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Abstract

We consider multicast communications from a single source to multiple destinations through a

wireless network with unreliable links. Random linear network coding achieves the min-cut flow rate;

however, additional overhead is needed for end-to-end error protection and to communicate the network

coding matrix to each destination. We present a joint coding and training scheme in which training

bits are appended to each source packet, and the channel code is applied across both the training and

data. This scheme allows each destination to decode jointly the network coding matrix along with

the data without knowledge of the network topology. It also balances the reliability of communicating

the network coding matrices with the reliability of data detection. The throughput for this scheme,

accounting for overhead, is characterized as a function of the packet size, channel properties (error and

erasure statistics), number of independent messages, and field size. We also compare the performance

with that obtained by individual channel coding of training and data. Numerical results are presented

for a grid network that illustrate the reduction in throughput due to overhead.
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I. INTRODUCTION

Network coding has significant advantages relative to more conventional store-and-forward-

based routing solutions [1]. For multicast communications linear network coding achieves the

min-cut capacity, and eliminates the need for combinatorial-based routing optimization [2].

Different low-complexity algorithms have been proposed for deterministic and random network

coding [3]–[5].

Here we consider random linear network coding for a wireless network. That is, each internal

node transmits a random linear combination of the input packets onto the outgoing links [4]. Two

challenges that arise are: (1) Wireless channels may be unreliable due to the presence of fading

and interference; and (2) The network topology may change due to mobile users. To address

the first issue, end-to-end channel coding can be applied to correct residual errors and erasures

that are introduced on each link. The second issue implies that the network coding matrix,

which maps the source symbols to received symbols, can change. Hence to enable decoding at

all destinations, the network coding matrices may have to be communicated frequently to the

destinations (along with associated error protection). Techniques that address both issues require

additional overhead, which decreases the overall network throughput.

Communicating the network coding matrix to each destination can be accomplished by ap-

pending the combining coefficients to the data as part of the header at the source and updating

them at each internal node [4]. Changes in the network topology and channel impairments may

introduce errors in the packet overhead, which would likely prevent successful packet decoding.

An issue then is how much end-to-end error protection should be used to communicate the

network coding matrix to each destination.

To address the preceding issues, we present a joint training and coding (JTC) scheme in which

the source appends training bits to the data, and then applies the end-to-end channel code across

both the training and data. We focus on the scenario in which a single source is multicasting to

multiple destinations, in which case the optimal number of training bits is simply the number of

simultaneous messages to be transmitted by the source. This scheme allows each destination to

decode jointly the network coding matrix along with the data. It therefore balances the reliability

of communicating the network coding matrices with the reliability of data detection. The JTC

scheme is compared with an individual training and coding (ITC) scheme in which the channel
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code is applied separately to the training and data. In contrast to JTC, with ITC the amount of

training must be explicitly optimized, i.e., adjusted to balance the reliabilities associated with

training and data detection.1

For both training schemes the training sequence is added at the source node. The intermediate

nodes do not add additional overhead, but simply forward linear combinations of the input pack-

ets. Hence neither scheme assumes knowledge of the network topology at any node. Furthermore,

any topology changes, or changes in network coding coefficients are automatically taken into

account when estimating the network coding matrix at the destination.2 The source must only

ensure that sufficient training is provided to communicate the network coding matrix reliably.3

We consider a general network topology and analyze the effect of the training overhead on

reliability (probability of decoding error) and throughput for JTC and ITC. (The throughput

objective assumes a retransmission protocol for error control [8].) The links are modeled as

discrete memoryless channels, where the error and/or erasure probabilities account for wireless

impairments, such as interference and fading. We evaluate the throughput, accounting for over-

head, as a function of the length of the training sequence (for ITC), packet length, network size

(min-cut), number of packets transmitted N , error/erasure statistics, and field size. Our results

can be used to optimize N as a function of the min-cut. A key assumption is that the elements

of the network coding matrices are independent and identically distributed (i.i.d.). Although in

general the elements of the network coding matrices are correlated, our analysis gives a worst-

case estimate on the training overhead needed to achieve a particular throughput.

We illustrate our results for a 3 × 3 grid network with a single source transmitting multiple

packets to a single destination. The analytical results for throughput and overhead (assuming

i.i.d. network coding matrix elements) are compared with simulated results and show that the

analytical results are accurate. The results also show that as the min-cut becomes large, the

throughput becomes limited by overhead, and that JTC performs significantly better than ITC.

1The training approach to communicating the network coding matrix presented here is motivated by similar types of training

schemes for channel estimation (e.g., see [6]). A key difference here, however, is that the elements of the network coding matrix

are in a finite field.

2These training schemes are therefore robust with respect to manipulations of coding coefficients by selfish or malicious

agents [7].

