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Signature Sequence Adaptation for
DS-CDMA With Multipath

Gowri S. Rajappan and Michael L. Honig, Fellow, IEEE

Abstract—Joint transmitter-receiver adaptation is studied
for the reverse link of a direct sequence-code division multiple
access system with short signature sequences. The signature for
a particular user is computed at the receiver and transmitted
back to the transmitter via a feedback channel. A reduced-rank
transmitter adaptation scheme is presented in which the signature
is constrained to lie in a lower dimensional subspace. This allows
a tradeoff between system performance and the number of
estimated parameters. Analytical and simulation results show that
adaptation of relatively few transmitter coefficients can lead to
significant performance improvements. Adaptive algorithms are
derived for estimating the transmitter coefficients in the presence
of multipath. We consider both collectiveoptimization, in which
the users adapt together to improve a global system performance
criterion, and individual optimization, in which the signature for
a particular user is adapted to optimize individual performance.
Numerical results are presented, which show that both individual
and collective joint transmitter-receiver adaptation can effectively
preequalize the channel and avoid interference at high loads.

Index Terms—Code division multiple access, interference avoid-
ance, transmitter optimization.

I. INTRODUCTION

T HE USE OF SHORT, or repeated signature sequences
in a direct sequence (DS)-code division multiple access

(CDMA) system enables the use of adaptive techniques for
suppression of multiple access interference (MAI) [1]. In
addition, short codes also enable the possibility of selecting
a user signature sequence toavoid interference [2]–[7], [20],
[21]. Here, we present and evaluate the performance of adaptive
transmitter-receiver algorithms for reverse link CDMA in the
presence of multipath.

In general, adaptation of a user signature sequence in the pres-
ence of multipath serves two purposes: preequalization of the
channel and interference avoidance. There has been increasing
interest in preprocessing techniques for DS-CDMA systems,
partly motivated by the possibility of shifting the bulk of pro-
cessing from the mobile to the base station on the forward link.
For example, “pre-Rake” and waveform design schemes have
been proposed to compensate for the effect of the channel prior

Manuscript received December 15, 2000; revised September 10, 2001.
This work was supported by the Army Research Office (ARO) under Grant
DAAD19-99-1-0288, and was presented in part at VTC’99, Houston, TX, and
Milcom’00, Los Angeles, CA. This work was completed while G. S. Rajappan
was with the Department of ECE, Northwestern University.

G. S. Rajappan was with the Department of Electrical and Computer Engi-
neering, Northwestern University, Evanston, IL 60208 USA. He is now with
Aware Inc., Bedford, MA 01730-1432 USA (e-mail: gowri@aware.com).

M. L. Honig is with the Department of Electrical and Computer Engineering,
Northwestern University, Evanston, IL 60208 USA (e-mail: mh@ece.nwu.edu).

Publisher Item Identifier S 0733-8716(02)00999-X.

to transmission in [8]–[10]. Transmitter precoding for the for-
ward link is presented in [11].

Additional performance enhancements may be possible by
combining transmitter preprocessing with adaptive receivers.
Joint optimization of a user signature sequence with a linear
adaptive receiver was presented in [2]. No multipath is assumed
in that work, so that the transmitter signature sequence is
matched to the receiver filter. It is shown that continuous
adaptation achieves single-user performance for the loads con-
sidered. Joint transmitter-receiver optimization for forward link
CDMA in the presence of multipath, based on the minimum
mean square error (MMSE) performance criterion, is described
in [3]. Selection of an ensemble of signature sequences that
minimize total interference power with matched filter (MF)
receivers is considered in [5] and [6]. The design of signature
waveforms to optimize bandwidth efficiency is studied in [12].
Earlier work on joint MMSE transmitter-receiver optimization
for the multiple access channel with linear dispersive channels
is presented in [13]. Other related work on siggnature optimiza-
tion for CDMA is presented in [20]–[23]

A drawback associated with transmitter adaptation in general
is the feedback bandwidth required, which increases with the
number of transmitter coefficients to be estimated. We present
a “reduced-rank” transmitter adaptation scheme, in which each
signature sequence is constrained to lie in a lower dimensional
subspace, spanned by some orthogonal basis. The weights for
the basis are then selected to optimize the performance criterion,
namely output signal-to-interference-plus noise ratio (SINR).
Different orthogonal bases are assigned to different users. Se-
lection of the subspace dimension allows a tradeoff between the
number of parameters to be estimated and steady-state perfor-
mance. A subspace dimension of one corresponds to conven-
tional power control. Numerical results presented for a syn-
chronous CDMA system show that relatively few combining
coefficients can provide a substantial improvement in perfor-
mance.

