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Signature Sequence Adaptation for
DS-CDMA With Multipath

Gowri S. Rajappan and Michael L. HoniBellow, IEEE

Abstract—Joint transmitter-receiver adaptation is studied to transmission in [8]-[10]. Transmitter precoding for the for-
for the reverse link of a direct sequence-code division multiple ward link is presented in [11].
access system with short signature sequences. The signature for Additional performance enhancements may be possible by

a particular user is computed at the receiver and transmitted L . . . . .
back to the transmitter via a feedback channel. A reduced-rank combining transmitter preprocessing with adaptive receivers.

transmitter adaptation scheme is presented in which the signature JOint optimization of a user signature sequence with a linear
is constrained to lie in a lower dimensional subspace. This allows adaptive receiver was presented in [2]. No multipath is assumed
a tradeoff between system performance and the number of in that work, so that the transmitter signature sequence is
estimated parameters. Analytical and simulation results show that matched to the receiver filter. It is shown that continuous

adaptation of relatively few transmitter coefficients can lead to . . .

significant performance improvements. Adaptive algorithms are a_daptatlon _achleves _smgle-us_er perfo_rnjang:e for the Ioads_ con-
derived for estimating the transmitter coefficients in the presence S|dered. Joint transmitter-receiver Opt|m|zat|0n for forWard ||nk
of multipath. We consider both collective optimization, in which  CDMA in the presence of multipath, based on the minimum
the users adapt together to improve a global system performance mean square error (MMSE) performance criterion, is described
criterion, and individual optimization, in which the signature for in [3]. Selection of an ensemble of signature sequences that

a particular user is adapted to optimize individual performance. o . - )
Numerical results are presented, which show that both individual MNIMize total interference power with matched filter (MF)

and collective joint transmitter-receiver adaptation can effectively receivers is considered in [5] and [6]. The design of signature

preequalize the channel and avoid interference at high loads. waveforms to optimize bandwidth efficiency is studied in [12].
Index Terms—Code division multiple access, interference avoid- Earlier work on joint MMSE transmitter-receiver optimization
ance, transmitter optimization. for the multiple access channel with linear dispersive channels

is presented in [13]. Other related work on siggnature optimiza-
tion for CDMA is presented in [20]-[23]

A drawback associated with transmitter adaptation in general
HE USE OF SHORT, or repeated signature sequendsshe feedback bandwidth required, which increases with the
in a direct sequence (DS)-code division multiple accessimber of transmitter coefficients to be estimated. We present

(CDMA) system enables the use of adaptive techniques fireduced-rank” transmitter adaptation scheme, in which each

suppression of multiple access interference (MAI) [1]. Isignature sequence is constrained to lie in a lower dimensional
addition, short codes also enable the possibility of selectisgbspace, spanned by some orthogonal basis. The weights for
a user signature sequenceawoid interference [2]-[7], [20], the basis are then selected to optimize the performance criterion,
[21]. Here, we present and evaluate the performance of adaptiagnely output signal-to-interference-plus noise ratio (SINR).

transmitter-receiver algorithms for reverse link CDMA in théifferent orthogonal bases are assigned to different users. Se-
presence of multipath. lection of the subspace dimension allows a tradeoff between the

In general, adaptation of a user signature sequence in the pregnber of parameters to be estimated and steady-state perfor-

ence of multipath serves two purposes: preequalization of thi@nce. A subspace dimension of one corresponds to conven-
channel and interference avoidance. There has been increasipigal power control. Numerical results presented for a syn-
interest in preprocessing techniques for DS-CDMA systengf)ronous CDMA system show that relatively few combining
partly motivated by the possibility of shifting the bulk of pro-coefficients can provide a substantial improvement in perfor-
cessing from the mobile to the base station on the forward linkance.

For example, “pre-Rake” and waveform design schemes haveAlgorithms for group transmitter-receiver adaptation in the
been proposed to compensate for the effect of the channel ppoesence of multipath are presented for different scenarios.

Specifically, we distinguish betweendividual and collective

. . . adaptation. Individual adaptation refers to the scenario in which
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Fig. 1. Discrete-time baseband model for joint transmitter-receiver adaptation.

system. For ideal channels without multipath, it has beavhereL, represents the number of paths, assumed to be spaced
shown in [5] and [6] that group adaptation with individualat the chip duratiof. = 7T//N, whereT is the symbol duration
or local MSE cost functions also optimizes a collective, andZ;, < N. The channel matrices in (1) are then

global cost function (namely, sum MSE). Here, we show that 4+ 41 42 H(N=1)

individual and collective adaptation generally do not give the H; = [h’“ L }

same performance with multipath, although numerical results H- = [h=F p-®-D h=2 h-! 3

P ; | k oy k ®3)

show that individual adaptation performs nearly as well as

coIIective. adaptation for the cases examingd. Whereh,f" ishy, shifted dowr(+) or up(—) by positions, and
Numerical results are presented, which illustrate the convetie vacant positions are filled with zerd#;” represents the con-

gence performance of adaptive transmitter-receiver algorithi@igution from symbolsy (i), k = 1,..., K, andH;, represents

as a function of the estimation window size (i.e., number of réhe intersymbol interference (ISI) from symbolgi — 1),k =
ceived observations). Both single-user adaptation, in which the. . . | K. Both channel matrices af&/ x V), andH;; is sparse
interferers do not adapt, and group adaptation, in which all usé¢fry,;,, <« N.
adapt, are considered. These results show that the individual alln what follows, we will assume that the channel delay
gorithms converge more slowly than the collective algorithmspreads are small compared with the symbol duration and,
Also, adaptive receivers based on a least squares performameece, neglect ISI (.eH, = 0) in order to simplify the
criterion generally perform worse than the nonadaptive Rakapdel. We, therefore, udd;, to denote the channel matrix for
or MF receiver, since the adaptive receiver introduces trackingerk. The necessary conditions for the optimal signatures pre-
error when the signatures are time-varying. sented here can be extended to asynchronous CDMA with ISI