3The destinations must know the number of training bits and their placement within the packet.
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An alternative approach to the training method presented here are the noncoherent network

coding schemes presented in [9], [10], which implicitly detect and/or correct errors in both

the header and data. Here our emphasis is on determining the minimum overhead needed to

compensate for unreliable links in addition to possible topology changes within the network.

(The associated overhead is not evaluated in [9], [10].)

The paper is organized as follows. Section II presents the system model and describes the

training-based detection of random network code. In Section III, we introduce the ITC and JTC

schemes. Section IV formulates the problem of maximizing throughput as function of overhead,

and also presents numerical results for the grid network. Conclusions are presented in Section V.

II. SYSTEM MODEL

We represent a wireless network as an equivalent acyclic/delay-free graph, where the links

designate the desired connectivity (e.g., corresponding to a particular transmission schedule).

Link rates are then determined by the particular assumptions concerning the physical layer and

the configuration of multiple access and broadcast nodes, treating interference from other nodes

as noise. A single source node in the network wishes to deliver the same messages to a set of

destinations D. Random linear network coding over a finite field Fq with q elements is assumed.

While packets are relayed through the network, some symbols in the packets may be changed

to another symbol (i.e., an error occurs) or they may be erased. We define an extended set4

Fq,e = Fq ∪{e} that includes the erasure symbol “e” to mark the positions of the erased symbols

in each packet.

The source messages are random row vectors s
T ∈ F

1×D
q of D symbols, where {·}T denotes

matrix transpose. The elements of all messages are independent and uniformly distributed random

variables. The encoder E maps these messages onto packets (row vectors) x
T = E(sT) ∈ F

1×K
q

of K symbols. In each packet interval, the source transmits N independent multicast messages

S = [s1, . . . , sN ]T ∈ F
N×D
q , encoded as packets5 X = [x1, . . . , xN ]T = E(S) ∈ F

N×K
q , over

the network. The number of messages N must be less than the network cut capacity M of the

4This set is not a field, since addition and multiplication with erasures are not defined.

5
E is applied row-wise to S.

February 20, 2009 DRAFT



5

equivalent graph.6

With random linear network coding each matrix of source packets X experiences a linear

transformation Gd ∈ F
Md×N
q from the source to destination d ∈ D, where Gd is the random

coding matrix and Md is the number of incoming links at d. We assume that the entries of the

coding matrices are uniformly distributed and independent (both within each matrix and across

destinations).

In the absence of channel errors and erasures, the received packets at destination d are given by

the rows of Vd = GdX ∈ F
Md×K
q . The effects of wireless impairments on each link are modeled

as erasures and errors. Namely, although coding is applied on each link, fading and interference

can lead to residual errors and erasures, which accumulate from source to destinations. This effect

is modelled by a discrete memoryless channel Hd between the source and each destination d.

The matrix of received packets including errors and erasures is denoted as

Yd = Hd(Vd) = Hd(GdX), (1)

where Yd ∈ F
Md×K
q,e . The channel Hd is specified by the conditional distribution PYd|Vd

of the

output Yd given the input Vd. The destinations detect Ŝd by applying the channel decoder E−1
d

to the received packets, i.e., Ŝd = E−1
d (Yd). The system model for destination d is shown in

Fig. 1.

For the analysis that follows, we assume that the errors and erasures across all entries of

the output matrix Yd are i.i.d. This serves as an end-to-end channel model between the source

and destinations and does not account for statistical dependencies, which may be introduced

by the network topology. (Alternatively, we can assume an interleaver and deinterleaver at the

source and destinations, respectively.) Furthermore, we will assume that the elements of the

network matrices are i.i.d. We therefore ignore the correlations that are likely to be introduced

by a particular network topology. This facilitates tractability, and also corresponds to a practical

scenario in which the source and destinations do not know the network topology. The i.i.d.

assumption then leads to a worst-cast estimate of overhead needed to achieve a target throughput.

6For a wireless network with omnidirectional transmissions the cut capacity can be determined by introducing virtual nodes as

in [11]. The graph we consider would be the result of combining the augmented network graph with the corresponding physical

layer and multiple access/broadcast assumptions.
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In principle, it may be possible to exploit the correlations ignored here to reduce the training

overhead. However, that would require a substantial increase in overhead to learn the statistics,

and also more complex decoders that take the correlations into account. Furthermore, numerical

results to be presented in Section IV-B show that for the grid network considered, the analytical

results based on the i.i.d. assumption accurately predict simulated performance.

III. ENCODING AND DECODING

For the network coding model described in Section II, there are three sources of errors:

(i) Errors or erasures of data symbols;

(ii) Errors or erasures of network coding matrix elements (overhead symbols);

(iii) Rank-deficient network coding matrices (due to random network coding).

An error and/or erasure correcting code can protect the data against the first source of errors.