Algorithms for group transmitter-receiver adaptation in the
presence of multipath are presented for different scenarios.
Specifically, we distinguish betweenindividual andcollective
adaptation. Individual adaptation refers to the scenario in which
each user adapts to optimize his/her own performance without
regard to the performance of other users in the system. This is
motivated by a peer-to-peer network where a receiver may not
have access to parameters (i.e., channels and receivers filters)
for other users. Collective adaptation refers to the scenario in
which each user adapts to optimize an overall system objective
function (e.g., mean square error (MSE) summed over all
users). This is more appropriate for the reverse link of a cellular
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Fig. 1. Discrete-time baseband model for joint transmitter-receiver adaptation.

system. For ideal channels without multipath, it has been
shown in [5] and [6] that group adaptation with individual,
or local MSE cost functions also optimizes a collective, or
global cost function (namely, sum MSE). Here, we show that
individual and collective adaptation generally do not give the
same performance with multipath, although numerical results
show that individual adaptation performs nearly as well as
collective adaptation for the cases examined.

Numerical results are presented, which illustrate the conver-
gence performance of adaptive transmitter-receiver algorithms
as a function of the estimation window size (i.e., number of re-
ceived observations). Both single-user adaptation, in which the
interferers do not adapt, and group adaptation, in which all users
adapt, are considered. These results show that the individual al-
gorithms converge more slowly than the collective algorithms.
Also, adaptive receivers based on a least squares performance
criterion generally perform worse than the nonadaptive Rake,
or MF receiver, since the adaptive receiver introduces tracking
error when the signatures are time-varying.

The reverse link CDMA model is presented in Section II. Al-
gorithms for individual and collective adaptation are considered
in Sections III and IV, respectively. Large system performance
results for reduced-rank transmitter adaptation in the absence
of multipath are presented in Section V. Numerical results illus-
trating the performance of the proposed schemes in the presence
of multipath are presented in Section VI.

II. SYSTEM MODEL

We assume a synchronous DS-CDMA system withusers
and processing gain . The received vector is given by

(1)

where is the th symbol transmitted with
is the signature, and is the amplitude, all for

user . The matrices represent the channel for user, to
be described, and is the white Gaussian noise vector with
covariance matrix .

The spread symbols for userare passed through the dis-
crete-time channel with impulse response given by the
vector

(2)

where represents the number of paths, assumed to be spaced
at the chip duration , where is the symbol duration
and . The channel matrices in (1) are then

(3)

where is shifted down or up by positions, and
the vacant positions are filled with zeros. represents the con-
tribution from symbols , and represents
the intersymbol interference (ISI) from symbols

. Both channel matrices are , and is sparse
if .

In what follows, we will assume that the channel delay
spreads are small compared with the symbol duration and,
hence, neglect ISI (i.e., ) in order to simplify the
model. We, therefore, use to denote the channel matrix for
user . The necessary conditions for the optimal signatures pre-
sented here can be extended to asynchronous CDMA with ISI
by expanding the observation window for the received signal.
This complicates the derivations while adding little insight to
the synchronous case, so that only synchronous CDMA with
negligible ISI is considered throughout the paper. Related work
on group signature optimization for asynchronous CDMA with
ideal channels is presented in [14]. It is shown there that when
the signatures are selected optimally, the MMSE receiver is an
MF, which spans only a single symbol interval.

Fig. 1 shows a block diagram of a single-user communica-
tions system with joint transmitter-receiver adaptation. The re-
ceived signal from (1) is the input to a linear filter. We con-
sider two types of filters: 1) a coherent Rake filter (i.e., max-
imum ratio combiner) or MF given by

(4)

and 2) an MMSE filter given by

(5)

where

(6)

is the received covariance matrix.
Transmitter optimizationor adaptationfor user refers to se-

lecting to optimize a cost function such as MSE or SINR at
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the output of . More generally, agroupof users may adapt to
optimize acollectiveperformance criterion, such as sum MSE
over all users. We will consider “reduced-rank approximations”
to the optimal [15] by constraining to lie in a -dimen-
sional space where . That is

(7)

where is an matrix whose columns are the basis
vectors for the user, and the elements of the vector

are the combining coefficients.
Varying the subspace dimensionallows a tradeoff between

system performance and the number of adaptive parameters at
the transmitter. Specifically, selecting is equivalent to
optimizing directly (i.e., taking ), assuming that the
given is full-rank. Selecting corresponds to conven-
tional power control. As increases from one to , the perfor-
mance improves in a stationary environment, but more informa-
tion is required at the transmitter, which further constrains the
mobile speeds for which transmitter adaptation is beneficial.

