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Performance of Coded DS-CDMA With
Pilot-Assisted Channel Estimation and Linear

Interference Suppression
Wayne G. Phoel, Member, IEEE,and Michael L. Honig, Fellow, IEEE

Abstract—We consider a direct sequence (DS-) code division
multiple access (CDMA) system with orthogonally multiplexed
pilot signals and minimum mean squared error (MMSE) data
and channel estimation. Both flat and frequency-selective fading
channels are considered. Large system analysis is used to optimize
the pilot-to-data power ratio (PDR) and the code rate for a fixed
bandwidth expansion. Specifically, the PDR is selected to minimize
the probability of error subject to a constraint on transmitted
power. When the MMSE filter estimates the channel of the
desired user, but averages over the channels of the interferers
(corresponding to an adaptive filter in moderate to fast fading),
the optimal PDR is less than that for the matched filter (MF).
That is, the MMSE filter benefits from allocating more power to
the data. When the MMSE filter directly incorporates estimates
of all users’ channel coefficients, the optimal PDR is greater than
that for the MF. System performance as a function of code rate is
characterized through both probability of error and cutoff rate.
The optimal code rate for the MMSE receiver is generally higher
than that for the MF, and increases with load and 0. In the
presence of fading, and with channel estimation, the optimal code
rate approaches zero for both MMSE and MF receivers, but the
MMSE filter is more robust with respect to a suboptimal choice of
code rate.

Index Terms—Code division multiple access (CDMA), fading
channels, minimum mean squared error (MMSE) estimation.

I. INTRODUCTION

W IDEBAND direct-sequence (DS-) code division mul-
tiple access (CDMA) with pilot-assisted coherent

detection has been proposed as the basis for next generation
cellular systems [1], [2]. In this paper, we study the coded per-
formance of the linear minimum mean squared error (MMSE)
receiver with pilot-assisted channel estimation, and compare it
with the conventional matched filter (MF), or coherent RAKE
receiver. Specifically, each user transmits a known pilot signal
spread orthogonally to the data for the purpose of channel
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estimation. Given a fixed transmitted power constraint, the
system performance depends on how the power is split between
the pilot and data signals. We also fix the bandwidth expansion
and study the tradeoff between error control coding and random
spreading.

Our analytical approach is to evaluate the large system error
probability, in which the processing gain and the number of
users approach infinity with fixed ratio [3]. We extend
prior analyses to evaluate system performance when orthogo-
nally multiplexed pilot signals are used for channel estimation
in the presence of multipath fading. Related work on the perfor-
mance of the MMSE receiver in the presence of frequency-se-
lective fading and with imperfect channel estimation has been
presented in [4]. Our model differs from the one in [4] in that we
include orthogonally multiplexed pilot signals. In addition, our
focus is on single-user receivers which average over the chan-
nels of the interferers (see [5]). A comparison with simulation
results shows that this analysis accurately predicts the perfor-
mance of finite systems of interest.

Optimization of the pilot-to-data power ratio (PDR) has
previously been studied for the MF receiver [6], [7]. When an
MMSE filter incorporates a channel estimate for the desired
user, but averages over the channels of the interferers, our
results show that the optimal PDR is lower than that for the MF.
The optimal PDR increases when the MMSE filter incorporates
estimates for all interferers’ channels.

Large system analysis is also used to study coded perfor-
mance with channel estimation. The code rate is optimized with
respect to both cutoff rate and the union bound on probability
of error for some specific convolutional codes. Although the op-
timal code rate for the MMSE receiver is generally higher than
that for the MF, both receivers benefit from low code rates in
the presence of fading or with a small load ( ). Our results
also show that the MMSE receiver is robust with respect to the
selection of a suboptimal code rate. Related work on the selec-
tion of code rate for the additive white Gaussian noise (AWGN)
channel has been presented in [8] and [9]. The latter work is
extended to Rayleigh fading in [10]. The effect of code rate on
the performance of recursive least squares and MMSE filters in
the presence of flat Rayleigh fading, with and without channel
estimation, is considered in [11]. In [12]–[14], the code rate is
optimized with respect to channel capacity for linear MMSE re-
ceivers. The effect of an independent pilot on the large system
signal-to-interference-plus-noise ratio (SINR) is also discussed
in [14].