The reverse link CDMA model is presented in Section Il. Alby expanding the observation window for the received signal.
gorithms for individual and collective adaptation are considerddhis complicates the derivations while adding little insight to
in Sections Ill and 1V, respectively. Large system performandke synchronous case, so that only synchronous CDMA with
results for reduced-rank transmitter adaptation in the absemagligible ISl is considered throughout the paper. Related work
of multipath are presented in Section V. Numerical results illugn group signature optimization for asynchronous CDMA with
trating the performance of the proposed schemes in the presgféal channels is presented in [14]. It is shown there that when
of multipath are presented in Section VI. the signatures are selected optimally, the MMSE receiver is an
MF, which spans only a single symbol interval.

Fig. 1 shows a block diagram of a single-user communica-
tions system with joint transmitter-receiver adaptation. The re-
We assume a synchronous DS-CDMA system witlusers ceived signal from (1) is the input to a linear filteg. We con-

Il. SYSTEM MODEL

and processing gaily. The received vector is given by sider two types of filters: 1) a coherent Rake filter (i.e., max-
imum ratio combiner) or MF given by
K
r(i) = > AH (@b ()+H;, (i~ Db (i—Dlpr+n(i) (1) o = —TIPE_ @)
i1 | Hrpell

. ) ) and 2) an MMSE filter given by
whereby (i) is theith symbol transmitted with[|b(4)|?] =

1, px is the N x 1 signature, andi,, is the amplitude, all for ¢ = R™"Hypx ()
userk. The matricesH; represent the channel for uskerto
be described, and(¢) is the white Gaussian noise vector with

covariance matrix:2T. a

— HytH 2
The spread symbols for usérare passed through the dis- R= ZHkpkpk Hy +o.l (6)
crete-time channel with impulse response given bythe 1 k=1
vector is the received covariance matrix.

Transmitter optimizationr adaptationfor userk refers to se-
hy=[he1 hx2 -+ hpr, 0 --- O]T (2) lectingp; to optimize a cost function such as MSE or SINR at
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the output ok;,.. More generally, @roupof users may adapt to A. Alternating Updates

optimize acollectiveperformance criterion, such as sum MSE \ysa first optimize the signature sequence for userssuming
over: all users. Welvgnllbcon&der “_re_duced-rzl':_mk ap%o§_|matlonﬁ’1at the receiver is fixed. Joint transmitter-receiver optimiza-
tot el optlmalp;F][ B] yji:for_;_sr;tral_nlng)k toliein aD-dimen-  iyn is then achieved by alternating the transmitter update with
sional space wher® < V. That s an update for the receiver filter. Given the energy constraint
Ilpxl|? < I, the cost function is

. N2 2

whereF,, is anN x D matrix whoseD columns are the basis S = Blibi (@) = du (D] + Ar([[Frendl ) ®)
vectors for thek,;, user, and the elements of tli& x 1 vector where
«y, are the combining coefficients. K

Varying the subspace dimensidhallows atradeoff between di (i) = el Z A;(0)b; ())H,;F;0; + n(i) (10)
system performance and the number of adaptive parameters at =
the transmitter. Specifically, selectidg = N is equivalentto o )
optimizing p;. directly (i.e., takingF;, = I), assuming that the 1S the soft decision at the output of tlhg, user receiver and
givenFy, is full-rank. SelectingD = 1 corresponds to conven- Ax iS & Lagrange multiplier. Setting o, Ji(cx) = 0 gives the
tional power control. A increases from one t, the perfor- Necessary condition for optimality
mance improves in a stationary environment, but more informa- S HvvH . H Hoo \—L o u o HerH
tion is req%ired at the transmi%;er, which further constrains thé = (P Hi ciet HiFs + ME( L) ALFH

pr = Fray (7)

mobile speeds for which transmitter adaptation is beneficial. (11)
We will assume that the set of basis vectbysare random, 11, . i S
and that the random elements are selected from a binary distri-= mAk (FrFr)  FyHicp (12)

bution. For example, one possibility is to choose the elements
of F;, independently, so that, is a linear combination oD wheres;, = c'H,Fy(FIF,)'FH/ c;, the last equality
independent random signatures. For purposes of computing ftows from the matrix inversion lemma, and the Lagrange
optimal combining vector, itis convenient for the column&ef multiplier is selected to satisfy the energy constraint. The
to be orthogonal. This can be easily accomplished by selectifag-rank solution (i.e.,.D = N) is

a single random signature sequertg;, the first column of P

F,., and generating successive column&gfby masking with pr = FHj cx (13)
different orthogonal sequences. For example, consider a sys{gy e 3

ith N — 4 K = 2 and sub di i@ 2. We miaht ' is a scalar. In this case, the reduced-rank solution
wi =4, K = 2 and subspace dimensidh= 2. We mig

F. o is simply the projection of the full-rank solution onto the

choose space spanned by the columngf. Joint transmitter-receiver
—-05 0 -05 0 optimization can be accomplished by successively applying the
0.5 0 —-0.5 0 preceding expression with the MMSE update for the receiver
Fy = 0 0.5 Fp = 0 0.5 (®) filter (5) until convergence of the cost function (desired user
0 0.5 0 -0.5 MSE) is achieved.