We will assume that the set of basis vectorsare random,
and that the random elements are selected from a binary distri-
bution. For example, one possibility is to choose the elements
of independently, so that is a linear combination of
independent random signatures. For purposes of computing the
optimal combining vector, it is convenient for the columns of
to be orthogonal. This can be easily accomplished by selecting
a single random signature sequence , the first column of

, and generating successive columns ofby masking with
different orthogonal sequences. For example, consider a system
with and subspace dimension . We might
choose

(8)

so that the columns of are orthogonal. In this case,
the assigned signature sequence for each user is di-
vided into two sections, which are independently weighted by
the components of . For general and , where is an
integer, we can choose the columns ofto be nonoverlapping
segments containing elements of an assigned random se-
quence.

III. I NDIVIDUAL OPTIMIZATION

In this section and the next, we present algorithms for joint
transmitter-receiver optimization. “Adaptive” means that the
transmitter and receiver parameters can be estimated directly
from the received data. In what follows, we will assume that the
channel coefficients are known, since these can be estimated
from a pilot signal.

We first consider individual optimization, in which each user
attempts to optimize individual performance, subject to a con-
straint on the transmitted power, with no regard to the perfor-
mance of the other users in the system. This is a suitable opti-
mization model for a peer-to-peer network, in which the receiver
typically does not possess information about the interferers.

A. Alternating Updates

We first optimize the signature sequence for user, assuming
that the receiver is fixed. Joint transmitter-receiver optimiza-
tion is then achieved by alternating the transmitter update with
an update for the receiver filter. Given the energy constraint

, the cost function is

(9)

where

(10)

is the soft decision at the output of the user receiver and
is a Lagrange multiplier. Setting gives the

necessary condition for optimality

(11)

(12)

where , the last equality
follows from the matrix inversion lemma, and the Lagrange
multiplier is selected to satisfy the energy constraint. The
full-rank solution (i.e., ) is

(13)

where is a scalar. In this case, the reduced-rank solution
is simply the projection of the full-rank solution onto the

space spanned by the columns of. Joint transmitter-receiver
optimization can be accomplished by successively applying the
preceding expression with the MMSE update for the receiver
filter (5) until convergence of the cost function (desired user
MSE) is achieved.

We observe that individual, alternating adaptation with the
MF does not avoid interference. Specifically, for , the
transmitter update (12) becomes . That is, the trans-
mitter is matched to the receiver, which gives a fixed point for
any initial receiver filter . In contrast, selecting according
to (5) and combining with (13) gives

(14)

where is a constant. To minimize the MSE, should be the
eigenvector of corresponding to theminimumeigenvalue .
(See, also, [5] and [6], where the same condition is derived.)

Substituting (12) into (9) yields

(15)

The term is MAI, which is
independent of . Hence, we conclude that with fixed receiver
filters, individual transmitter adaptation does not avoid the
multiuser interference, unlike collective adaptation to be
described in Section IV.



RAJAPPAN AND HONIG: SIGNATURE SEQUENCE ADAPTATION FOR DS-CDMA WITH MULTIPATH 387

B. Joint Optimization: MMSE Receiver

Rather than alternate between transmitter and receiver opti-
mization, here we jointly optimize the signature sequence for
user with the MMSE filter (5). Let

(16)

be the received SINR where is the interference plus noise
covariance matrix for user given by

(17)

We wish to select to maximize

(18)

It is easily shown that maximizing the SINR is equivalent to
minimizing the MSE. That is, both criteria give the same op-
timized signature. Here, we choose SINR since the associated
derivation is somewhat simpler. Applying the matrix inversion
lemma to gives

(19)

and substituting (19) in (18) gives

(20)

Maximizing with respect to yields the following necessary
condition:

(21)

That is, the optimal is the eigenvector of
that maximizes the SINR .

