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Abstract—We  consider  multiple-input  multiple-output  optimum number of pilots and training power allocation of
(MIMO) systems exploiting the full diversity order of a MIMO g3 training-based MIMO system in the sense of maximizing a
fading channel via optimal beamforming and combining. |4yer-hound on the Shannon capacity over the class of exgodi
Specifically, an analytical characterization of the transient block-fadi | d lated) ch |
regime of a training-based MIMO system over arbitrarily oc .-a ing (memoryless an uncorreae ,) channels, as a
correlated channels is presented. No channel state information function of the number of transmit and receive antennas, the
is assumed to be available at either the transmitter or the received signal-to-noise ratio (SNR) and the length of &b f
receiver side, so that the design of the optimal transmit and jng coherence time. Earlier related contributions incli#jeas
receive beamformers is n_ecessarll_y_based on a finite collectlonwe” as [5], [6], where the number of channel uses availatie f
of samples observed during a training phase. The focus is ont . d th timal i t distributi hievi .
practical scenarios where the length of the training sequence is raln_lng an e opumal Input aistri u lon achieving calpa
comparable in magnitude to the system size. In these situations, at high SNR over unknown block-fading uncorrelated MIMO
the performance of the MIMO system can be expected to suffer channels with a finite coherence time interval is investidat
from a considerable degradation. In order to characterize the Much less effort has been placed on understanding the
actual performance under the previous realistic conditions, a consequences of the lack of CSI on the achieved diversity gai

large-system performance analysis is proposed that builds upon .
some new results on the convergence of the eigenvectors of Ia\rgemc an unknown MIMO channel that is learned by means of a

information-plus-noise covariance matrices. training sequence of finite length. Indeed, perfect knogeeof
Index Terms—MIMO channel, training, optimal beamforming,  the channel realization can be used in general to modulate ea
full diversity gain, sample covariance matrix, random matrix transmitted symbol onto a beamforming vector matched to the
theory, asymptotic eigenvector channel in order to improve the received SNR. In particufar,
the MIMO channel is completely known to the transmitter, the
evident choice of the beamforming vector is the right siagul
The performance of multiple-input multiple-output (MIMO)vector of the channel matrix corresponding to the maximum
channels can be significantly enhanced if the channel satesingular value in amplitude, which maximizes the received
known to the transmitter, the receiver, or both. In pragtic6NR. In [7], the problem of optimal transmit beamforming
the coefficients of a MIMO channel often vary over timenaximizing the received SNR over unknown MIMO channels
and need to be estimated. If the channel state varies slowljth given Gaussian statistics is addressed.
one may carry out some measurements in order to learn thén this paper, we focus on the problem of achieving full
channel statistics and estimate (or predict) its instadaa diversity gain over an unknown, arbitrary block-fading MIM
realization. Typically, the channel coefficients are meadu channel by optimal transmit beamforming and receive combin
at the receiver by having the transmitter send known trginifng. The problem formulation here builds upon the work in [8]
vectors. Knowledge of the channel at the receiver can be sefitere least-squares filtering with a limited number of tiragn
to the transmitter via feedback channels [1]. symbols is analyzed for the suppression of multiple-access
The impact of the practical availability of imprecise chahn interference at reception (without feedback). In paracuive
state information (CSI) in the capacity gains achieved mssume a certain given amount of channel uses is allocated
MIMO spatial multiplexing systems is summarized in [2]for training purposes at the beginning of each coherence
On the other hand, the tradeoff between the time and thgerval, such that both sides can learn the channel from
power allocated to training operation and data transmissia sequence of known training beams. Instead of following
was evaluated in [3]. In particular, the authors provide thitbe generally suboptimal approach consisting of obtaining
_ an intermediate estimate of the channel matrix to be used
e e ety e iy o Aoy iaag, for further processing, we pursue the direct estimation of
the NSF CAREER Award under grant CCF-0644344, and the DARRA | POth optimal (channel-adapted) beamformer vector andwece
MANET program Grant W911NF-07-1-0028. combiner using the sequence of pilots during the so-called