We observe that individual, alternating adaptation with the
so that the columns &, k = 1,2 are orthogonal. In this case, MF does not avoid interference. Specifically, i, = I, the
the assigned signature sequence for each(éiser 1,2) is di-  transmitter update (12) becomps = cx. That is, the trans-
vided into two sections, which are independently weighted Ryitter is matched to the receiver, which gives a fixed point for
the components af;.. For generalV andD, whereN/Dis an gy initial receiver filterey. In contrast, selecting, according
integer, we can choose the columnd®fto be nonoverlapping i, (5) and combining with (13) gives
segments containingy /D elements of an assigned random se-
quence. pr = vR7'py (14)

wherey is a constant. To minimize the MSk;, should be the
[l. INDIVIDUAL OPTIMIZATION eigenvector oR corresponding to theninimumeigenvalue-.

In this section and the next, we present algorithms for joifp€®; &/S0, [5] and [6], where the same condition is derived.)
transmitter-receiver optimization. “Adaptive” means that the Substituting (12) into (9) yields
transmitter and receiver parameters can be estimated direglly— 1 | ;2cHe, — A;cl
from the received data. In what follows, we will assume that the
channel coefficients are known, since these can be estimated
from a pilot signal.

We first consider individual optimization, in which each user
attempts to optimize individual performance, subject to a cofthe term ckH(Em;ék H,.p»pZHH)c, is MAI, which is
straint on the transmitted power, with no regard to the perfandependent op;. Hence, we conclude that with fixed receiver
mance of the other users in the system. This is a suitable offitters, individual transmitter adaptation does not avoid the
mization model for a peer-to-peer network, in which the receivarultiuser interference, unlike collective adaptation to be
typically does not possess information about the interferers. described in Section IV.

Hipsx

tecif ZHmpmngg cr — el (15)
m#k
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B. Joint Optimization: MMSE Receiver We observe that a different, but equivalent, form for the nec-
Rather than alternate between transmitter and receiver oSSy condition for optimality is obtained by substituting the
mization, here we jointly optimize the signature sequence fIVISE receiver filter, given by (5), into the MMSE transmitter
userk with the MMSE filter (5). Let condition (12). Namely
1 _
|/ HiFrau|” {(F,i’ Fi) F/H/R lHka} ar =vay  (23)

16
CkHRk Cr ( )

TE
wherer is again the maximum eigenvalue of the associated ma-

be the received SINR wheiR;, is the interference plus noisetrix. The condition (23) is the same as (22) exceptRatn (22)

covariance matrix for usér given by is replaced byR. The equivalence between (22) and (23) can
be established directly by applying the matrix inversion lemma
K (19)—(23). SinceR depends orpy, the condition (22) is more
Ry = Z H;p,p/HY + 021 (17)  convenient to solve in practice.
REL The condition (23) shows that when the signature is optimized

in the presence of multipath, the MMSE receiver is generaity
the same as the MF. Furthermore, witgp = I, (23) states that
the MF is the projection of the MMSE receiver onto the space
spanned by the columns .

The optimal signaturg;. can be adaptively estimated from

It is easily shown that maximizing the SINR is equivalent t : . .
minimizing the MSE. That is, both criteria give the same O%Z) :Xdrgslggi?rﬂ?ngktgg corresponding channel estimate
ed’ ’

timized signature. Here, we choose SINR since the associal
derivation is somewhat simpler. Applying the matrix inversion 1 (&
lemma toR~* gives Ry == <Zr(i>r<z‘>H> — |AxPHyprplHL.  (24)

n
=1

We wish to selecty;, to maximize

Je =+ M| Freawl® — ). (18)

R! = (Rk + HkaakakHFiinf)_l
_ o1 RyHFra/ FHR, (19) C- Joint Optimization: MF Receiver

" 1+ o FPHER THFan Here, we consider joint optimization of the desired user
spreading code with the MF receiver given by (4). Although
joint optimization with the MMSE receiver should have better
steady-state performance, joint optimization with the MF
receiver is observed to provide superior transient performance
in an adaptive mode. Taking the gradient of the cost function
Jy. in (18) with respect tay; gives the necessary condition

and substituting (19) in (18) gives

Maximizing with respect tay; yields the following necessary
condition:

_ H 1 SHyyH
{(Fka) 1FEHER;1Hka}ak=L/ak. @n (FiFe) FUH

2 1
That is, the optimal «; is the eigenvector of KakHFkHHfHkaak> ! <akHF{IHkHRkaFkak) Rk}
(FIF,) 'FIHIR,'H,F;, that maximizes the SINRy. H.F.ap, =va,  (25)
Substituting (21) into (20) reveals that the desired eigenvector
corresponds to the maximum eigenvalue. The full-rankherer = —X; /.. ForD = N this reduces to
solution(D = N) satisfies the necessary condition

o | (i) ' (opmpmasions ) ™
- : - k
{H/R;"Hy} px = vps. 22 % [\IHipsl? pHIR,H,py

Hipr =vpr  (26)

In the absence of multipath, we hat®, = I, and (22) im-
plies thatpy, is the eigenvector corresponding to the maximurandy = p H H,,p,.. The optimaky, is, therefore, an eigen-
eigenvalue 01R,:1. The optimal signature sequence, thereforgector of a matrix
lies in the subspace containing the least interference plus noise.
In a single-user system with multipath, we haRge = 21, A= (FVFy) T FIHI (ol - WR)HF,  (27)
so thatp;. is chosen as the eigenvector corresponding to the
maximum eigenvalue dfl}’ H,.. This amounts to aligning the where the scalars b (and the associated eigenvalue) depend on
user’s transmissions along the strongest channel componentxin
general, in the presence of both multipath and multiuser inter-For a single-user systerR; = o2I, andA = a3 (FZ
ference, the condition (22) optimizes the tradeoff between &Ek)—lF,{?H,{?Hka wherea,, is a scale factor, and it is easily
ploiting the strongest channel components and avoiding inteerified that the optimal choice faf;, is the eigenvector cor-
ference. responding to the maximum eigenvalue Af If the channel
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is ideal, i.e.,H, = I, and there are interferers present, then Substituting the optimality condition (29) into the cost func-
A = (FEF,) 'FH(21 — aRy)Fy, and it is easily verified tion (28) yields

that the optimaty;, is the eigenvector corresponding to the min- K K

imum eigenvalue oR;, projected onto the space spanned by thg = K + o2trace(CH C) — Z ArclHyFray — Z A L1

columns ofF;.. k=1 k=1
Solving (25) for generaH,;, andR; does not appear to be K

straightforward. In addition, there can be multiple solutions, = Z(Sk — Ally) (30)

corresponding to local optima of the objective functifgn An k=1

iterative algorithm for solving (25) is given as follows. 1) Seleavhere
arandom initialization foai ) = = .. 2) Compute the matriA.