Substituting (21) into (20) reveals that the desired eigenvector
corresponds to the maximum eigenvalue. The full-rank
solution satisfies the necessary condition

(22)

In the absence of multipath, we have , and (22) im-
plies that is the eigenvector corresponding to the maximum
eigenvalue of . The optimal signature sequence, therefore,
lies in the subspace containing the least interference plus noise.
In a single-user system with multipath, we have ,
so that is chosen as the eigenvector corresponding to the
maximum eigenvalue of . This amounts to aligning the
user’s transmissions along the strongest channel component. In
general, in the presence of both multipath and multiuser inter-
ference, the condition (22) optimizes the tradeoff between ex-
ploiting the strongest channel components and avoiding inter-
ference.

We observe that a different, but equivalent, form for the nec-
essary condition for optimality is obtained by substituting the
MMSE receiver filter, given by (5), into the MMSE transmitter
condition (12). Namely

(23)

where is again the maximum eigenvalue of the associated ma-
trix. The condition (23) is the same as (22) except thatin (22)
is replaced by . The equivalence between (22) and (23) can
be established directly by applying the matrix inversion lemma
(19)–(23). Since depends on , the condition (22) is more
convenient to solve in practice.

The condition (23) shows that when the signature is optimized
in the presence of multipath, the MMSE receiver is generallynot
the same as the MF. Furthermore, when , (23) states that
the MF is the projection of the MMSE receiver onto the space
spanned by the columns of .

The optimal signature can be adaptively estimated from
(22) by replacing by the corresponding channel estimate

, and by estimating as

(24)

C. Joint Optimization: MF Receiver

Here, we consider joint optimization of the desired user
spreading code with the MF receiver given by (4). Although
joint optimization with the MMSE receiver should have better
steady-state performance, joint optimization with the MF
receiver is observed to provide superior transient performance
in an adaptive mode. Taking the gradient of the cost function

in (18) with respect to gives the necessary condition

(25)

where . For this reduces to

(26)

and . The optimal is, therefore, an eigen-
vector of a matrix

(27)

where the scalars (and the associated eigenvalue) depend on
.
For a single-user system, , and

where is a scale factor, and it is easily
verified that the optimal choice for is the eigenvector cor-
responding to the maximum eigenvalue of. If the channel
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is ideal, i.e., , and there are interferers present, then
, and it is easily verified

that the optimal is the eigenvector corresponding to the min-
imum eigenvalue of projected onto the space spanned by the
columns of .

Solving (25) for general and does not appear to be
straightforward. In addition, there can be multiple solutions,
corresponding to local optima of the objective function. An
iterative algorithm for solving (25) is given as follows. 1) Select
a random initialization for . 2) Compute the matrix .
3) Select as the eigenvector of that maximizes the
SINR . 4) Iterate steps 2) and 3) until convergence. 5) Re-
peat 1)–4) for different random initializations . We have
observed that occasionally the iteration in step 4) does not con-
verge. However, numerical results indicate that steps 1)–4) typ-
ically computes a , which achieves near single-user perfor-
mance. We remark that the eigenvector in step 3) does not nec-
essarily correspond to the maximum or minimum eigenvalue.

IV. COLLECTIVE OPTIMIZATION

We now consider collective optimization of signatures, in
which a single user or group of users adapts to improve a global
performance criterion, namely, MSE summed over all users.
Collective optimization penalizes any additional interference to
other users as a result of the change in signature sequence, in
contrast to individual optimization. Here, we assume that the
receiver for each user has knowledge of the channels and re-
ceivers forall users being adapted. Collective optimization is,
therefore, appropriate for the reverse link of a DS-CDMA cel-
lular system. That is, the signatures for all users are computed at
the base station, and the transmitter coefficients (or coefficient
updates) are fed back to the mobiles over the forward link.

A. Alternating Updates

We wish to minimize the sum MSE over all users subject to
the energy constraints . The cost
function is, therefore

(28)

where the decision vector is the
matrix of receiver filters, and the received vector is given
by (1). Minimizing with respect to gives

(29)

Joint optimization of the transmitter and receiver can be accom-
plished by iterating the preceding expression with an update for
the receiver until convergence of the cost function given by (28)
is achieved. For each transmitter update, the Lagrange multi-
plier must be selected via a numerical search to satisfy the en-
ergy constraint. As with individual optimization, convergence
is guaranteed with the MMSE receiver, but is more difficult to
establish with the MF receiver, since the MF receiver does not
necessarily reduce the MSE at each iteration.

Substituting the optimality condition (29) into the cost func-
tion (28) yields

(30)

where

(31)

is the MSE for user with receiver filter , and is given by
(29).