I. INTRODUCTION



training phase. In particular, we are interested in the actwectors of H = UXV’ henceforth denoted by; and v.
empirical performance obtained from a limited number odhccordingly, if SNR; = [Z}];k is the signal-to-noise ratio
training samples per degree-of-freedom. More specificaly associated with thgth channel eigenmode, it is clear from (3)
provide a large-system analysis of the transient estimatithat the maximum achievable SNRS8IR; = max; SNRj.
regime of such a training-based MIMO scheme in which We assume that no CSl is available at either the transmitter
the number of transmit and receive antennas as well @asthe receiver side, and that a sequenc&dixed pilot beams
the length of the training sequence are considered, ashiin) € CX consuming a certain given amount of training
practice, to be comparable in magnitude. For that purpose, @nergy is available for transceiver estimation purposeshik
investigate the asymptotic convergence of the eigenvedbr work, we will considerK < N. Accordingly, the received
large-dimensional information-plus-noise covariancedrives signal becomesx((n) = b (n))
by relying on existing results from random matrix theory.

The paper is organized as follows. In Section II, the problem y(n)=Hb(n)+n(n), n=12...
of pilot-aided MIMO transmitter and receiver estimation igy cqjlecting the column vector observations in (2) at diffet
addrgssed. In Section lll, we provu_je a brief overvn_aw_of the stants of time in a matrif’ € CM*N we can write
existing convergence results regarding the asymptotiavieh
of the eigenvectors of sample covariance matrices. More- Y=[y(),...,.y(N)]=HB+N,
over, the main mathematical result of the paper concernin _
information-plus-noise-type covariance matrices, onlthgis Where we have defined
of which our findings are grounded, is introduced without B=[b(l),...,b(N)],
proof at the end of the section. In Section IV, we present a
large system performance analysis of the transient estimat N=[n(),...,n(N).

regime of a MIMQ sy_stem with Iimite_d training_. FinaII){, the |n the following, we consider the problem of empirical
proposed approximation of the practically achieved diters estimation of the optimal transceiver given a fixed training

gain is numerically validated in Section V. energy budget (i.e., power allocation strategy acrosst pilo
Il. CHANNEL MODEL AND TRANSCEIVER ESTIMATION beams and length of training phase), namely,
Consider the linear vector channel model corresponding to {u,v} =arg max E[SNR|y(1),...,y(N)],
a MIMO transmission system witl/ receive antennas and uvi||BlE<E
K transmit antennas, namely, the received signal is exmtesgghere £ determines the constraint on the total energy con-
as sumed by training. In particular, note that the total energy
y(n) =Hx(n)+n(n), n=12,... (1) constraint will be related to the power allocated to the

wherex (n) € CK represents the transmitted signal(n) € beamvector pilots sent during the training phase, as well as
CM is the background noise, al € CM*X models an the length of this training window (i.e., number of training
arbitrary MIMO channel matrix. The noise process is assumB§ams). Furthermore, for estimation purposes, observe tha

. . H .
to be wide-sense stationary, with independent and iddtytica'1 S the top eg;envector oHH", whereasv, is the top
distributed (i.i.d.) standardized complex Gaussigector en- €igenvector ol H. The achieved system performance based
)H on pilot-assisted transceiver estimation clearly depemdthe

selection of training beams. In this work, we will focus on
the more relevant case in practice of orthogonal training. |
particular, we assume that the training phase is defined by a s
of orthogonal (unitary) beams satisfying the training beidg
constraint, such thaBBY = E/KIk. In other words, the
training sequences (column vectors Bj satisfy the Welch-
y(n)=Hvz(n)+n(n), n=12,... (2) bound equality (WBE) [9], [10]. In the multiuser detection
) ) ) literature, WBE signature sequences are known to maximize
As mentioned above, the purpose of using multiple antenn@g sym capacity achieved by overloaded symbol-synchnou
here is to enhance through beamforming the SNR at thgqe givision multiple-access channels with equal awerag
receiver side and after matched filtering, namely, input-energy constraints [11], [12]. The optimality of WBE
SNR — |uHHV|2, (3) Sequences for tran_smit_ beamforming schemes maximizing
the received SNR is discussed in [7]. For the purpose of
whereu € CM represents the receiver matched to the MIMGtatistically analyzing the effect of limited training imet
channel. In particular, the receiver and transmitter vsattax- performance of pilot-assisted MIMO systems, it will be in
imizing the SNR are respectively the right and left top siagu order to assume in the sequel, and with some abuse of

notation, the following model for the training matrix, nage
1A complex random variable is standarized complex Gaussias iéal and 9 9 »