Training is used to convey the network coding information reliably to the destinations. Both are

components of the encoder E . The probability that the coding matrix is rank-deficient depends on

the field size, which must be the same for all network coding operations, and the dimensions of

the matrix. Increasing the number of independent transmitted messages N increases the network

data rate, but also increases the probability that at least one of the network coding matrices

is rank-deficient. As the coding field size q increases, the probability that the network coding

matrix is full rank increases, but at the expense of increasing overhead. In general, optimizing

q requires centralized information about the full network topology, which may not be available.

A. Training Viewed as a Linear Code

Referring to (1), we assume a training phase, where the data (training) matrix X is known

to the destination, followed by transmission of the unknown data X . Of course, detecting the

unknown data given the coding matrix Gd is a standard decoding problem. Likewise, in the

training phase detecting the coding matrix Gd given the training matrix X is again a standard

decoding problem, but with the roles of the transmitted symbols and channel being swapped.

Namely, the transmitted symbol matrix X is now the code, and the channel matrix Gd is the

“data”. In the training phase the source therefore implicitly transmits the generator matrix of

the code through the network, which codes the data (Gd) by performing the network coding

operations.
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The probability of incorrectly decoding the coding matrix depends on the choice of the training

matrix, the distribution of channel errors and erasures, and the statistical properties of the coding

matrix. Due to the equivalence of training and coding, choosing a “good” training matrix is

equivalent to choosing a “good” code, which has a low complexity decoding algorithm. For

general channels this problem can be difficult, so that for purposes of performance analysis, in

what follows we use error probability bounds that are obtained by random coding arguments.

If the error control code for the data and the training are the same, then each destination

requires only one decoder. This is also the case when the transmitter codes over both the training

and data, as described in the next section.

B. Encoding

For reliability in the presence of errors or erasures, we encode the data using a linear (KD, D)q

code with generator matrix FD ∈ F
D×KD
q and append the known training symbols XT ∈ F

N×KT
q ,

which can be selected as the generator matrix of a linear (KT, N)q code, where KT + KD = K.

This scheme is referred to as individual training and channel coding (ITC). The encoding map

E (i) is defined by

X = E (i)(S) =
[

XT SFD

]

, (2)

which can be rewritten as

X =
[

I S

]

F =
[

I S

]





XT 0

0 FD



 , (3)

where F is the coding matrix, which maps the extended source messages [I S] onto the coded

packets, and I is the N × N identity matrix. The channel coding matrix F for the extended

message therefore has the specific form shown in (3).

ITC therefore consists of appending the identity matrix (uncoded training overhead) to the

uncoded data, and separately encoding them with channel codes XT and FD. (Such a scheme is

suggested in [4], [5] with reliable links (no errors/erasures) and represents a conventional scheme

for forwarding the coding coefficients in a distinct packet header.)

The redundancy introduced for training (i.e., training length KT) influences the reliability of

data detection, and can be optimized. Namely, if KT is too short, the coding matrix is unreliable,
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whereas if KT is too large, then not enough symbols are reserved for the data.7

Referring to (2), there is no need to constrain the generator matrix F to have the block

diagonal structure (3). Instead, we can apply joint training and coding (JTC) with the same

encoding procedure

X = E (j)(S) =
[

I S

]

F , (4)

where F is a full generator matrix that represents a (K, N + D)q linear code.

In contrast with ITC, the overhead and data are not separated in the transmitted packets x
T
n ,

rather both are jointly encoded into the entire packet. Since only one channel code is used

for both training and data, there is no explicit trade-off between the reliability of the training

bits versus the data bits. Namely, the channel code F implicitly balances the training and data

protection.

In general, joint encoding of training and data achieves a lower probability of error than

separate encoding for any choice of training length KT. The reason is that coding the overhead

and data jointly with one long code is better than coding them separately with two shorter codes.

C. Decoding

For the encoding procedures (2) and (4), the output at destination d is given by

Yd = Hd(GdX) = Hd(Gd[I S]F ) = Hd([Gd S
′
d]F ), (5)

where we define the network-coded (NC) source message S
′
d = GdS ∈ F

Md×D
q .

The optimal (Maximum Likelihood (ML)) estimate of the data and coding matrices, given the

observations Yd, is

(Ŝd, Ĝd) = arg max
S,G

PYd|Vd
(Yd | G[I S]F ), (6)

where Vd represents the inputs to the error or erasure channel model for the network. This joint

detection problem is prohibitively complex to solve in practice. Furthermore, individual detection

of the packets (rows) is not optimal. We therefore consider the following suboptimal detector,

which also facilitates performance analysis.