We emphasize that collective transmitter optimization, repre-
sented by (29), requires knowledge of the receivers and channels
for all demodulated users. In contrast, individual transmitter
adaptation, represented by (12), requires knowledge of the re-
ceiver and channel for only the desired user.

B. Joint Optimization: MMSE Receiver

The sum MSE cost function with a power constraint, as-
suming the MMSE receiver filter (5) for each user, can be
written as

(32)

where the matrix is the receiver matrix
without column , and the columns of the matrix

are the effective signatures (i.e., channel matrix times trans-
mitted signature) of all users except user. Minimizing this cost
function with respect to gives

(33)

where

(34)

and

(35)

Of course, this condition can also be derived by combining the
receiver condition (5) with the transmitter condition (29). We
remark that in contrast with individual optimization, cannot
generally be replaced by .
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Substituting (33) into the sum MSE part of the cost function
given by (32) gives

(36)

where

(37)

does not depend on . We, therefore, conclude that the sum
MSE is minimized by selecting as the eigenvector of
corresponding the maximum eigenvalue.

The condition (33) would be straightforward to solve numer-
ically except that depends on through . Consequently,
the numerical results in the next section were generated by iter-
ating (5) and (29), instead of trying to solve (33)–(35) directly.

Of course, the condition (33)–(34) is not equivalent to the
analogous condition for single-user optimization (12). Consider
group adaptation, in which all users jointly optimize their signa-
ture sequences with an MMSE receiver. We define afixed point
for collective or individual optimization as a set of signatures

, which satisfy the corresponding
conditions for optimality (33)–(34) or (12), respectively, where
the columns of in (34) are the MMSE receivers for users

.
Theorem: As , the set of fixed points for collective

optimization converge to the set of fixed points for individual
optimization.

The proof is given in the Appendix I. The theorem states
that at high signal-to-noise ratios (SNRs), individual optimiza-
tion can provide a solution which is close to the global op-
timum in the sum MSE sense. We remark that for any
and arbitrary ’s, the fixed points for collective optimization
are not generally the same as those for individual optimization.
However, for the ideal channel , we show in the Ap-
pendix that the individual condition (14) is indeed equivalent to
(33)–(34) with MMSE receivers. This is to be expected, since it
is shown in [16] that with ideal channels, individual optimiza-
tion minimizes the sum MSE cost function.

C. Joint Optimization: MF Receiver

The sum MSE cost function with a power constraint, as-
suming the receiver filter for each user is a MF, as in (4), can
be written as

(38)

where does not depend on . Minimizing with respect to
and rearranging gives

(39)

where

(40)

We remark that combining (4) and (29) also yields the condition
(39), but with adifferentmatrix from that in (40). Namely

(41)

That is, combining (4) and (29) isnot equivalent to min-
imizing the sum MSE cost function (38), and generally
leads to worse performance. Mathematically, the differ-
ence arises from the cross-product term

in (38), which is treated
differently by alternating and joint optimization.

Solving (39) is complicated by the fact that depends on
. An iterative numerical method can again be applied, as was

discussed for individual optimization. We also remark that as in
the individual case, it is unknown which eigenvalue is associated
with the solution eigenvector .

D. Iterative Algorithms for Group Optimization

The necessary conditions for alternating transmitter-receiver
optimization (5) and (29), and the joint optimization condition
(33)–(34) lead to two different iterative algorithms for finding
fixed points for group optimization. Suppose that the users are
initially assigned some arbitrary set of signatures .
Alternating transmitter-receiver optimization implies that the
receivers are updated according to (5) with fixed transmitters,
followed by the signature update (29) with fixed receivers, and
so forth. This is illustrated in Fig. 2. In contrast, the condition
(33)–(34) can be applied successively across users, which is re-
ferred to as “user-by-user” optimization in Fig. 2. Note that the
sum MSE must converge in either case, since it cannot increase
after an update.

Of course, alternating transmitter-receiver and user-by-user
optimization can also be carried out by iterating the individual
necessary conditions (5) and (12), or (23) across users. In that
case, convergence to a fixed point is more difficult to estab-
lish. A user-by-user optimization algorithm without multipath,
based on individual updates, has been presented and analyzed in
[6], [16], [17] where it is referred to asinterference avoidance.
(See, also, [7], which considers interference avoidance in the
context of a single-user dispersive channel.) In [17], a modified
version of interference avoidance is presented which is guaran-
teed to converge to a solution which minimizes the sum MSE.
In the presence of multipath, the condition (22) implies that in-
terference avoidance must be traded off against the benefit of
exploiting the channel eigenvectors with largest eigenvalues.
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Fig. 2. Alternating transmitter-receiver versus user-by-user adaptation.