— ./ H NxK
imaginary parts are i.i.d. Gaussian distributed with meam zerd variance B = E/KU , where the columns oU € C™** are
1/2. orthogonal, such thatJ# U = I.

tries such thaff |n () n (m = 026, mIn, Whered, ,, is
the Kronecker delta function. Without loss of generalitye w
will assume in the followingr2 = 1. Specifically, one wishes
to modulate a sequence of transmitted symho(s) onto a
(unit-norm) beamforming vectoy € CX (x(n) = v (n)),
so that the received signal in (1) becomes



A. Receiver estimation the eigenvalues but also the eigenvectors of the randonixmatr

Since the top eigenvector #1H" is equal to the principal Mdel- _ _
eigenvector of the covariance matrix of the received oleerv While there are many results in the RMT literature about

tions, namely, the eigenvalues of random matrices of increasing dimea;ion
not much has been reported about the asymptotic behavior of
R=E[y(n)y” (n)] =E/(KN)HH" + 1, their eigensubspaces since Silverstein’s work in [15] @ee

references therein to his earlier contributions on thechopi

In particular, consider the matriB = XX, with X being

an M x N random matrix such that the entries ¢fNX

§he i.i.d. complex random variables with mean zero, vaganc

one and finite fourth-order moment. LBt = UAU* be the

) 1 Y 1 eigendecomposition of the previous matrix. Then, buildimng

R = N Zy (n)y™ (n) = NYYH. (4) the fact that the matrix of eigenvectors of Wishart matrices
n=1 follows the Haar distribution, i.e., the uniform distrin over

the group of unitary matrices, Silverstein showed that, for

any nonrandom vectox of appropriate dimensions, whose

fact, the SCM is the minimum variance unbiased estimator Sptrles are e|ther—1/\/]V or +1/\/N’ the random vector

S H. . . S :
R [13]. Moreover, for Gaussian observations, the maximurfi- — U”x is asymptotically isotropic (in [16] the same is

likelihood (ML) estimator of the principal eigenvector Bf is proved for a randqm vector with i.1.d. entries mdgpendent O.f
the corresponding eigenvector B U). Furthermore, in order to study sample covariance matrice

of the formB = RY/2XX”R!/2, whereR!/2 is the positive
B. Transmitter estimation square-root of aid/ x M Hermitian positive definite matrik

In order to find an estimator of the optimum transmitte\’rv.Ith uniformly bounded speciral norm, the following empé

(ie., the top eigenvector GFIF'H), consider the following distribution function was considered in [17], namely,

the problem of estimatingi; can be directly approached by,
equivalently finding an estimator of the top eigenvectoRof
To that effect, we may use the sample estimate of the latt
namely the sample covariance matrix (SCM), i.e.,

From the strong law of large numbers, the SQR is a
consistent estimator of the theoretical covariance matrix

construction based on the (known) training vectors, namely M ,
HE' (V) =) lawl’ T,
R 1 B ml LA (B)<A)
¢ =+ (B%)" YIYB?, ) =

h # 4 he M P doi .whereZg denotes the indicator function over the $etand
where (-) enotes the Moore-Penrose pseudoinverse, "8;,; is themth entry of the vecton. Clearly, H3 is a random

-1
B#* = B (BBH> . Indeed, note that, a8V goes to probability distribution function with Stieltjes transfa given
infinity, almost surelyC — C, where by