0090-6778/02$17.00 © 2002 IEEE
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Fig. 1. System block diagram.

In Section II we present the DS-CDMA system model along
with the data and channel estimation filters. Section III briefly
reviews the large system results needed and discusses the neces-
sary modifications which account for orthogonally multiplexed
pilot signals, frequency-selective fading, and channel estimation
spanning multiple symbol periods. Optimization of the PDR is
presented in Section IV, and the selection of code rate is dis-
cussed in Section V.

II. SYSTEM MODEL

We consider the reverse link of an isolated DS-CDMA cell.
Fig. 1 shows a block diagram of the system model for a single
user. Each signal contains a pilot sequence spread orthogonally
to the data to enable coherent detection. The signals experi-
ence frequency-selective Rayleigh fading and are corrupted by
AWGN and multiple access interference (MAI).

The system is assumed to be synchronous withusers, each
with processing gain . Let the ( ) vector represent
the spreading sequence of userand let denote the cor-
responding transmitted data symbol at time. The pilot signal
spreading sequence and symbol are denoted byand ,
respectively. The baseband signal transmitted by userat time

is

(1)

where and are the amplitudes of the data and pilot sig-
nals, respectively. All error probability calculations assume bi-
nary signaling, so that .

The PDR for user is defined as , where we
assume the normalization . The elements of
are chosen with equal probability from the set

. To ensure that , where denotes complex
conjugate transpose, theth element of is defined as

for

for
(2)

and we constrain to be even.
We assume a symbol-synchronous system withshifted

multipath components to simplify our analysis. (The large
system analysis used here is extended to asynchronous CDMA
in [15].) The delays of the primary paths are therefore zero for

all users. We assume that each subsequent path is delayed by
exactly one chip period. The received vector for symbolis
given by

(3)

where is the mean received energy per symbol for user
summed over all paths and includes both pilot and data signals,

is the channel coefficient associated with pathfor user
, is a vector of complex-valued white Gaussian noise sam-

ples with variance per dimension, and is the in-
tersymbol interference due to multipath. The vector has
length , and contains the elements of given by
(1) in positions through , and zeros elsewhere.

The received vector contains the contributions from all
paths for symbol, and therefore has length . Con-
sequently, the first elements of are the same as the
last elements of . The vector accounts for the
contributions from the data and pilot symbols at times and

. Therefore, the first and last elements of are the
only nonzero entries. Since we assume a fixed delay spread, for
the subsequent large system analysis, the intersymbol interfer-
ence is negligible as . Although we neglect intersymbol
interference in our analysis, it is included in the simulation re-
sults presented in later sections.

The channel coefficients, , are modeled as indepen-
dent, zero-mean, complex-valued, and circularly symmetric
Gaussian random variables with variance . For the simu-
lation results in Sections IV and V, each channel coefficient
varies in time according to a Gaussian random process with
power spectrum for ,
where is the maximum Doppler frequency. We assume each
fading process is constant over one symbol period, but varies
from symbol to symbol.

A. Data Estimation

We use a linear filter to estimate the signal sent by user 1. The
soft symbol estimate is given by

(4)

where is either the MF or MMSE filter. The MF is theeffec-
tive spreading sequence of the desired user; namely, the super-



824 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 5, MAY 2002

position of the faded and delayed versions of the desired user’s
spreading sequence

(5)

where contains the spreading sequence for user 1 in chips
through and the dependence onis omitted for

convenience.
The MMSE filter is chosen to minimize the cost function

(6)

where the expectation is with respect to the data symbols, pilot
symbols, noise samples, and the channels of the interferers if
they are not directly estimated. The optimal filter is

(7)

where is the covariance matrix of the received
signal.