In general, characterizing the performance of fixed-points as
a function of the user channels, as well as establishing the con-
vergence of group optimization with individual cost functions
to a fixed point in the presence of multipath, remain open prob-
lems. Our experimental results, including the numerical results
in Section VI, indicate that the joint transmitter-receiver opti-
mization algorithms presented here generally converge to the
optimal solution, in the sense of obtaining (near) single-user per-
formance for .

V. LARGE SYSTEM PERFORMANCEWITHOUT MULTIPATH

In this section, we analyze the performance of reduced-rank
transmitter optimization assuming first single-user adaptation
in the presence of nonadaptive interference, and then group
adaptation. To simplify the analysis, we assume ideal channels
without multipath and MF receivers. Although (14) states that
the full-rank MMSE receiver reduces to the MF (see, also,
[14]), the MMSE receiver gives better performance with a
reduced-rank signature. Our approach is to evaluate the large
system performance with randomly assigned signatures as the
dimension , number of users , and processing gain all
tend to infinity with fixed normalized dimension ,
and normalized load . (See, also, [18] which
presents a large system analysis of reduced-rank receivers.)

A. Single-User Optimization

Consider a CDMA system with users in which a single user
adapts his signature to minimize MSE with an MF receiver.

The MSE for user is given by

(42)

where is the matrix obtained from by re-
moving the column (i.e., the user’s signature), and
is the diagonal matrix containing the am-
plitudes of all users except for user. If for
each , then (42) reduces to

(43)

This expression is minimized by choosing to be the
eigenvector corresponding to the minimum eigenvalue of

, which we denote as . The associated SINR
is

(44)

Now suppose that the signatures assigned to the users consist
of independent identically distributed (i.i.d.) binary random
elements. Suppose also that the columns of consist of
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Fig. 3. Average SINR (dB) versus normalized dimension�D assuming only
one user adapts.N = 128 andSNR = 8 dB.

nonoverlapping, equal-length segments of the random signa-
ture assigned to user, as illustrated in (8). Since the length of
each nonzero segment is , and , the nonzero
elements of are . It is easily verified that the
elements of are i.i.d. with mean zero and variance .

We now consider the large system limit ,
and with and , where
and are the normalized dimension and load, respectively. It
is known that the empirical distribution of eigenvalues of the
matrix converges to a deterministic distribution
[19]. The minimum eigenvalue converges to

(45)

so that the large system SINR converges to
.

Fig. 3 shows plots of SINR at the output of the receiver filter
versus normalized dimension for normalized loads

and . Simulated results corresponding to are
compared with the large system results. The background SNR

dB. The simulated results are averaged over random
binary signature sequences. These curves show that for the cases
considered, a normalized dimension results in be-
tween one and two decibels degradation relative to full-rank per-
formance while reducing the number of parameters to be esti-
mated by a half. These results also show close agreement be-
tween the large system and simulated results.

B. Group Optimization

We now analyze the performance of reduced-rank trans-
mitter-receiver optimization when all users optimize signatures.
All users are assumed to transmit with power equal to one, so
that the sum MSE is

(46)

where is the matrix containing the signa-
tures of users , and is the
matrix containing the signatures of users . From
symmetry, it is apparent that the two terms in the summation
in (46) will contribute the same interference in the large system
limit, so that we define

(47)

and note that when the signatures are i.i.d.
We now consider a successive optimization scheme in which

users are added successively in decreasing order, ,
and each user optimizes his signature based on the users
present. The users do not change their signatures as more users
are added, so that this scheme is suboptimal. The performance
of this method, which we can analyze, then lower bounds the
optimal performance. To facilitate the large system analysis,
we will also make the approximation that the elements of the
signatures of the users added before a particular user are i.i.d.

We first observe that for a given , the matrix
has rank less than for

. Consequently, for these users we can
choose so that , and

(48)

Each user added to the system minimizes the
corresponding contribution to the sum MSE in (48). This is
equivalent to individual optimization of given that only
users are present. is, therefore, the eigen-
vector corresponding to the minimum eigenvalue of the matrix

.
Given the preceding optimization procedure, we can write the

sum MSE cost function as

(49)

where is the minimum eigenvalue of the matrix.
Our objective is to evaluate the large system limit of

as . We assume that the columns of
are nonoverlapping segments of a random i.i.d. signature
so that . Each element of is, there-
fore, a randomly weighted sum of elements in a segment of

. The segments corresponding to different
elements are nonoverlapping. In general, these segments are
correlated; however, in what follows, we will assume that the
elements of become i.i.d. as .
Additional numerical experiments have shown that the expres-
sion for SINR, which follows from this assumption, accurately
predicts the performance of the successive optimization
scheme.