7This is analogous to the optimization of training overhead for MIMO channel estimation considered in [6]. A key difference

is that here we wish to detect the system matrix with acceptable probability of error, as opposed to estimating a complex-valued

channel matrix. Also, the JTC scheme to be described is not directly applicable to the MIMO estimation problem.
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First, the ML estimate for the NC source message and the coding matrix are computed as

[Ĝd Ŝ
′
d] = arg max

[G S′]
PYd|Vd

(Yd | [G S
′]F ). (7)

Since errors and erasures are independent, the conditional probability PYd|Vd
can be factored into

Md terms, one for each row of Yd. The decoder (7) therefore reduces to a decoder for each row

m,

[Ĝd Ŝ
′
d]

T
m = arg max

[G S′]Tm

P[Yd]Tm|[Vd]Tm
([Yd]

T
m | [G S

′]TmF ), (8)

where [·]m denotes the mth row of the argument. Then the set Sd of all valid source messages

is found by solving a system of linear equations

Sd = {S ∈ F
N×D
q : ĜdS = Ŝ

′
d}. (9)

Although (8) is ML optimal with respect to determining Gd and S
′
d, it is suboptimal with respect

to detecting the actual data S. The suboptimal decoder facilitates analysis since detection of a

single row is the standard ML decoding problem for the linear code F . The second step requires

solving an overdetermined system of linear equations for Ŝd, for which there could be no solution,

a unique solution, or multiple solutions.

Theorem 1: If the set Sd defined by (7) and (9) is nonempty, i.e., if there exists at least one

Ŝd such that ĜdŜd = Ŝ
′
d, then each element of Sd satisfies the ML criterion (6). Otherwise, the

estimate (Ŝ′
d, Ĝd) given by (7) is not the ML estimate.

The proof is given in the appendix.

The suboptimal detector can therefore be viewed as a relaxed version of the ML detector.

Furthermore, Theorem 1 implies that the destinations can identify which estimates differ from

the ML estimate.

The suboptimal decoding procedure E−1
d (for both JTC and ITC) is given by the following

algorithm, where MN denotes a matrix that contains only the rows of the matrix M with indices

in N :

1: Solve (8) for each row.

2: Select m rows from [Ĝd Ŝ
′
d] according to a predefined rule and let N contain the indices

of these rows.

3: Determine solution set Sd = {S : [Ŝ′
d]N = [Ĝd]NS}.

4: If |Sd| = 1, return the estimate Ŝd ∈ Sd, otherwise, return a decoding error.
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The selection of rows in Step 2 should depend on the specific channel and coding model.

(Theorem 1 holds for detecting the subset of rows in N , where the ML detector is based on

[Yd]N instead of Yd.) Of course, at least N rows must be selected to obtain a solution in Step 3.

The selection of a subset N of the decoded rows from Step 1 may improve performance if the

decoder is able to identify incorrectly decoded rows, e.g., by comparing the subspaces spanned

by different subsets of decoded rows, and dropping those rows in subsequent steps. In particular,

for erasure channels the destination can identify rows, which have been decoded correctly, and

can choose only those rows to decode S.

D. Decoding Error Probability at a Single Destination

We assume that each destination d decodes the messages independently from other destina-

tions, and give lower bounds on the associated probability of successful decoding. For JTC there

exists a linear code such that destination d can decode any particular row of Yd independently

with probability

Q
(j)
d ≥ 1 − 2−KEd(N+D

K
), (10)

where Ed is the Gallager random coding error exponent [12, Ch. 5] for the end-to-end channel

map Hd. Since errors and erasures are assumed to be i.i.d. across all rows, the same code can

be used for each row.

For ITC two linear codes must be independently decoded for each row. In that case there exist

two codes such that the probability of successfully decoding a particular row of Yd satisfies

Q
(i)
d ≥ max

KT,KD

KT+KD=K

(

1 − 2
−KTEd( N

KT
)
) (

1 − 2
−KDEd( D

KD
)
)

. (11)

The preceding bounds can be refined for particular coding schemes, e.g., bounds for erasure

channels with MDS codes are presented in [13].

Assuming that m ≥ N rows of the estimates [Ĝd Ŝ
′
d] have been selected by the destination,

the probability that the corresponding rows of Gd have rank N is denoted as Φ(m, N). Using

standard counting arguments [14], we have

Φ(m, N) =
N−1
∏

i=0

(1 − qm−i), (12)
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where q denotes the field size.8

To derive bounds on the probability that the data are correctly decoded at a single destination,

we consider two different ways for selecting the m rows of [Ĝd Ŝ
′
d], where N ≤ m ≤ Md: (1)

Select the m rows randomly; and (2) Select rows that have been correctly decoded. The first

method gives a lower bound on the decoding probability that can be achieved by the suboptimal

decoder, and the second (genie-aided) method gives an upper bound.

Theorem 2: The probability of correctly decoding the data at destination d using the subop-

timal decoder E−1
d satisfies

max
N≤m≤Md

Qm
d Φ(m, N)≤Pd≤

Md
∑

m=N

Qm
d (1 − Qd)

Md−mΦ(m, N), (13)

where Qd is Q
(j)
d or Q

(i)
d for ITC and JTC, respectively.