B. Channel Estimation

Both the MF and MMSE data estimation filters require es-
timates of the channel for the desired user. Furthermore, the
MMSE filter performance can be improved by including esti-
mates of the interferers’ channels. We estimate the channel co-
efficient for each path separately, assuming perfect knowledge
of the path delays, and then combine the shifted spreading se-
quences to estimate .

Analogous to the data estimation, either an MF or MMSE
filter can be used to estimate the channel. The channel estima-
tion filter spans chips, requiring stacked received
vectors

(8)

where is less than the coherence time of the channel, the
subscript indicates that we use only elements 1 through

of each , and the last vector in the stack contains all
elements. The estimate for the channel coefficient

is

(9)

where is the appropriate filter, (MF or MMSE), shifted
by chips.

The MF for user is obtained by stacking the pilot signal
spreading sequence, i.e.,

(10)

where denotes transpose. The MMSE filter coefficients are
chosen to minimize

(11)

and take a form similar to (7)

(12)

where and again the expectation is with respect
to the transmitted symbols, noise, and interferers’ channels if
they are not explicitly estimated.

III. L ARGE SYSTEM ANALYSIS

For the CDMA model presented in Section II, the SINR at
the output of the MMSE data estimation filter corresponding to
user 1 is

(13)

where is the interference-plus-noise covariance matrix. In
the absence of orthogonal pilot signals and multipath,

, where is the matrix whose columns
are the signatures of the interferers and is a diagonal matrix
containing the energy of the interferers received in a symbol
period. It is shown in [3] that for this case, as and

, converges in probability to the deterministic
limit

(14)

and the MF SINR, , converges to

(15)

where is the large system limit of the interference energy
distribution.

The former result (14) relies on the large system limit of the
distribution of eigenvalues of the interference covariance ma-
trix, , and requires the elements of to
be zero-mean i.i.d. random variables [16]. Each integral term in
(14) and (15) is called theeffective interferencefor the associ-
ated receiver. In the following sections, we modify the preceding
expressions to account first for orthogonally multiplexed pilots,
then separately for multipath, and finally combine the results.

A. Orthogonally Multiplexed Pilot Signals

Here we assume that all users have the same PDR,
. When the pilot channel is included in the signal model,

the pilot and data spreading sequences belonging to a given user
are not independent so that the results of [3] cannot be directly
applied. However, in the appendix we show that, because the
pilot is spread orthogonally to the data, the effect of the pilot
on the large system output SINR is the same as if it were spread
with an independent random sequence. Our system withusers
therefore becomes, effectively, a system with users where
half of the users (corresponding to the data) have power scaled
by and the other half (corresponding to the pilot)
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have power scaled by . Consequently, the large system
SINR at the output of the MMSE data estimation filter is

(16)

The SINR at the output of the MF remains the same as (15). This
expression also appears in [14], where the elements of the pilot
and data spreading sequences are assumed to be independent
and circularly symmetric random variables. In that case, (16)
follows as a direct extension of the results in [3].

B. Multipath

In the presence of multipath, the output SINR depends on
how the receiver treats the time-varying interference. In [4], the
receiver is assumed to estimate the channel for each user given
knowledge of the path delays. The channel estimate for path
of user is given by where is assumed to be
Gaussian with variance . The large system SINR per path at
the output of the MMSE filter (averaged over the fade of the
desired user and ignoring the pilot signals for the moment) is
then

(17)

where is the distribution function of theestimatedinter-
ference energy. That is, there is interference from the effective
spreading sequence of userwith energy

and there is also interference from “virtual” interferers
each with energy due to the estimation error associated
with the separate multipath components. With perfect channel
estimates, and depends only on the distribution
of the amplitudes of the channel coefficients [10].