M
C=E {c] - %HHH + %IK. my (2) = /RC”;[B_(ZA) —x"(B-0y) 'x.  (6)
The following section provides an overview of the existing, this context, from the connection between vague conver-
results concerning the asymptotic behavior of the eiganveC yence of distributions and pointwise convergence of $tielt
of sample covariance matrices. In particular, we presedt thansforms, almost sure convergence of the (random) llistri
main mathematical tool of this paper, namely a convergenggn function 2/ can be established by showing convergence
result characterizing the limit of the sample eigenvectirs of 1, , (2). In [18], an asymptotic deterministic equivalent of
information-plus-noise covariance matrices. the Stieltjes transform in (6) was proposed for the more gene
caseB = A + R/2XTX”R!/2, whereA is Hermitian and
T real diagonal and positive definite, both having approgriat

dimensions. Specifically, it is shown thaty (z) converges
Due to the relevance of the eigenvalue spectrum of certaiith probability one, for each € C*, as

covariance matrix models in statistical signal processing

wireless communications, the theory of the spectral aigbfs ~ x7 (B — 2Iy) ' x — x7 (A +2pR — 2In) ' x — 0,
large-dimensional random matrices, or random matrix $heor _

(RMT), has proved very useful in the tasks of both perfoRS M, N — oo with M/N — ¢ < +oo, wherexy =
mance analysis and system design. For a monograph expé"é’(-(ef"f) is defined as

tion on the subject, we refer the reader to [14]. Indeed, the 1 1
characterization of the asymptotic behavior of the eigkms M =N Tr {T (In +cenT) } '

of certain random matrix models is of unquestionable pecatti . ] o .
interest, as it can be drawn from the vast engineering titeea @Ndens = €xr (2) is the unique solution i©* of the equation
based on RMT results. However, in many problems, the study 1 .

of an objective function is required that depends upon nigt on ey =T {R (A+zyR - 21y) } :

Ill. ASYMPTOTIC EIGENVECTORS OF SIGNAtPLUS-NOISE
SAMPLE COVARIANCE MATRICES



In this paper, we study the asymptotic behaviomof; (z) whereA denotes the minimum of the two quantities. Observe
for information-plus-noise covariance matrix models. br-p that the lack of an accurate estimate will contribute to the

ticular, we present the following result: spread of power over the different orthogonal subchannels
Theorem 1. Let X, R and T be defined as above, and(similar to a linear programming suboptimal solution to the
consider the matrixY = RY2XT'Y2. Furthermore, let power allocation problem). In order to analytically chaesize
¥ = Y + A. Then, for eachz € C*, almost surely, as the performance measure in (7), it is enough to characterize
M,N — oo with M/N — ¢ < 400, the projection of the transceiver estimate obtained fromitefi
_ training sample-support onto the eigensubspaces spanned b
xH (EEH - zIM) x —xHY (2)x — 0, the different right and left singular vectors. Indeed, for a

unlimited training energy budget, & — oo (infinite training

H (vH -1 H
x" (B8 —2Iy)  x—x"Y (2)x =0, phase length), we clearly havéu,vi’¥; — 161, and,

where we have defined accordingly,SNR — SNR;.
. The (finite-dimensional) statistical analysis of the qitgnt
Y (2) = (—z (I+ RS) + AT+ T5A" - zIM) , in (7) for finite system-size and limited training energy is
. 1 rather intricate (for some related work based on a similar
Y (2) = (z (I+T5) + A" (1+R5) AZIN> ., model and using finite RMT techniques see [23]). On the
other hand, from an asymptotic characterization in theelarg

sample regime based on classical limiting results from the
multivariante analysis of sample covariance matrices, &g,
[13]), no further insights can be gained for comparabletraj

andd = 6 (z) andé = 4 (z) are the unique solution to the
following system of equations:

§(z) = 37 Tr [RY (2)] length and system size. Here, we focus on a large-system
S(z) = ﬁ Tr {TT (Z)} ) analysis of (7) and let not only the number of training sarsple