The proof is given in the appendix.

Choosing m for the lower bound trades off Φ(m, N) (the probability that the associated rows

of Gd have full rank) with (Qd)
m (the probability that the decoded rows are error free). Note

that the upper bound can be achieved if the destinations are able to detect incorrectly decoded

rows. That could occur in practice with erasure channels, or by adding redundancy (e.g., a cyclic-

redundancy check) to enable this detection. For the special case of erasure channels with MDS

codes the genie bound is tight. When combined with the lower bound on Qd for JTC (10) or

ITC (11), this gives a tight bound on the achievable performance of the suboptimal decoding

algorithm.

IV. NETWORK CODING OVERHEAD

In this section, we use the preceding error probability bounds to determine the necessary over-

head for communicating the network coding matrix to each destination. We do this analytically

for a large network, and also present numerical results for finite K and N . For fixed packet

length K and field size q, the source has two parameters to choose, namely, the number of data

symbols per packet D and the number of independent packets per transmission N .

The performance criterion of interest is network throughput Λ, which is defined as the average

amount of data that can be successfully communicated to all destinations in a single network

8With correlated matrix elements an alternative bound on Φ(m, N) in terms of the field size and the number of random

coding coefficients is given in [4].
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use.9 It depends on the network data rate, i.e., the number of data messages N the source

transmits in one network use, and also on the average delay, i.e., the expected number of

network uses (including retransmissions) needed to ensure that all destinations receive all packets

correctly. We assume that a multi-receiver version of an automatic repeat request (ARQ) scheme

is used to ensure reliable communications. Namely, packets are retransmitted until they are

successfully received at all destinations. These ARQ schemes require one bit (ACK/NACK)

feedback per transmitted packet to inform the source whether or not the transmitted packets

have been successfully decoded.

The maximum achievable throughput is given by

Λ = max
D,N :N≤M

[

N
D

K
min
d∈D

Pd

]

, (14)

which is equivalent to a max-flow min-cut bound, and can be achieved with a retransmission

scheme that combines coding with queue management [8]. Here the source maximizes the

objective over the number of data symbols per packet D as well as the number of independent

source packets N . In addition, for the individual scheme the training length KT is also optimized.

We will use Λ as our performance objective.10

We define the total packet overhead due to both channel and network coding as Otot = K−D
K

.

The total packet overhead is allocated across network coding and channel coding. With ITC KT

and KD symbols are allocated for training and data, respectively, so that the network coding

overhead is OT = KT

K
and the channel coding overhead is OD = KD−D

K
. With JTC the network

coding overhead is given by OT = N
N+D

(fraction of appended training relative to number of

source symbols per packet). Here the overhead due to network coding is not easily distinguished

from the overhead for channel coding, although the total overhead can again be defined by Otot.

A. Asymptotic Throughput and Overhead

Analytical results for the optimal throughput and corresponding overhead cannot be easily

obtained with a finite packet and network size, since the optimization of the throughput with

9The definition of “network use” in general depends on assumptions concerning whether or not some nodes are half-duplex.

In that situation a network use may require multiple time slots.

10Note that for the multicast application considered in this paper, ARQ schemes may require additional overhead, which

should specify the intended destinations and possibly the coding coefficients for each retransmission. We do not consider this

overhead in this paper.
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respect to N and D is an integer program and has no closed form solution. We therefore

consider asymptotic performance for a large network in which both M → ∞ and K → ∞.

To relate these limits, let M = M(K) be a function of K and define the relative min-cut

M̄ = limK→∞
M
K

∈ [0,∞]. It will be convenient to assume that Md = M for all d and that

all destinations have the same statistics for the channel and network coding matrix. In this

section we therefore drop the destination subscripts. The asymptotic growth rates for N and

D for both schemes and KT for the ITC scheme that maximize the throughput are defined as

N̄ = limK→∞
N
K
, D̄ = limK→∞

D
K
, and K̄T = limK→∞

KT

K
.

Theorem 3: For a channel with capacity C the maximum throughput per symbol for both ITC

and JTC is given by

lim
K→∞

Λ

K
= N̄D̄, (15)

where N̄ = min(M̄, c/2), D̄ = c− N̄ , and c = C
log2 q

for both schemes and K̄T = N̄
c
for the ITC

scheme.

The proof is given in the appendix.

For the asymptotic analysis we do not need to specify a particular method for selecting rows

in the suboptimal detection and decoding algorithm, since the lower bound (with randomly

chosen rows) and the genie-aided bound (with correctly decoded rows) coincide asymptotically.

Furthermore, the ITC and JTC have the same asymptotic performance since the codeword length

approaches infinity. Hence the separation of training and coding does not decrease the throughput,

provided that the the training length K̄T is also optimized.

