 10−3. Here and in what follows, the SINR is
averaged over initial random signature assignments.‡

For comparison, the curve in Figure 1 labeled “estimated
min-eigenvector” shows the SINR when the signature is the
eigenvector associated with the minimal eigenvalue of the
estimated interference plus noise covariance matrix. This
adaptive scheme was proposed in [13], and is non-iterative,
since the estimated signature does not explicitly depend on the
particular receiver. Although this algorithm does not require
multiple iterations, it requires substantially more training than
the iterative algorithm. Figure 1 also shows the SINR with
an adaptive reduced-rank receiver and fixed signatures. Those
results correspond to the optimal rank, i.e., the rank is chosen
to maximize the SINR for each realization. (Adaptive rank
selection techniques are discussed in [9], [12].)

With limited training, the rank-2, 4, and 8 receivers sig-
nificantly outperform the full-rank receiver. As the training
increases, the performance gain diminishes, and the SINR for
both reduced– and full–rank receivers converge to the single-
user bound (10 dB), i.e., the performance with orthogonal
signatures and matched filters. With little training (T < 30),
the reduced-rank receiver with fixed signature outperforms
the full-rank receiver with signature adaptation. The rank-1
receiver performs relatively poorly since the signature does
not converge to the optimal signature.

Figure 2 shows SINR versus number of iterations with
30 training symbols for the algorithms used to generate
Figure 1. Iteration n = 0 corresponds to a random signature
and the reduced-rank LS estimate given by (11)-(13). The
performance of the rank-1 receiver remains constant after
the first iteration,§ whereas the SINRs for rank-2, 4, and
8 receivers increase with n. The rank-2 receiver eventually

‡The speed of convergence is generally insensitive to the initial choice of
sequence unless the sequence happens to be close to the optimal sequence.

§This is because the signature is estimated for n = 0, and is explicitly
known for n > 0.
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Fig. 2. SINR vs number of iterations with 30 training symbols.

performs best, but takes more iterations to converge than the
rank-4 and 8 receivers. Hence in this case there is a trade-off
between delay, due to iterations, and performance. The full-
rank SINR essentially converges after only two iterations, but
requires significantly more training to perform as well as the
reduced-rank receivers. Although the estimated optimal (min-
eigenvector) signature does not require multiple iterations, the
performance is significantly worse than the iterative schemes,
even taking into account the total training period after multiple
iterations. These results indicate that joint signature–receiver
adaptation can provide a substantial improvement in SINR
with modest training overhead.

V. GROUP ADAPTATION

The iterative algorithm (8)-(9) can also be applied to a
group of signatures. For example, in a synchronous CDMA
system, a group of users can update their signatures in
successive order [3]. That is, each iteration in the signature–
receiver algorithm contains K sub-iterations corresponding
to successive updates by each user. At the nth iteration,
after the jth signature update, the signature matrix is given

by S(n)(j) =
[
s(n)
1 , · · · , s(n)

j−1,
c
(n)
j

‖c(n)
j ‖ , s(n)

j+1, · · · , s(n)
K

]
, and

S(n) = S(n)(K). Alternatively, during each iteration the
users might update their signatures simultaneously. (This may
be more appropriate in a MIMO channel with synchronized
transmitted data streams.) In that case, the signature matrix at

the nth iteration is given by S(n) =
[

c
(n)
1

‖c(n)
1 ‖ , · · · ,

c
(n)
K

‖c(n)
K ‖

]
.

We first consider the convergence of iterative group op-
timization with optimal reduced–rank receivers (i.e., infinite
training). The following theorem states that the set of signa-
tures with successive iterative group optimization converges
to an optimal signature set. We have not proved the analo-
gous result for simultaneous group optimization, but illustrate
convergence for simultaneous group adaptation (versus the
training interval) through numerical examples.

Theorem 3: Given an initial set of signature sequences
{s(0)

k } with ‖s(0)
k ‖ = 1 for 1 ≤ k ≤ K, and where the
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Fig. 3. Average SINR vs training with simultaneous group adaptation.

corresponding signature matrix S(0) is full-rank, the signature
set with iterative successive group optimization converges to a
fixed point, where s(n)

k , 1 ≤ k ≤ K achieve the Welch Bound
Equality.
The proof is given in the appendix.

We now present simulation results that illustrate the perfor-
mance of simultaneous group adaptation with reduced–rank
receivers. Figure 3 shows average SINR versus training with
simultaneous group adaptation. The system parameters are the
same as in previous figures. We assume that all users have the
same receiver rank and change their signatures simultaneously
at each iteration. The performance improvements offered by
rank-2, 4, and 8 receivers, relative to the full-rank receiver,
are similar to those observed in the single-user case. Again,
the signature for the rank-1 receiver does not converge to the
optimal signature.