Now consider an adaptive filter which attempts to estimate the
MMSE filter. Motivated by the approach in [5], we assume that
the adaptive filter averages over the channels of the interferers.
That is, each path is treated as an independent interferer subject
to flat fading. In forming , we take the expected value over the
channel coefficients, resulting in

(18)

where is shifted by chips. The elements of
are correlated with those of for all so that the as-
sumptions used to derive (14) do not apply. However, since the
channel coefficients are independent across paths, as an approx-
imation, we treat the columns as independent. We therefore ap-
proximate the SINR per path as in (14) withreplaced by
and scaled by

(19)

The simulation results in Section IV show that this approxima-
tion is accurate. The approximation is exact for circularly-sym-
metric spreading sequences [4]. For the MF, the large system
SINR is again given by (15).

Combining the effects of multipath and pilot signals, we
obtain the following expressions. If the receiver estimates
the channels for all users, then for the pilot-assisted scheme
considered, the large system SINR per path at the output of the
MMSE data estimation filter is

(20)

where the variance of the channel estimates,, is determined
from the channel estimation filter output SINR described in Sec-
tion III-C. If the receiver averages over the channels of the in-
terferers, then

(21)

where we assume-path fading for all users.

C. Channel Estimation

The derivation of the large system output SINR for the
channel estimation filter is analogous to that for the data esti-
mation filter. The channel estimation filter has length , but
each interferer transmits two sets ofdifferent symbols within
this time span, corresponding to the pilot and data signals. (In
contrast to the analysis in [4], we assume no knowledge of
the interferers’ data symbols.) The SINR associated with the
MMSE channel estimate is

(22)

As and , it is shown in the appendix that
the SINR for the MMSE channel estimate converges in proba-
bility to

(23)

where is the distribution function of the interference,
treating the pilot and data signals as separate users, and the
channel estimation filter is assumed to average over the chan-
nels and symbols of the interferers. That is, the interference can
be viewed as originating from “virtual” users, each having
spreading sequence length equal to the length of the channel
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estimation filter, and each transmitting at times the in-
terferer’s power. The large system SINR associated with the
channel estimate for user is then given by (21) with re-
placed by .

IV. OPTIMIZATION OF PILOT-TO-DATA RATIO (PDR)

We now use the preceding results to optimize the PDR.
Our approach is analogous to that taken in [6] for the MF. In
what follows we will assume that the interference-plus-noise
at the output of the despreading filter (either MMSE or MF) is
Gaussian. This approximation is examined in [17] for the linear
MMSE receiver and is shown to be accurate in cases of interest.
Furthermore, for the synchronous AWGN channel this approx-
imation becomes exact as . The (uncoded) proba-
bility of error with channel estimates is then

(24)

where

(25)

and and are the mean SINR’s per path (averaged over the
desired user’s channel) for the data and pilot signals, respec-
tively (see [18, Appendix B]). Minimizing is equivalent to
maximizing . From (25) it is clear that both and must be
large for good performance. We remark that for the MMSE re-
ceiver (16), the effective interference depends onwhereas for
the MF receiver (15), affects only the desired signal power.

We also consider the effect of the PDR on coded bit error rate
(BER). The union bound on BER for a rate convolutional
code can be written as

(26)

where is the pairwise error probability of choosing a path
of weight over the all-zero path, and is the total number of
nonzero information bits corresponding to all error paths with
Hamming weight . With pilot-assisted channel estimation and
independent fading, can be calculated from (24) by re-
placing with . Since does not depend on, the that
maximizes also minimizes the bound on .

As an example of the effect of PDR on system performance,
Fig. 2 compares the bit error rate based on the large system
SINR with simulation results for both MF and MMSE receivers
for , and dB. Curves labeled
MMSE correspond to MMSE estimation of both data and chan-
nels. Similarly, results for the MF assume that both the data and
the channels are estimated with an MF. Each channel is esti-
mated over symbol periods as described in Section II.
Results are shown for a rate 1/2 convolutional code with octal
generator matrix (345, 237). The simulation results correspond
to a processing gain of and a block length of 1000
bits, which enables effective interleaving at the simulated fade
rate ( where is the symbol period).