(N), but also both the number transmif{) and receive

Proof: The special case f@® = I,; andT = oIy, with (M) antennas (i.e., the system dimension) go to infinity at a
o2 an arbitrary positive scalar was handled in [19, Propasiti¢constant rate, defined by = M/N and 3 = K/N. Since
1.1F as an extension of Theorem 1.1 in [20] on the asymptotibe previous asymptotic framework better matches realisti
eigenvalue distribution of information-plus-noise casace deployment conditions in practice, we may expect our rgsult
matrices. For the proof of Theorem 1, we follow the maito more appropriately model the system performance in a
stream in the proof of [21]. The proof is omitted due to lackractical setting characterized by a small number of tr@jni
of space (see [22]). m beams per degree-of-freedom.

In the following section, we provide an analytical char- Regarding the projections in the sum in (7) involving the
acterization of the performance of a training-based MIM®stimatedi; and¥;, we may rely on the following procedure
system under the realistic assumption of a training phaased on the power method for finding the eigenvalues and
length comparable in magnitude with the system dimensio@ssociated eigenvectors of an arbitrary Hermitian matrix.

particular, let us concentrate for instance on the top egeor
IV. L ARGE SYSTEM PERFORMANCE ANALYSIS of R as the estimate of the optimal receiver. Then, consider
In this section, we are interested in assessing the perftite following quantity, namely,

mance of a training-based MIMO system under a limited i (A -1

training budget. In particular, we will concentrate on tiffeet v (R - flM) Uk

of a bounded ratio between training sample-size and number . o\ 1/2 ®)
of degrees of freedom. In this work, in order to study theaffe (UH (R — §IM) U)

of the energy budget limitation as essentially due to a finite
training sequence length, we assume a fixed power allocatisherev € CX is any vector with a non-zero component in the

across training beams given Iy (n)lﬁ =1,n=1,...,N. direction ofi; and¢ =\, (R) + €, with )\ (R) being the

Using the principal eigenvectors & and C, denoted in maximum eigenvalue dR ande being a small strictly positive

the sequel by, and vy, respectively, as the estimators ol qant Indeediu; can be arbitrarily well approximated
the optimum receiver and transmitter achieving the maxmuBQ, the expression in (8) for an arbitrarily small> 0 (this

SNR, namely given byS_NRl’ we are inte_rested in evaluati"‘gfollows from a limiting argument by letting vanish). For

the performance loss incurred in practice by the use of tﬂxf-e purpose of analysis, we can use- u;, (as M, N go to

estimated solutions, i.e., infinity, with probability one,ii; has a non-zero component in
KAM 2 the direction ofuy, for eachk). Then, we finally have

SNR=| Y~ V/SNRy, affwevivy| @) (R ) A
k=1 Uk ( fM) e o U (§) ©)

9 1/2 U1/2 €)
2We would like to thank Philippe Loubaton for his remarks on the (ukH (R_ EIM> uk> 2,k

correctness of the proof.



Note that an equivalent procedure follows for the optimal Finally, based on the previous corollary, we have the follow
combiner at the transmitter side by replacing the sampley asymptotic deterministic equivalent for the approxiom
covariance matrix® with the matrixC in (5), andu, with in (10) of the SNR in (7), namely,

vi. In particular, using the previous procedure, an arblfrari Proposition 1: Under the previous statistical assumptions,
accurate approximation of the SNR estimate in (7) can lier SNR; uniformly bounded for allk, as M, N — oo,

obtained as M/N — ¢ < +c0 ,
SR (6., Kf ene U (6) Y (€) ‘2 _ e D1 (6) T @) ’
T Se) = Vv k= - ' SNR (&,,&.) < |\/SNRy —2>210 — 0 | 11
Pt Ual,/zf (&) V;f (&) (& 8) ! Uy () Vol (&) (1)
. . -1 . _ _ , ) _ _
where Vi, (§) = v (C - SIK) vi and Vy (§) = whereV;; andVs; are defined equivalently t6;; andUs;,
(e -2 . respectively, for the covariance mati.
Vi (C - fIK) Vi, and g, = A (R) + e and & = Proof: It is enough to show that the following quantity