3) Selecta("+1) as the eigenvector dA that maximizes the

SINR 7. 4) Iterate steps 2) and 3) until convergence 5) Resthe MSE for usek: with receiver filtercy,, anday, is given by

peat 1)-4) for different random |n|t|aI|zat|0n§ We have (29).

observed that occasionally the iteration in step 4) does not conyve emphasize that collective transmitter optimization, repre-
verge. However, numerical results indicate that steps 1)-4) tygented by (29), requires knowledge of the receivers and channels
ically computes g, which achieves near single-user perforfor all demodulated users. In contrast, individual transmitter

mance. We remark that the eigenvector in step 3) does not nggaptation, represented by (12), requires knowledge of the re-
essal’ily Corl’eSpond to the maximum or minimum eigenvalueceiver and channel for On|y the desired user.

& =1+ o2|lerl]? — Arey HiFray, (31)

IV. COLLECTIVE OPTIMIZATION B. Joint Optimization: MMSE Receiver

We now consider collective optimization of signatures, in The sum MSE cost function with a power constraint, as-
which a single user or group of users adapts to improve a glo§#ming the MMSE receiver filter (5) for each user, can be
performance criterion, namely, MSE summed over all useM!Itten as
Collective optimization penalizes any additional interference to K
other users as a result of the change in signature sequence, in < = Elb@) = d@I*]+ >~ Al Frewl|* - i)
contrast to individual optimization. Here, we assume that the ’ k=1
receiver for each user has knowledge of the channels and re- -

ceivers forall users being adapted. Collective optimization is, =K+o} Z o F{ Hi R HyFroy,
therefore, appropriate for the reverse link of a DS-CDMA cel-
lular system. That s, the signatures for all users are computed at
the base station, and the transmitter coefficients (or coefficient
updates) are fed back to the mobiles over the forward link.

A. Alternating Updates

We wish to minimize the sum MSE over all users subject to
the energy constraintgpy||? < I,k = 1,..., K. The cost
function is, therefore

K

= B[l —d@I]+ > M(Fren]l® ~ 1) (28)

k=1

where theN x (K —
where the decision vectat(i) = CHr(:),C is the N x K without columnk, and the columns of th& x (K —

k=1
K
-2) o FYHIR'HFray,
k=1
K o
+> o FYHR P PR H Fron
k=1
K
k=1
K
+ > Ml Fral” —TIi) (32
k=1
1) matrix Cy, is the receiver matri>xC
1) matrix

matrix of receiver filters, and the received vect¢t) is given P, are the effective signatures (i.e., channel matrix times trans-

by (1). Minimizing with respect tay; gives
- (|Ak|2F,{?H£CCHHka

+ )\kaHFk) A*FHHk Ck-

plished by iterating the preceding expression with an update for
the receiver until convergence of the cost function given by (2
is achieved. For each transmitter update, the Lagrange mu t|—

plier must be selected via a numerical search to satisfy the effk = “& K FY

(29)  where

Joint optimization of the transmitter and receiver can be accorfx = (FkHFk)

mitted signature) of all users except useMinimizing this cost
function with respect tev;, gives

Qkak = Oy (33)

- F/H {R;*' — (m + 1)°CCf } HyFy,
(34)

PHIR, 'H Fro. (35)

ergy constraint. As with individual optimization, convergenc®f course, this condition can also be derived by combining the
is guaranteed with the MMSE receiver, but is more difficult toeceiver condition (5) with the transmitter condition (29). We
establish with the MF receiver, since the MF receiver does n@mark that in contrast with individual optimizatidR, cannot
necessarily reduce the MSE at each iteration. generally be replaced BR.
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Substituting (33) into the sum MSE part of the cost functiowhere=,;, does not depend om;. Minimizing with respect to

given by (32) gives «y and rearranging gives
. . —1
E|[b(i) — d()]]?] (FIF,) ™ May = vay (39)
UL HypHyH H =
=- ‘FoH, GG HyFrop + E
(1+m) Few Ea H Gt e =, where
1 2 2 =
=~ Uk T llaxl*} +Ex (36) 1 pZHEIR, H,ps
(1+77k)2{ M:FHHH{<1— — Tk Tk )I
B [ Hyp | [ H P [|*
where R I
+ m + Ckck }Hka (40)