Fig. 2 shows the asymptotic throughput given in Theorem 3 as a function of M̄ for a class

of end-to-end q-ary symmetric error channels with different symbol error probabilities p and

corresponding normalized capacities c. If the destinations know their network coding matrices,

then the throughput grows linearly with M̄ . If, however, each destination d ∈ D needs to detect

Gd, then for M̄ < c/2 the asymptotic throughput is given by M̄(c − M̄), which achieves a

maximum at M̄ = c/2. Hence for M̄ < c/2 the throughput is network limited in the sense that

it increases with M̄ (min-cut capacity).

For M̄ > c/2, N̄ = c/2 is optimal and the throughput does not increase with M̄ but remains

constant. This is due to the associated overhead with increasing N̄ , so that for M̄ > c/2 the

throughput is overhead limited. If N̄ = M̄ is chosen in this regime, the throughput decreases
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and reaches zero at M̄ = c, at which point the overhead occupies the entire packet. The min-cut

value where the throughput is maximized decreases as the error probability p increases. That

is because increasing p increases the channel coding overhead, and also reduces the maximum

number of parallel transmissions (N̄ ) in the overhead-limited regime.

The asymptotic overhead is easily obtained by substituting the asymptotic values for N̄ , D̄,

and K̄T in Theorem 3, as stated in the next corollary.

Corollary 1: The optimized total overhead and the associated data protection and training

overhead for ITC and JTC are given asymptotically by

lim
K→∞

Otot = 1 − c + N̄ , (16)

lim
K→∞

OD = (1 − c) + (1 − c−1)N̄, (17)

lim
K→∞

OT = c−1N̄. (18)

Corollary 1 shows that the optimized overhead increases linearly with N̄ . Using the expression

for N̄ in Theorem 3, we see that as M̄ increases from zero, the overhead increases until M̄ = c/2,

at which point the overhead remains constant. That is, when the throughput is network limited,

increasing M̄ increases the number of messages N̄ , which requires more training overhead. The

overhead is maximized for M̄ ≥ c/2, in which case as N̄ increases, the additional overhead

outweighs the increase in packet transmission rate.

B. Numerical Evaluation of Throughput and Overhead

The grid network model considered in [4] and shown in Fig. 3 is used to illustrate the

achievable throughput and packet overhead needed with network coding.11 The source is located

at the bottom left corner ((1, 1) position), and results are presented for the single destination

at the upper right corner ((3, 3) position). In general there can be multiple destinations in the

grid; however, here we consider only the worst-case destination with the largest distance to the

source, which limits the throughput performance. The intermediate nodes perform random linear

network coding of the inputs. Each link carries M
2

packets simultaneously so that the min-cut

capacity of the network is M . Results are shown for M = 2, 4, . . . , 60.

11Similar analytical results for a combination network with symmetric erasure channels on all links are presented in [13].
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All links are modeled as q-ary symmetric error channels with symbol error probability δ. Note

that the end-to-end uncoded symbol error probability p is needed to compute the random coding

bounds, which in turn are needed to compute the throughput given in (14). Since it appears to

be quite difficult to compute p analytically, we determine p numerically by generating network

coding matrices corresponding to different sets of randomly chosen combining coefficients, sim-

ulating link errors (introduced independently across all links), and averaging the corresponding

end-to-end error rates over different realizations. This is done for different values of M . Note

that increasing M increases the end-to-end error probability, since the number of simultaneously

transmitted packets on each link increases.

The estimated p is used to determine the training and code parameters, i.e., N and D for JTC,

and KT, N , and D for ITC, based on our analytical results. That is, we assume an end-to-end

q-ary symmetric symbol error channel with symbol error probability p and i.i.d. error events and

network coding matrix elements, and optimize the combined lower bound with random selection

of decoded rows (13) and the random coding bounds on the probability of decoding a single

row (11) and (10) with respect to the parameters. These values are used to obtain analytical

estimates for the throughput. We then simulate ITC and JTC in the grid network with MDS

codes and bounded distance decoding using the optimized parameters.12 The simulated results

therefore account for all statistical dependencies that are introduced by the grid network and

random network coding. The simulation results (and estimates for p) are averaged over 100

network code realizations and 100 packet network uses for each code (100×N encoded source

messages of size K).

Fig. 4 shows throughput (Fig. 4(a)) and packet overhead (Fig. 4(b)) for the 3×3 grid network

as a function of the min-cut capacity M with δ = 0.001, q = 28, and K = 60. The throughputs

given by the analysis (JTC/ITC lower) and by simulating the grid network (JTC/ITC sim.) are

shown. Also shown is the throughput assuming that the destination knows the network coding

matrix (REF), so that the overhead due to training is not included.