VI. REDUCED-RANK SIGNATURE

To reduce the amount of feedback required for joint
signature–receiver adaptation, a reduced-rank signature adap-
tation scheme was presented in [13]. Namely, the signature
is constrained to lie in a lower dimensional subspace. The
reduced-rank signature for user k can therefore be expressed
as

sk = Fkαk (15)

where Fk is an N × Dp matrix, the columns of which are
the basis vectors for the Dp-dimensional subspace, Dp is the
signature “rank” (assuming Fk is full-rank), and αk is a Dp×
1 vector of combining coefficients. A reduced-rank signature
reduces the number of coefficients (and hence feedback bits)
needed to represent the signature, but also reduces the degrees
of freedom available to avoid interference.

We now consider reduced-rank signature adaptation in
combination with a reduced-rank receiver. To constrain the
signature to the Dp-dimensional subspace defined by Fk, we
replace the signature update in (9) by

s(n+1)
k =

Fk(F†
kFk)−1F†

kc
(n)
k

‖Fk(F†
kFk)−1F†

kc
(n)
k ‖

(16)
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Fig. 4. Average SINR vs training for simultaneous group adaptation with
reduced-rank signatures and reduced-rank receivers. (Tx a, Rx b) indicates
that the transmitter signature has rank a and the receiver has rank b.

In what follows, we assume that Fk is a random unitary
matrix, i.e., the signature is constrained to lie in a random
subspace. This corresponds to the scenario in which the
interfering signatures are isotropically distributed.

Figure 4 shows average SINR versus training for simul-
taneous group adaptation with reduced-rank signatures and
reduced-rank receivers. The system parameters are the same
as in the preceding figures. Curves are shown for transmitter
ranks 2 and 8, and receiver ranks 2, 4, and 24 (full-rank). The
performance of full-rank signatures with a rank-2 receiver,
taken from Figure 3, is also presented for comparison. For a
fixed receiver rank, the performance generally improves with
signature rank, although with a rank-2 receiver, the rank-8
signature performs slightly better than the full-rank signature.
Again, the reduced-rank receiver gives full-rank performance
with sufficient training. With limited training, the reduced-rank
receiver performs much better than the full-rank receiver.

VII. CONCLUSIONS

We have presented an iterative algorithm for joint opti-
mization of signatures and reduced-rank MSWF receivers in a
synchronous CDMA system without multipath. The signature
converges to the optimal signature associated with the full-
rank MMSE receiver provided that the receiver rank D ≥
2. Furthermore, the reduced-rank receiver converges to the
matched filter, which is the MMSE receiver. When the receiver
and signature are estimated from training, numerical results
show that signature adaptation with a reduced-rank receiver
provides a substantial performance gain relative to signature
adaptation with the full-rank receiver.

We also considered reduced-rank signature adaptation with
a reduced-rank receiver. This reduces the number of signature
coefficients, which must be estimated at the receiver and
relayed back to the transmitter. Numerical results show that
with limited training, this scheme can perform slightly better
than full-rank signature adaptation. Also, reduced-rank signa-
ture adaptation with a reduced-rank receiver again converges
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faster than reduced-rank signature adaptation with a full-rank
receiver.

Numerical results have also been presented for group
signature–receiver adaptation, in which all users adapt signa-
tures simultaneously. With limited training a low complexity
(D = 2) reduced-rank receiver again performs much better
than a full-rank receiver.

The iterative signature–receiver optimization presented here
can be easily modified for MIMO channels, and for CDMA
with multipath. (See [13], which discusses full-rank receiver–
signature adaptation in the presence of multipath.) Asyn-
chronous CDMA requires no modification, although conver-
gence analysis of the iterative algorithm for group adaptation
must consider the shifted signatures corresponding to the user
delays [7].

Finally, we have assumed that the signatures are relayed to
the transmitter over a high-rate feedback channel, and have
ignored the effect of signature quantization. Although there
has been some work on signature quantization with limited
feedback (e.g., see [15]), the performance with limited train-
ing for signature estimation combined with limited feedback
remains to be studied.

APPENDIX I
PROOF OF THEOREM 1

To establish convergence of the iterative algorithm, we show
that MMSE

(n+1)
D ≤ MMSE

(n)
D , where MMSE

(n)
D is the MMSE

for a rank D filter at iteration n (with signature c(n)/‖c(n)‖).¶

Also, we show that if equality holds, then s(n) must be an
eigenvector of RI.

First, we observe that MMSE
(n)
D ≥ MSE(n+1), where

MSE(n+1) is the MSE with the reduced-rank receiver c(n)

(given s(n)) and updated signature s(n+1). This is because
for a given receiver c(n) and any normalized signature s, the
MSE =

(
1 − s†c(n)

)2
+c(n)†RIc(n) is minimized by choosing

the signature to be s(n+1) = c(n)

‖c(n)‖ , which gives

MSE(n+1) = 1 − 2‖c(n)‖ + c(n)†R(n+1)c(n). (17)

Furthermore, with a rank-D MMSE receiver c(n+1), the
MMSE decreases with D, i.e., MMSE

(n+1)
D ≤ MMSE

(n+1)
1 .