Ep=K ci'Rycy — c’H fHc) (37
, " ; L ;( ¢ HipctpiHie) (37) We remark that combining (4) and (29) also yields the condition
(39), but with adifferentmatrix M from that in (40). Namely
does not depend ony,. We, therefore, conclude that the sum
MSE is minimized by selecting;, as the eigenvector o}, M = FAHZ { <1 o1 ) I+ Cka} H.F;. (41)
corresponding the maximum eigenvalue. | Hxpxl|
The condition (33) would be straightforward to solve numer- : . : . .
ically except thaf}; depends omy;, throughy,.. Consequently, _Th_a; is, combining (4) and (29) '90t equivalent to min-
the numerical results in the next section were generated by itkpi2ing the sum MSE cost function (38.)’ and ge”eTa”y
ating (5) and (29), instead of trying to solve (33)—(35) directI>J.eadS t(,) worse periormance. Mathematically, the 9,'“‘”‘
Of course, the condition (33)~(34) is not equivalent to thg)S anses from the cross-p;oduct tegfiRicy = (ay
analogous condition for single-user optimization (12). Consider H/ R’“H’“FW’“)/(”H’“P’““ ,) n (_38,)' V\,'h'Ch is treated
group adaptation, in which all users jointly optimize their sign lifferently by alternating and joint optimization.

ture sequences with an MMSE receiver. We defifieed point Silw_ng (39) is com_pluiatedhb)(/j the fact 'hbi depT_n((les on
for collective or individual optimization as a set of signature€- AN lterative numerical method can again be applied, as was
pi = Fran,k = 1,.... K, which satisfy the corresponding iscussed for individual optimization. We also remark that as in

conditions for optimality (33)—(34) or (12), respectively, whergq,e individual case, itis unknown which eigenvalue is associated
the columns ofCy, in (34) are the MMSE receivers for usersWIth the solution eigenvectat;.
m % k.
T;ﬁeorem: As o2 — 0, the set of fixed points for collective D- ltérative Algorithms for Group Optimization
optimization converge to the set of fixed points for individual The necessary conditions for alternating transmitter-receiver
optimization. optimization (5) and (29), and the joint optimization condition
The proof is given in the Appendix |. The theorem state@3)—(34) lead to two different iterative algorithms for finding
that at high signal-to-noise ratios (SNRs), individual optimizdixed points for group optimization. Suppose that the users are
tion can provide a solution which is close to the global opnitially assigned some arbitrary set of signatupes. .., px.
timum in the sum MSE sense. We remark that for ady> 0 Alternating transmitter-receiver optimization implies that the
and arbitraryH,.’s, the fixed points for collective optimization receivers are updated according to (5) with fixed transmitters,
are not generally the same as those for individual optimizatidiellowed by the signature update (29) with fixed receivers, and
However, for the ideal chann@l; = I, we show in the Ap- so forth. This is illustrated in Fig. 2. In contrast, the condition
pendix that the individual condition (14) is indeed equivalent #%83)—(34) can be applied successively across users, which is re-
(33)—(34) with MMSE receivers. This is to be expected, sincefirred to as “user-by-user” optimization in Fig. 2. Note that the
is shown in [16] that with ideal channels, individual optimizasum MSE must converge in either case, since it cannot increase

tion minimizes the sum MSE cost function. after an update.
Of course, alternating transmitter-receiver and user-by-user
C. Joint Optimization: MF Receiver optimization can also be carried out by iterating the individual

_ ) ) necessary conditions (5) and (12), or (23) across users. In that
The sum MSE cost function with a power constraint, agxse, convergence to a fixed point is more difficult to estab-
suming the receiver filter for each user is a MF, as in (4), caRn. A user-by-user optimization algorithm without multipath,

be written as based on individual updates, has been presented and analyzed in
K [6], [16], [17] where it is referred to asterference avoidance
J = ElNlb(i) — d(a)|2 M (Frall? — e (See, also, [7], which considers interference avoidance in the
) @7+ ; ek ) context of a single-user dispersive channel.) In [17], a modified
oI FHHY R, Fran, version of interference avoidance is presented which is guaran-

= —2|[Hupr |l + [[Hrpe|* +

AN teed to converge to a solution which m?nimizes'the sum MSE.

[ = kK Yy In the presence of multipath, the condition (22) implies that in-

+ ay By Hy CCi HyFron + Ak Fraw||” + Ex terference avoidance must be traded off against the benefit of
(38) exploiting the channel eigenvectors with largest eigenvalues.
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Fig. 2. Alternating transmitter-receiver versus user-by-user adaptation.

In general, characterizing the performance of fixed-points &s Single-User Optimization

a function of the user channels, as well as establishing the congnsider a CDMA system with users in which a single user

vergence of group optimization with individual cost functions, adapts his signature to minimize MSE with an MF receiver.
to a fixed point in the presence of multipath, remain open prokne MSE for uset: is given by

lems. Our experimental results, including the numerical results
in Section VI, indicate that the joint transmitter-receiver opti- & = E (|bi(i) — pi [PAb(i) +n(4)]|?)
miz_ation alg(_)rith_ms presented herg generally converge to the _ [1— (Ak 4+ A AkPlIpx|1? + ek Y] + o2 |1px |2
?oprtr;n;ilcseo:clétrl}o{n!n;?e sense of obtaining (near) single-user per ol (FkaAkAfPka) o (42)
whereP;, is the N x (K — 1) matrix obtained fronP by re-
moving thek;;, column (i.e., thek;, user’s signature), and
V. LARGE SYSTEM PERFORMANCEWITHOUT MULTIPATH isthe(K — 1) x (K — 1) diagonal matrix containing the am-

plitudes of all users except for userIf A, = ||px||* = 1 for
In this section, we analyze the performance of reduced-ragchk, then (42) reduces to

transmitter optimization assuming first single-user adaptation 9 H (o H "

in the presence of nonadaptive interference, and then group Sk = o+ oy (FY PPy Fo) g (43)
adaptation. To simplify the analysis, we assume ideal channéfys expression is minimized by choosing. to be the
without multipath and MF receivers. Although (14) states th&igenvector corresponding to the minimum eigenvalue of
the full-rank MMSE receiver reduces to the MF (see, als&i PxP} Fx, which we denote as,.;,. The associated SINR
[14]), the MMSE receiver gives better performance with B