Fig. 4(a) shows that the analytical curves based on the estimated end-to-end error probability

accurately approximate the performance of JTC and ITC for small to medium values of M ,

where the assumptions of statistical independence do not hold. The throughput is limited by

12Bounded distance decoding is suboptimal (not ML), so that the random coding bounds may not be achieved.
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the packet overhead and tends to decrease in the overhead-limited regime, since the end-to-

end error probability also increases as M increases. The approximation becomes less accurate

in this regime since the gap between the performance of bounded distance and ML decoding

increases. The throughput gain of JTC relative to ITC is significant for large M , and is accurately

predicted by the analytical curves. The shape of the throughput versus min-cut is predicted by

the asymptotic results. Namely, the throughput increases as a parabola for small M , but then

decreases in the overhead-limited regime due to the increasing end-to-end error probability with

M .

Fig. 4(b) shows the overhead for JTC and ITC based on the estimated end-to-end error

probability.13 The overhead due to network coding increases linearly with M (network-limited

region) until it reaches approximately 0.5 as M becomes large (overhead-limited region). This

behavior is also predicted by the asymptotic results in Sec. IV-A. In addition, the results show

that the total packet overhead and network coding overhead are larger for ITC than for JTC in

the network-limited regime, giving the associated increase in JTC throughput.

V. CONCLUSIONS

Methods for communicating network coding matrices from a source to multiple destinations

have been presented based on the use of training sequences. With these methods the destinations

do not require knowledge of the network topology. The source only needs to know the end-to-

end error probability and how many packets should be transmitted simultaneously (namely, the

maximal rank of the coding matrix).14 In that sense training schemes are robust with respect

to topology changes (e.g., due to mobility). Also, the “outer” channel code(s) used to code the

training and data at the source (as opposed to the inner codes for each link) provides additional

robustness with respect to residual errors, which may accumulate across unreliable links.15

With ITC optimization of the training balances the trade-off between the reliability of commu-

nicating the code and the packet overhead. This trade-off is not explicitly present with JTC since

13Note that the packet overhead is the same for the analytical and simulated results since the same code parameters N , D,

and KT are chosen.

14Both parameters could be estimated at the destinations by using an adaptive rate control scheme with ACK/NACK feedback.

The source could successively increase or decrease N based on the feedback.

15In practice, the outer channel code may be combined with a CRC check.

February 20, 2009 DRAFT



17

the channel code automatically balances the reliability of training and data bits. JTC performs

significantly better than ITC (although asymptotically there is no difference due to the longer

code length) and should not be much more complex to decode. Furthermore, decoding a single

code of fixed length, which depends on the packet length and field size, is likely to be preferred

over decoding two shorter variable-length codes.

For a given network topology and packet length, the throughput can be maximized over the

network parameters (e.g., number of packets simultaneously transmitted by the sources). Our

results indicate regions in which the throughput is limited by training overhead, as opposed to

the min-cut capacity of the network. Results for the grid network show that as the min-cut M

becomes large, the optimized network coding overhead is approximately half of the uncoded

packet size, and that this limits the overall throughput.

Our system model is based on the assumption that the coding coefficients are independent

and randomly chosen for each packet transmission. This is primarily for analytical convenience,

and also models the scenario where knowledge of the network topology is not readily available

or cannot be exploited due to the associated increase in overhead and complexity. A possibility

for future work is to consider an alternative model, where the coding matrices over successive

transmissions are statistically dependent. The overhead could then be reduced by applying joint

source-channel coding, which compresses the sequence of coding matrices. Finally, other types

of retransmission schemes could also be considered, which further improve throughput at the

expense of additional overhead.

APPENDIX A

PROOFS OF THEOREMS 1, 2, AND 3.

Proof of Theorem 1: From the definition of the auxiliary data matrix S
′
d = GdS, the

conditional probability mass function PS′

d
|GdS(S′ | GS) = 1 when S

′ satisfies the definition.

Introducing the auxiliary matrix in the optimal ML detector (6), we obtain

(Ŝd, Ĝd) =

= arg max
S,G

∑

S′

PS′

d
|GdS(S′ | GS)PYd|Vd

(Yd | [G S
′]F )

= arg max
S,G

max
S′

PS′

d
|GdS(S′ | GS)PYd|Vd

(Yd | [G S
′]F )

(19)
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From the definition of S
′
d, span(S′) ⊂ span(G) is necessary for a nonzero likelihood of every

triple (S, G, S′). Furthermore, if a pair (G, S′) satisfies this condition, then the likelihood of

all data S such that S
′ = GS is constant, since the data are uniformly distributed and Vd is

independent of S given Gd and S
′
d. Therefore, the detector

[Ĝd Ŝ
′
d] = arg max

[G S′]
PYd|Vd

(Yd | [G S
′]F )

s.t. span(S′) ⊂ span(G),

(20)

and where Ŝd satisfies Ŝ
′
d = ĜdŜd is equivalent to ML detection. The suboptimal detector (7)

and (9) is obtained by relaxing the subspace constraint (span(Ŝ′
d) ⊂ span(Ĝd)). Consequently,

if the decoding result of the suboptimal detector satisfies the constraint, it is also optimal with

respect to the ML criterion.