Fig. 2. Bit error rate versus PDR with� = 0:25, L = 3, andE =N = 7

dB.

Results are shown for the two cases discussed: i) The MMSE
filter incorporates channel estimates for all users, and ii) The
MMSE filter averages over the channels of the interferers. The
optimal PDR for case i) is somewhat larger than that for case
ii), reflecting the greater dependence on channel estimates for
interference suppression. The performance improvement asso-
ciated with case i) relative to case ii) is not as large as might be
expected due to the virtual interference associated with the in-
accurate channel estimates. The simulation results at low BER
(i.e., approximately 10 and below) are greater than the ana-
lytical results based on the upper bound (26) because the ana-
lytical results assume perfect interleaving and are exact only as

. Still, the general shape of the simulated results match
the shape of the analytical curves.

Fig. 3 shows the optimal PDR over a range of loads for
dB and number of paths and 3. These

results, based on the large system analysis and computed
numerically, assume and correspond to the preceding
case ii). The optimal PDR for the MMSE receiver is consis-
tently less than that for the MF. The difference between the
MMSE and MF curves is smaller for than for .
This is because increasingincreases the effective load for the
MMSE receiver, but not for the MF receiver. As , and as

, the MMSE SINR converges to the MF SINR, so that
the optimal PDR’s for the two receivers converge to the same
limit. A longer channel estimation filter (larger) will result in
a lower optimal PDR, provided is less than the coherence
time of the channel. For example, the channel estimation filter
used in [7] corresponds to and the optimal for
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Fig. 3. Optimal PDR,� , as a function of load forL = 1 and 3 paths [case
ii)], E =N = 7 dB, andT = 10.

. This indicates that the optimal PDR generally increases
with fade rate.

V. OPTIMIZATION OF CODE RATE

As in previous work [9], we fix the bandwidth expansion
(chip rate / information rate) and analyze the tradeoff between
random spreading and error control coding. For the MF, it is
known that the code rateshould be small [19]. Generally, the
optimal code rate for the MMSE receiver should be higher, since
a larger number of random chips per coded symbol,, provides
more degrees of freedom for interference suppression. We use
the expressions for the large system SINR to study this tradeoff,
noting that the residual interference-plus-noise at the output of
the despreading filter is Gaussian in the large system limit [20].
Whereas others have considered the capacity as a performance
measure [21], [12], [13], here we study the cutoff rate,, and
the union bound on the bit error probability.

In what follows, we will refer to the following cases:

1) AWGN channel with perfect power control.In this case
is a step function at (assuming )

and the fixed point SINR equation can be solved as a
quadratic. We remark that this situation also applies to
flat fading channels with perfect channel estimation and
perfect power control.

2) Multipath with moderate fade rate, no power control.In
this case we assume that the fading is slow enough so that
the channel of the desired user can be tracked, but it is too
fast to allow an adaptive filter to track the channels of the
interferers.

We first assume perfect knowledge of the desired user’s channel
and subsequently present results which include the effects of
channel estimation.

A. Cutoff Rate

For the single-user AWGN channel, the cutoff rate is given
by [18]

(27)

Fig. 4. Cutoff rate versusE =N for fading channel, perfect power control
(Case 1).

where . For a given , is found by setting
and solving the fixed-point equation. For a power-controlled

CDMA system with AWGN (Case 1), the large system
at the input to the decoder is given by (14) and (15) for the
MMSE and MF filters, respectively. The cutoff rate for a large
system ( and ) is therefore

(28)

where is a function of , and .
Fig. 4 shows the corresponding versus code rate
for different loads, . That is, is the ratio of users,

, to the bandwidth expansion, . We assume all users have
the same . The optimal for a given load is the rate at
which the corresponding curve in Fig. 4 is minimized. Note that
the optimal rate for the MMSE receiver increases with load. The
curves are generally shallow, which implies that performance is
insensitive to the selection of code rate in the vicinity of the
optimal value. From this figure we see that the optimal code
rate for the MMSE filter at a load of 0.6 is approximately

. As expected, the optimal rate for the MF approaches zero.
Furthermore, the MMSE filter can support a load of ,
given sufficient , whereas the MF cannot.