reduced-rank signature. Our approach is to evaluate the large 1

system performance with randomly assigned signatures as the M= e (44)
dimensionD, number of usergs, and processing gaifv all R

tend to infinity with fixed normalized dimensio® = D/K, Now suppose that the signatures assigned to the users consist

and normalized load = K/N. (See, also, [18] which of independent identically distributed (i.i.d.) binary random
presents a large system analysis of reduced-rank receivers.)elements. Suppose also that the columnsFgf consist of
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whereP, ., isthe N x (k — 1) matrix containing the signa-
tures of users, ..., (k — 1), andP 1.k istheN x (K — k)
matrix containing the signatures of usékst 1), ..., K. From
symmetry, it is apparent that the two terms in the summation
in (46) will contribute the same interference in the large system
limit, so that we define
K-1
(=Kol +2 Z Pi Pit1c Prly P (47)
k=1
and note thaf[¢] = E[¢] when the signatures are i.i.d.
We now consider a successive optimization scheme in which
. users are added successively in decreasing dederk, . .., 1,
and each user optimizes his signature based on the users
present. The users do not change their signatures as more users

‘ ‘ ‘ ‘ ‘ ‘ are added, so that this scheme is suboptimal. The performance
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

—%— K =64; Simulated

ok — - K=64; Large System
(o) + K= 986; Simulated

[e] O K =096, Large System

normalized dimension D/K of this method, which we can analyze, then lower bounds the
Fig. 3. Average SINR (dB) versus normalized dimensi®rassuming only optlm.al performance. To faC"_”ate. the large system analysis,
one user adaptsV = 128 andSNR = 8 dB. we will also make the approximation that the elements of the

signatures of the users added before a particular user are i.i.d.
nonoverlapping, equal-length segments of the random signaWe first observe that for a givenD, the matrix
ture assigned to usét as illustrated in (8). Since the length of(FkaH:KPfH:KFk) has rank less tharD for k£ =
each nonzero segment¢/D, andFYF, = I, the nonzero K — D + 1,..., K. Consequently, for these users we can
elements ofF; are +,/D/N. It is easily verified that the choosew; so thatoy! (F{ Pyi1.x P, Fr )y = 0, and
elements oFka are i.i.d. with mean zero and variant@v. K—D

We now consilder the large system limt — oo, K — oo, £=Ko2 +2 Z ol (Fng+1:I(PkH+1:I(Fk) an.  (48)
andD — oo with D/K = D and K/N = K, whereD kel
and K are the normalized dimension and load, respectively.giach user: < K — D added to the system minimizes the
is known that the empirical distribution of eigenvalues of thgorresponding contribution to the sum MSE in (48). This is
matrix (FJ/ PP F;,) converges to a deterministic distributionequivalent to individual optimization ofy, given that only
[19]. The minimum eigenvalue converges to usersk + 1,..., K are presentay, is, therefore, the eigen-

oo (1 \/B)Q(K) (45) \];eb([:;())r corr;sbp{)ondi]?g to the minimum eigenvalue of the matrix
kL A+LEKL pp1kt ke

so that the large system SINR convergesyfo = 1/(o2 + Given the preceding optimization procedure, we can write the

A2 ). sum MSE cost function as

Fig. 3 shows plots of SINR at the output of the receiver filter K=D
versus normalized dimensioR for normalized loadsk = E=Ko2 42 Z Amin (Fe Prstn Pl cFe)  (49)
1/2 and3/4. Simulated results correspondingfo= 128 are k=1

compared with the large system results. The background SMRere); min(V) is the minimum eigenvalue of the matrx.

1/02 = 8 dB. The simulated results are averaged over randomOur objective is to evaluate the large system limit éof
binary signature sequences. These curves show that for the case®, K, N) — oo. We assume that the columns Bf;
considered, a normalized dimensidh = 1/2 results in be- are nonoverlapping segments of a random i.i.d. signature
tween one and two decibels degradation relative to full-rank paie thatFF;, = I. Each element oF 2P, .k is, there-
formance while reducing the number of parameters to be estire, a randomly weighted sum of elements in a segment of
mated by a half. These results also show close agreementpg- k + 1 < m < K. The segments corresponding to different

tween the large system and simulated results. elements are nonoverlapping. In general, these segments are
o correlated; however, in what follows, we will assume that the
B. Group Optimization elements ofFZ Py .;c become iid. a{D,K,N) — oc.

We now analyze the performance of reduced-rank tranddditional numerical experiments have shown that the expres-
mitter-receiver optimization when all users optimize signaturesion for SINR, which follows from this assumption, accurately
All users are assumed to transmit with power equal to one, gedicts the performance of the successive optimization

that the sum MSE is scheme.
K With the preceding assumption, we can again apply the re-
E=Ko2 + prPkapk sults on the asymptotic eigenvalue distribution of a class of
k=1 random matrices presented in [19]. Namely
K
= KU% + Z PkH (Plzk—lP{{k—l + Pk-l—l:’\'PkH—i—l:K) Pk D : _
k=1 )‘k,min (D,K,N)—o0 1-— (K - ‘T) (50)

(46) 11—z
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Fig. 4. Average SINR (dB) versus normalized dimensibassuming allusers Fig. 5. Average SINR versus blocklength for single-user adaptation with

adapt.N = 128 andSNR = 8 dB.
wherek/K — z, so that

1

lim
(D,K,N)—oo K

K—D — 2
1 D
~ o2 li p 1— ) ——
It R K ; 1-k/K

x K(1-k/K)
2
1-D 3
_ D
=02 2K/ 1— 1—2z)d
o+ 2K | — | t-o)de
_ D2 _ 8 =
=ai+K<1—7+2D—§\/B>. (51)
We define the averaged SINR over all users as
K
’7 = K 2
Ko2 43, P P pi]
B K
Ko + i, P PiP{Ips
K
= (52)
3

nonadaptive, random interferers, and ideal chan@éls= 32, X' = 24, and
SNR = 8dB.

improvement in received SINR relative to single-user adapta-
tion in the presence of random interferers.