With the preceding assumption, we can again apply the re-
sults on the asymptotic eigenvalue distribution of a class of
random matrices presented in [19]. Namely

(50)
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Fig. 4. Average SINR (dB) versus normalized dimension�D assuming all users
adapt.N = 128 andSNR = 8 dB.

where , so that

(51)

We define the averaged SINR over all users as

(52)

The large system SINR for any particular user optimized over
the signatures is then lower bounded as

(53)

Fig. 4 shows averaged SINR versus normalized dimension
for two different loads and . The background SNR

dB. Simulated curves are shown for group optimiza-
tion with averaged over random signatures. These
are compared with the large system expression (53). The large
system SINR is always within 1 dB of the simulated results,
and accurately predicts the for which full-rank performance
is nearly achieved. Comparing these results with the single-user
results in Fig. 3 shows that group adaptation gives a 1 to 2 dB

Fig. 5. Average SINR versus blocklength for single-user adaptation with
nonadaptive, random interferers, and ideal channels.N = 32; K = 24; and
SNR = 8dB.

improvement in received SINR relative to single-user adapta-
tion in the presence of random interferers.

VI. NUMERICAL RESULTS

In this section, we present numerical results, which illustrate
the relative performance of the algorithms presented in the pre-
ceding sections. We first show convergence results for adap-
tive transmitter-receiver algorithms. Fig. 5 shows received SINR
versus blocklength (number of received vectors) for single-user
adaptation with different transmitter ranksand MF receivers.
As derived in Section V, the vector of combining coefficients

for the desired user is the eigenvector corresponding to the
smallest eigenvalue of , where is replaced by
given by (24), the signatures for the interferers are randomly as-
signed, and . These results are for an ideal channel

with , background SNR
dB, and are averaged over the signatures of the interferers. As
the blocklength becomes large, the performance corresponds to
the large system results shown in Fig. 3. These curves show that
a substantial improvement in performance is obtained with a
blocklength .

Fig. 6 shows averaged symbol error rate versus blocklength
for joint transmitter-receiver adaptation when all users adapt in
the presence of multipath. In this case, , and
the background dB. For each user, the number of
paths . The channel coefficients (elements of

) are independent complex Gaussian random variables,
and the channel vectors are normalized so that the average
power is unity, i.e., . For these results and the
following results, the power constraint applies to all
users .

Results are shown for both adaptive LS and MF receivers.
Specifically, the LS receiver filter for user minimizes

at each iteration , and is given
by

(54)
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Fig. 6. Average symbol error rate versus blocklength (number of training
samples) with group adaptation.N = 16;K = 12; andSNR = 10dB.

where is the sample covariance
matrix, is the user steering
vector, and is an exponential weight. The MF assumes knowl-
edge of the desired user’s channel, whereas the LS receiver re-
quires a training sequence. These results are for alternating op-
timization, in which the optimal transmitter is computed for the
given receiver, and is instantaneously transmitted back to the
transmitter at each iteration.

The average error rate shown in Fig. 6 is computed by as-
suming that the residual interference plus noise at the output of
the filter is Gaussian. The error rate is averaged over all users,
and over many runs with different random initializations for the
signatures and channel vectors . An initial
blocklength equal to the filter dimension is accumulated to avoid
illconditioning of the sample covariance matrix. The single-user
bound shown corresponds to the performance of a single-user
system with an MMSE receiver.

Fig. 6 shows that collective adaptation converges signifi-
cantly faster than individual adaptation. Collective adaptation
approaches the single-user bound as the blocklength increases.
Individual adaptation is unable to achieve this steady-state
performance, although it offers a substantial improvement in
performance relative to receiver adaptation alone. We observe
that collective transmitter adaptation performs better with the
MF receiver than with the LS receiver. This is because the
LS receiver has difficulty tracking the time-varying MMSE
solution (due to the time-varying signatures), whereas the MF
is instantaneously tracked. Given the channels for all users, the
jointly optimal transmitters and MF receivers can be computed
iteratively offline, so that for the MF receiver, the abscissa
in Fig. 6 represents the number of iterations, rather than the
number of training samples received. Results for individual
adaptation with the tracking MF are not shown, since only a
modest performance gain is obtained relative to a nonadaptive
transmitter, as explained in Section III.