A (C) + €., With ¢, ande. being two two arbitrarily small Vanishes almost surely, &g, N' — oo, M/N — ¢ < +o0 ,
strictly positive constants. namely,

For thg purposes of_ validating th_e proposed analytical-ch_ar (}171 (&) ‘71,1 (&) B Ura (&) Vi (&)
acterization, we consider a Rayleigh MIMO chanqel matrix Ve (€ )V”Q &) /2 € )V”Q (€ ),
with particularly low-rank, such that the highest eigenmod 2,1 A5/ T2, e 2,1 A5/ P21 Ahe
alone essentially characterizes the full diversity gaiat ttean or, equivalently, the almost surely convergence to zero of
be achieved over the channel. Note that, apart from siniptify _ . _
the numerical validation, such a scenario renders especial Y1,1 (&) {JU &) (_]171 (&) , (12)
relevant the accurate analysis and estimation of the diyers 1/21{2 (&) U21,/12 (&) U21’/12 (&)
gain achieved by a MIMO system. Thus, as an approximati%lp1d
of SNR (¢,,&.), we consider U1,1 (&) VM (&) Vit (&) 13
S > 2 /2 V12 - V2 (13)
ST\IT?(fT &) = |\/oNRy Ui (&) Via(&e) . (10) 21 (&) \ Vo (&) 21 (&e)
U217/12 (&) V;{Q (&) Indeed, since all quantities in (12) and (13) are uniformly

Our analysis builds upon the fact that the expression Rpunded for allK’, M, N, this can be readily proved using
(9) is given in terms of the resolvent . In particular, an the Cauchy-Schwarz inequality to show that the moments of
asymptotic deterministic equivalent of the empirical perf the random variables (12) and (13) a%gN "), for p > 2,
mance measure in (10) can be provided by using the resiid then applying the Borel-Cantelli lemma. u
on the convergence of Stieltjes transforms of the type in (6)!n the following section, we numerically evaluate the ac-
given by Theorem 1. Concretely, we use the following curacy of the deterministic asymptotic equivalent (11) & d

Corollary 1: In Theorem 1, lek = u;, R =1, T =1y, scribing the transient regime of pilot-aided MIMO transees

X=1 §\/NN andA = 1/v/NHB , and fixz = ¢, with ¢ =  With limited training.

A1 (R +¢,¢>0. Then, asM, N — oo, M/N — ¢ < 400 V. NUMERICAL RESULTS
ot ot We numerically validate the analytical characterizatidn o
11(6) _ Ui1(§) . .y
YRR v R the transient SNR performance of a training-based MIMO
Upi (§)  Uai (€) system. Specifically, we assume that both optimal transmit
with beamformer and receive combiner are empirically estimated

from a finite collection of channel observations during a

' training phase of given length as described in Section Il. In

particular, the empirical performance in terms of averaged

. received SNR conditioned to the available training samples
W (2) = ((1 +5(6) E/KHHY — » (1 +g(§)) _ zIM) i, E[SNR(N +1)|y(1),...,y (N)], is compared with the
_, large-system performance approximation provided in $acti

W (2) = ((1 +4 (z)) BYH"HB — 2z (1+6(2)) - zIN> , IV. Figure 1 shows both numerically simulated and theoret-

N ically approximated SNR performance for a MIMO system
andé (z) andd (z) are the unique solution to the followingwith K = 10 transmit antennas ant/ = 8 receive antennas,

O () = '@ (2)us, Oy (6) = - {uf' @ (2)u)

z=£
where now

system of equations: versus the length of the training phase (normalized<)y The
§(z) = ﬁ Tr [¥ (2)] noise variance is assumed to be one. A fairly good prediction
5(2) _ ﬁ Tr [‘i, (Z)} _ of the SNR achieved by a training-based MIMO system can
be appreciated.

3Given two random variables,b, a =< b denotes both quantities are Th_e previous analyt'(?al characterlza_tlon can be used in
asymptotic equivalents, i.elg — b| — 0, almost surely. practice for the evaluation of the loss in SNR performance
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