VI. NUMERICAL RESULTS

In this section, we present numerical results, which illustrate
the relative performance of the algorithms presented in the pre-
ceding sections. We first show convergence results for adap-
tive transmitter-receiver algorithms. Fig. 5 shows received SINR
versus blocklength (number of received vectors) for single-user
adaptation with different transmitter ranksand MF receivers.

As derived in Section V, the vector of combining coefficients
«ay, for the desired user is the eigenvector corresponding to the
smallest eigenvalue di‘,{?Rka, whereR;, is replaced b)f{k

given by (24), the signatures for the interferers are randomly as-
signed, and*/F,, = L. These results are for an ideal channel
(Hy = I) with K = 24, N = 32, background SNR /o2 = 8

dB, and are averaged over the signatures of the interferers. As
the blocklength becomes large, the performance corresponds to
the large system results shown in Fig. 3. These curves show that
a substantial improvement in performance is obtained with a
blocklengthn = N.

The large system SINR for any particular user optimized OVerFig. 6 shows averaged symbol error rate versus blocklength

the signatures is then lower bounded as

for joint transmitter-receiver adaptation when all users adapt in

A% > lim 1 the presence of multipath. In this cagé,= 12, N = 16, and
T (DK N)—oo §/K the backgroun®dNR = 10 dB. For each user, the number of
1 pathsL; = 3. The channel coefficients (elementslof, &k =
~s - — — —. (53) 1 K ind d | . .
02 +K( D, 9p_ 8 D) ,-- ., K)areindependent complex Gaussian random variables,
™ 3 3 and the channel vectols, are normalized so that the average
Fig. 4 shows averaged SINR versus normalized dimenSionpower is unity, i.e.,E[||hx||?] = 1. For these results and the
for two different loadsX’ = 1/2 and3/4. The background SNR following results, the power constraifip, || = 1 applies to all
1/02 = 8 dB. Simulated curves are shown for group optimizassersk = 1,..., K.

tion with V. = 128 averaged over random signatures. These Results are shown for both adaptive LS and MF receivers.
are compared with the large system expression (53). The lageecifically, the LS receiver filter for usek minimizes
system SINR is always within 1 dB of the simulated resulty,""_, w"~%||bx(¢) — c/Tr(i)||* at each iteratiom, and is given
and accurately predicts the for which full-rank performance by

is nearly achieved. Comparing these results with the single-user

results in Fig. 3 shows that group adaptation gives a 1 to 2 dB

ck(n) = R™Y(n)pr(n) (54)
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10° T ; : T . 10° T T ; T ;
N O Fixed Tx; LS Rx
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Average Symbol Err Rate/user
=
T
Average Symbol Err Rate
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Fig. 6. Average symbol error rate versus blocklength (number of trainiffj)g. 7. Average symbol error rate versus blocklength (number of
samples) with group adaptatioN. = 16, K’ = 12, andSNR = 10dB. training samples) for single-user adaptation with nonadaptive interference.
N =16, K = 12, andSNR = 10dB.

whereR(n) = 37, w™~r(i)r¥ (i) is the sample covariance i l . ;
matrix, pr(n) = Y., w" bk (¢)r(é) is theky, user steering ‘ :
vector, andv is an exponential weight. The MF assumes knowl-
edge of the desired user’s channel, whereas the LS receiver ==
quires a training sequence. These results are for alternating ¢ "
timization, in which the optimal transmitter is computed for the, 4+~
given receiver, and is instantaneously transmitted back to ti
transmitter at each iteration. .
The average error rate shown in Fig. 6 is computed by a#
suming that the residual interference plus noise at the output §
the filter is Gaussian. The error rate is averaged over all user

mbol E

and over many runs with different random initializations for the o= | & Fred T e x
signaturesp;, and channel vectolls;, k = 1, ..., K. Aninitial 7 Invicually Optmized T. MMSE Fix
. . . . . — Collectively Optimized Tx; MMSE Rx
blocklength equal to the filter dimension is accumulated to avoi #_Single User Bound
illconditioning of the sample covariance matrix. The single-use
bound shown corresponds to the performance of a single-us °; 5 : . 5 prS T
system with an MMSE receiver. Background SNR

Fig. 6 shows th_at _CF)lleCt'Ve adaPta“O” conyerges S'gn_'&Tg. 8. Average symbol error rate versus background SNR for a single user
cantly faster than individual adaptation. Collective adaptatiavith optimized signature in the presence of nonadaptive interferéice. 16

approaches the single-user bound as the blocklength increadgdh = 12.
Individual adaptation is unable to achieve this steady-state
performance, although it offers a substantial improvement lrased on (25), converges slightly faster than adaptation with
performance relative to receiver adaptation alone. We obsetkie LS receiver initially, but has slightly worse steady-state per-
that collective transmitter adaptation performs better with tHermance. We also observe that individual adaptation performs
MF receiver than with the LS receiver. This is because theetter than collective adaptation. This is because collective
LS receiver has difficulty tracking the time-varying MMSEoptimization penalizes interference to other users, which
solution (due to the time-varying signatures), whereas the MBmpromises the performance of the desired user. For these
is instantaneously tracked. Given the channels for all users, thsults, the steering vector for the LS receiver with signature
jointly optimal transmitters and MF receivers can be computediaptation iy, instead ofp,. This change was observed to
iteratively offline, so that for the MF receiver, the abscissianprove convergence. Also, the single-user performance curve
in Fig. 6 represents the number of iterations, rather than tberresponds to the jointly optimized transmitter-receiver pair
number of training samples received. Results for individualith K = 1.
adaptation with the tracking MF are not shown, since only a Fig. 8 shows asymptotic bit error rate (BER) versus SNR
modest performance gain is obtained relative to a nonadaptiee the different single-user optimization schemes considered.
transmitter, as explained in Section IIl. “Asymptotic” means that the block size tends to infinity so that
Fig. 7 shows convergence plots for single-user adaptatitire jointly optimal MMSE transmitter-receiver combination is
with multipath. The system parameters are the same as &sssumed. At an error rate of 19, individual optimization with
Fig. 6. We observe that individual adaptation with the MEhe MMSE receiver is approximately 1.5 dB away from the
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o’ S SRR APPENDIX |
PROOF OFTHEOREM
e We need to show that agg — 0, the condition (33)—(34)