Fig. 7 shows convergence plots for single-user adaptation
with multipath. The system parameters are the same as for
Fig. 6. We observe that individual adaptation with the MF,

Fig. 7. Average symbol error rate versus blocklength (number of
training samples) for single-user adaptation with nonadaptive interference.
N = 16;K = 12; andSNR = 10dB.

Fig. 8. Average symbol error rate versus background SNR for a single user
with optimized signature in the presence of nonadaptive interference.N = 16

andK = 12.

based on (25), converges slightly faster than adaptation with
the LS receiver initially, but has slightly worse steady-state per-
formance. We also observe that individual adaptation performs
better than collective adaptation. This is because collective
optimization penalizes interference to other users, which
compromises the performance of the desired user. For these
results, the steering vector for the LS receiver with signature
adaptation is , instead of . This change was observed to
improve convergence. Also, the single-user performance curve
corresponds to the jointly optimized transmitter-receiver pair
with .

Fig. 8 shows asymptotic bit error rate (BER) versus SNR
for the different single-user optimization schemes considered.
“Asymptotic” means that the block size tends to infinity so that
the jointly optimal MMSE transmitter-receiver combination is
assumed. At an error rate of 10, individual optimization with
the MMSE receiver is approximately 1.5 dB away from the
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Fig. 9. Average symbol error rate versus background SNR with group
optimization of signatures.N = 16 andK = 12.

single-user bound. A substantial performance gain is obtained
relative to receiver adaptation alone. As expected, the curve
corresponding to collective optimization with the MMSE
receiver converges to the individual optimization curve as the
background SNR increases. Collective optimization with the
MF receiver performs slightly better than collective optimiza-
tion with the MMSE receiver at low SNRs, and performs only
slightly worse than the MMSE receiver at high SNRs. Fig. 9
shows asymptotic BER versus SNR for the different schemes
considered when all users adapt. All adaptive transmitter-re-
ceiver algorithms perform close to the single-user bound.

VII. CONCLUSION

Methods for reduced-rank joint transmitter-receiver opti-
mization for reverse link DS-CDMA have been presented.
By varying the number of combining coefficients, or degrees
of freedom at the transmitter, steady-state performance can
be traded off against the amount of data needed to obtain
accurate estimates of the transmitter coefficients. Our results
indicate that adapting relatively few transmitter coefficients
can lead to a substantial improvement in performance, relative
to one-dimensional power control with an MMSE receiver.

Algorithms for both individual and collective optimization
of transmitter signatures were presented in the presence of
multipath. In general, when all users optimize signatures, the
resulting fixed points are different, although numerical results
show that for the cases considered, individual optimization
performs nearly as well as collective optimization. The con-
vergence of adaptive transmitter-receiver algorithms were also
illustrated numerically. Our results show that group adaptation
with individual or local cost functions converges more slowly
than group adaptation with a collective, or global, cost function.
Also, an adaptive receiver may not perform as well as an MF
when the transmitted signatures are time-varying. A chal-
lenging topic for further study is the convergence and tracking
properties of jointly adaptive transmitter-receiver algorithms in
cellular and peer-to-peer environments.

APPENDIX I
PROOF OFTHEOREM

We need to show that as , the condition (33)–(34)
reduces to (23). Applying the matrix inversion lemma to the
MMSE filter for user gives

(55)

where and . We can, there-
fore, write

(56)

and

(57)

Combining this expression with (33)–(34) and rearranging gives

(58)

where , and the fact that
has been used.

As , this condition becomes equivalent to (23). We
remark that letting causes technical problems in that

is likely to become singular. However, the limit of as
is still well-defined.

Suppose now that . Writing the covariance matrix as
, where the columns of are the normalized

eigenvectors and is the diagonal matrix of eigenvalues, the
full-rank condition (33) becomes

(59)

This implies that must be an eigenvector of . It remains
to show that to minimize the sum MSE, this eigenvector must
correspond to the minimum eigenvalue.

Suppose that is the eigenvector associated with eigen-
value . Then from (59) we have that

(60)
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Now and ,
so that this simplifies to

(61)

Clearly, is a decreasing function of so that choosing the
minimum maximizes , which in turn minimizes the sum
MSE.
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