Now (
‖c(n)‖ − c(n)†R(n+1)c(n)

)2

≥ 0

implies that

‖c(n)‖2

c(n)†R(n+1)c(n)
+ c(n)†R(n+1)c(n) ≥ 2‖c(n)‖.

so that

MMSE
(n+1)
1 = 1 − ‖c(n)‖2

c(n)†R(n+1)c(n)
≤ MSE(n+1)

Therefore

MMSE
(n+1)
D ≤

(a)
MMSE

(n+1)
1 ≤

(b)
MSE(n+1) ≤

(c)
MMSE

(n)
D .

¶We emphasize that MMSE
(n)
D is not the MMSE obtained from Algorithm

1 at iteration n, since D does not correspond to the receiver rank used in
preceding iterations.

Equality (b) holds only when ‖c(n)‖ = c(n)†R(n+1)c(n),
and some manipulation gives ‖c(n)‖ = s(n)†c(n). From the
Cauchy inequality we have

‖c(n)‖2 = 1 · ‖c(n)‖2 =
(
s(n)†s(n)

) (
c(n)†c(n)

)

≥
(
s(n)†c(n)

)2

,

and since equality holds, we must have

s(n) (b)
= κc(n) =

c(n)

‖c(n)‖
(c)
= s(n+1) (18)

which establishes convergences.
Equality (b) also implies that starting with an arbitrary

initial signature, the receiver filter converges to a rank-1,
or matched filter (equality (a)). That is, the D-dimensional
subspace, in which the receiver filter is constrained to exist,
collapses to a one-dimensional subspace, which implies that
the signature s(n) is an eigenvector of RI.

APPENDIX II
PROOF OF THEOREM 2

When the signature is an eigenvector un, the Krylov sub-
space degenerates to a one-dimensional subspace spanned by
un. Hence the SINR with a rank-D receiver,

SINRD(un) = SINR1(un) =
u†

nun

u†
nRIun

=
1
λn

independent of D. Since u ∈ Un+1:N , we have

u =
N∑

i=n+1

aiui

where ∃aj �= 0, for n + 1 ≤ j ≤ N . Let s = un+εu
‖un+εu‖ . With

a fixed signature, the received SINR increases with D. Hence
SINRD(s) ≥ SINR1(s), and

SINR1(s) =

(
s†c

)2

c†Rc − (s†c)2

=
1

1

s†S1(S
†
1RS1)−1S†

1s
− 1

=
1

s†Rs − 1

=
1 + ε2

∑N
i=n+1 |ai|2

λn + ε2
∑N

i=n+1 |ai|2λi

>
1
λn

Therefore SINRD(un) < SINRD

(
un+εu

‖un+εu‖
)

.

APPENDIX III
PROOF OF THEOREM 3

As in [3], [7], we use the total squared correlation (TSC)
as a metric to study the convergence of successive group
optimization. We have

TSC =
K∑

i=1

K∑
j=1

|s†isj |2 = trace
[
(SS†)2

]
(19)

In [7] it is shown that minimizing TSC is equivalent to
maximizing the sum capacity. To prove convergence, we show
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that the TSC is nonincreasing after each signature update.
Suppose that user 1 replaces the signature s1 with s̄1 = c1

‖c1‖ .
For convenience, we omit the superscript denoting iteration in
this section. Letting S1 = [s2, · · · , sK ], we have that

TSC = trace
[
(S1S

†
1 + s1s

†
1)

2
]

= trace
[
(S1S

†
1)

2
]

+ 2s†1S1S
†
1s1 + 1

To show that the TSC is nonincreasing, we must show that
s†1S1S

†
1s1 ≥ s̄†1S1S1s̄1, or

s†1Rs1 − 1 − σ2 ≥ s̄†1Rs̄1 − |s̄†1s1|2 − σ2 (20)

Reordering (20) gives

‖c1‖2(s†1Rs1 − 1) ≥ c†1Rc1 − |c†1s1|2 (21)

From the Cauchy-Schwarz Inequality, we have

1 · ‖c1‖2 = (s†1s1)(c
†
1c1) ≥ |s†1c1|2 (22)

where the equality holds iff c1 = κs1.
Clearly, s†1Rs1 > 1. Therefore, in order to show (21), we

only need to show

|c†1s1|2(s†1Rs1 − 1) ≥ c†1Rc1 − |c†1s1|2. (23)

From (4) we have c†1Rc1 =
s†1SD(s†DRSD)−1S†

DRSD(S†
DRSD)−1S†

Ds1 = c†1s1,
which is a real number. Hence (23) becomes

(c†1s1)(s
†
1Rs1 − 1) ≥ 1 − c†1s1 (24)

or
(c†1s1)(s

†
1Rs1) ≥ 1. (25)

Letting MMSED denote the MMSE for the rank-D receiver,
we have MMSED = 1 − c†1s1 ≤ MMSE1 = 1 − 1

s†1Rs1
,

which establishes (25). Hence the TSC converges, and the
fixed point corresponds to equality in (25), which holds when
the rank-D signal subspace collapses into a rank-1 subspace.
Consequently, the signature s1 at the fixed point must be an
eigenvector of R. The preceding argument holds for each user,
hence all signatures must converge. Having established this,
we can now apply the proofs of Theorems 3 and 4 in [3] (see
also [7]) to show that the set of signatures at the fixed point
achieve the Welch Bound Equality.
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