Proof of Theorem 2: For the lower bound, suppose the decoder chooses a random set N

of m rows with N ≤ m ≤ Md. The probability that these rows are correctly decoded is (Qd)
m.

Furthermore, the probability that the part of Gd corresponding to these rows has rank N given

that they have been decoded correctly is Φ(m, N). Finally, the probability of correct decoding

(if both prior conditions are satisfied) is one. Multiplying these three probabilities for each m

and optimizing over the number of randomly selected rows yields the desired lower bound.

For the upper bound, suppose that a genie tells the decoder after the first step of the decoding

algorithm which rows have been decoded correctly. The decoder uses only the correctly decoded

rows in succeeding decoding steps. If these rows have rank N , then the data Ŝd are calculated

from the decoded rows and must be error-free. If the rank is smaller than N , then unique decoding

is not possible and a decoding error is returned. Since the rows are decoded independently, this

probability is given by
(

Md

m

)

(Qd)
m(1 − Qd)

Md−mΦ(m, N) (21)

for each m. The probability that correct decoding of the data is possible follows directly from

the disjoint union over all m ≥ N of the events that m rows are correctly decoded and have

rank N , and is given by the sum of (21) over m ≥ N .

Proof of Theorem 3: Since the optimal throughput of ITC can not exceed the optimal

troughput of JTC, we prove the asymptotic lower bound for ITC which is also a lower bound

on JTC. Finally, we derive an upper bound on the throughput of JTC that coincides with said

lower bound.
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For ITC and large K the throughput is asymptotically lower bounded by

lim
K→∞

max
N,D,m

0≤K̄T≤1
N≤m≤M

ND

K2

(

1 − 2
−K̄TKE( N

K̄TK
)
)m

×

(

1 − 2
−(1−K̄T)KE( N

(1−K̄T)K
)
)m

Φ(m, N),

(22)

where we fix KT = K̄TK and KD = (1 − K̄T)K. We introduce the constraints N
K̄TK

≤ c − µ

and D
(1−K̄T)K

≤ c − µ for any µ > 0 such that E( N
K̄TK

) ≥ ν and E( D
(1−K̄T)K

) ≥ ν for some

ν > 0 (see [12]). We restrict the maximization with respect to N and m with the constraint

0 ≤ N ≤ M − log2 K and choose m = N + log2 K. This yields a new lower bound

lim
K→∞

max
N,D≥0,0≤K̄T≤1
N≤M−log2 K

N≤K̄TK(c−µ)
D≤(1−K̄T)K(c−µ)

{

ND

K2
Φ(N + log2 K, N)×

[(

1 − 2−νK̄TK
)

(

1 − 2−ν(1−K̄T)K
)

]N+log2 K
}

.

(23)

L’Hospital rule implies that (1 − 2−νK̄TK)N+log2 K and (1 − 2−ν(1−K̄T)K)N+log2 K approach 1 as

K → ∞ for ν > 0 and 0 < K̄T < 1. Additionally, Eq. (12) implies limK→∞ Φ(N +log2 K, N) =

1. For K̄T = 0 and K̄T = 1 we have N̄ = 0 and D̄ = 0, respectively, where those limits are

irrelevant. Consequently, taking the limit and optimizing the bound with respect to µ yields the

desired result.

The throughput of JTC is asymptotically upper bounded by

lim
K→∞

max
N,D≥0
N≤M

ND

K2

M
∑

m=N

(

M

m

)

Qm(1 − Q)M−mΦ(m, N) (24)

with row decoding probability Q. From the sphere packing lower bound on the decoding error

probability [12], it follows that Q for any row approaches 0 if limK→∞
N+D

K
> c. Otherwise,

the sum in (24) is upper bounded by 1 since it is the tail of a weighted binomial distribution

with weights Φ(m, N) ≤ 1. Therefore, taking the limit in (24) yields

max
D̄≥0

0≤N̄≤M̄

N̄D̄ s.t. N̄ + D̄ ≤ c, (25)

which coincides with the lower bound.
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Figure 1. System model for destination d.
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Figure 2. Asymptotic throughput limK→∞

Λ
K

versus M̄ for a q-ary symmetric error channel with symbol error probability p;

Parameters q = 28 and p = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5].
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Figure 3. 3x3 Grid Network. Source at bottom left position (1, 1) and destination at top right position (3, 3).
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Figure 4. (a) Network throughput Λ vs. cut-set capacity M with ITC and JTC. Simulated and analytical results are shown with

random row selection for the 3 × 3 grid network. Also shown is the throughput assuming the destination knows the network

coding matrix; (b) Total overhead Otot and network coding overhead OT for JTC and ITC with the grid network; Curves are

shown for optimized D and N . Parameters are q = 28, K = 60, and the link error probability δ = 0.001.
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