10 S T g ; < reduces to (23). Applying the matrix inversion lemma to the
L e MMSE filter for userk gives
3 B N el
5 Tl T ¢ = R7H;p;
£l T : L R7TH;pa
5 | S =R, 'Hp, — M2 kPR (55)
g S 1+m
2 : T wheren;,; = pf HYR, ' H;p; andn,, = 7 . We can, there-

LN e g&eﬁﬁ?ﬁﬁ% Rx P < 3 fore, write

i Ry P AR — M R-UH
% Singie User Bouns ¢ oo’ =R, "Hpip; Hy Ry — Tt - Ry "Hipipy
) O S SR SR S B HIR — L RAAH, p, pHIR
B 1 2 3 4 5 6 7 8 9 10 X By 1+ m b +PRPL ! k
Background SNR | | 2
YLK -1 HytHp -1
Fig. 9. Average symbol error rate versus background SNR with group + (1 +77k)2Rk Hiprpi Hy Ry (56)
optimization of signaturesV = 16 and K’ = 12.
and
C,Cf =

single-user bound. A substantial performance gain is obtained Z H_R1p PIR !
relative to receiver adaptation alone. As expected, the curve p kclcl T SRR
corresponding to collective optimization with the MMSE > 1
receiver converges to the individual optimization curve as the — R, 'P,PYR, 'Hypip H R, !
background SNR increases. Collective optimization with the 1 +177k
MF receiver performs slightly better than collective optimiza-  _ R 'H,prpl HIR,; ‘P, PR,
tion with the MMSE receiver at low SNRs, and performs only L+ L
slightly worse than the MMSE receiver at high SNRs. Fig. 9 py H//R; 'PP/'R; 'Hyp: R-'H HEHAR-!
shows asymptotic BER versus SNR for the different schemes (1+m)? ko RPEPE Hi
considered when all users adapt. All adaptive transmitter-re- (57)

ceiver algorithms perform close to the single-user bound. o i ) i ) )
Combining this expression with (33)—(34) and rearranging gives

1
VIl. CONCLUSION Qipr = (F{Fy) FiHY

2 2
_Mthods for reduce_d-rank joint transmitter-receiver opti- {[1 — 1;#5’&} REI + - In RZQ} HFrar  (58)
mization for reverse link DS-CDMA have been presented. + 7 +

By varying the number of combining coefficients, or degre%hereék — pIHIR:2H,py, and the fact thalP, P =
of freedom at the transmitter, steady-state performance RN _ 521 has lBeeIFl uéed. ’ »

be traded off against the amount of data needed to obtainAS o2 — 0, this condition becomes equivalent to (23). We

accurate estimates of the transmitter coefficients. Our resylts, 4k that lettings2 = 0 causes technical problems in that

indicate that adapting relatively few transmitter coeﬁicientﬁk is likely to becorrr;e singular. However, the limit 6, p;, as

can lead to a substantial improvement in performance, relatiye _,  is still well-defined.

to one-dimensional power control with an MMSE receiver. nSuppose now thail, = T. Writing the covariance matrix as
Algorithms for both individual and collective optimizationg —_ VAVH where the columns o¥ are the normalized

of transmitter signatures were presented in the presencesffenvectors and is the diagonal matrix of eigenvalues, the
multipath. In general, when all users optimize signatures, th8|_rank condition (33) becomes

resulting fixed points are different, although numerical results
show that for the cases considered, individual optimizatio L+onbi 1 Tn a2 H
S e Qupr =V (1-—257 ) A7 + A2 VD,
performs nearly as well as collective optimization. The con- 1+ 1+ m
vergence of adaptive transmitter-receiver algorithms were also = VyPk (59)

illustrated numerically. Our results show that group adaptatiqnhis implies thatp, must be an eigenvector &, It remains

with individual or local cost functions converges more slowl)£|0 show that to minimize the sum MSE. this eigenvector must
than group adaptation with a collective, or global, cost function, . ) ' 9
rrespond to the minimum eigenvalue.

Also, an adaptive receiver may not perform as well as an Suppose th is the eigenvectos. associated with eigen-
when the transmitted signatures are time-varying. A chal- PP by, 9 ! 9

lenging topic for further study is the convergence and trackir\llgalue)‘l' Then from (59) we have that

properties of jointly adaptive transmitter-receiver algorithms in y <1 1+ o§6k> 1 a2 1 (60)
L — —_— 5

cellular and peer-to-peer environments. T+92 ) N 14m A
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Now 7, = PR 'pr = 1/\ and6, = piIR; *pr = 1/)%,

[17]

so that this simplifies to

Clearly, 14 is a decreasing function of; so that choosing the
minimum A; maximizesy;,, which in turn minimizes the sum

1 2

_ L (18]
_)\1(1+)\1) 1—‘,—)\1'

Vi (61)
[19]

(20]

MSE.

(1]

(2]

(3]

(4]
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