In the presence of fading, the Chernoff bound can be applied
to the pairwise error probability [18], giving

(29)

Fig. 5 illustrates the relationships among, and for a
frequency-selective Rayleigh fading channel with inde-
pendent paths and ideal interleaving (Case 2). The optimal code
rate appears to approach zero for both receivers. Moreover, as
the code rate approaches the optimal value, both the MMSE and
MF receivers require the same , although the MMSE re-
ceiver is more robust with respect to a suboptimal code rate. Of
course, this set of results depends on the assumption that the
MMSE filter is unable to track the channels of the interferers.
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Fig. 5. Cutoff rate versusE =N with frequency-selective fading (Case 2,
L = 3) and no power control. The MMSE filter averages over the channels of
interferers.

Fig. 6. Cutoff rate versusE =N with frequency-selective fading (Case 2,
L = 3), no power control, and pilot-assisted channel estimation. The MMSE
filter averages over the channels of interferers.

Also, note that the additional needed for reliable com-
munications in Rayleigh fading, relative to the AWGN channel,
increases with load.

With the addition of the pilot channel, the cutoff rate has been
shown to be [7]

(30)

which can be rearranged as

(31)

where is given in (25). We wish to select the PDR to maximize
. That is, maximizing maximizes for a given load and

. Fig. 6 illustrates the relationships among, and
for a frequency-selective Rayleigh fading channel with
independent paths and pilot-assisted channel estimation

where the PDR is optimized for each set of parameters. The
MMSE filter averages over the channels of the interferers and

Fig. 7. Union bound on BER with perfect power control (Case 1) for code
ratesr = 1=4; 1=2; 3=4 and normalized load
 = 0:6.

the channel estimation filter has length corresponding to
symbols. Comparing these results with those in Fig. 5 shows
that channel uncertainty significantly decreases the supportable
load. Still, the MMSE filter is robust with respect to the choice
of a suboptimal code rate.

B. Probability of Error

Here we assume specific convolutional codes and compute
the upper bound on BER given by (26). We first assume perfect
channel estimates and then present results with pilot-assisted
channel estimation. For the AWGN channel, we assume that the
interference plus noise is Gaussian so that
where is the output SINR of the despreading filter.

For the Rayleigh fading channel, we assume that the channel
coefficients are independent from symbol to symbol (ideal in-
terleaving) and across paths. (This also applies to the simulation
results.) In addition, we assume equal mean gains for all paths.
It follows that is the probability of error with diversity
order and coherent combining given by

(32)
where and is the mean SINR per path at the
filter output [18].

Fig. 7 compares the large system BER bound as a function
of for Case 1 with code rates 1/4, 1/2 and 3/4, and load

. Numerical results for are also
shown. The rate 1/4 and 1/2 codes have generator matrices (353,
335, 277, 231) and (345, 237), respectively. The rate 3/4 code is
a punctured convolutional code derived from the rate code
using puncturing pattern (1,1,1,0,0,1). For the MMSE filter, and
for the range of error rates of interest (between 10and 10 ),
the rate 1/2 and 3/4 codes perform best and exhibit similar per-
formance. This is consistent with the cutoff rate results in Fig. 4.
Also, as expected, the performance of the MF improves as the
code rate decreases.
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Fig. 8. Union bounds on BER with frequency-selective fading and no power
control (Case 2,L = 3) for code ratesr = 1=2; 1=4 and load
 = 0:35. The
MMSE filter averages over the interferers’ channels.

Fig. 9. Union bounds on BER with frequency-selective fading (L = 3),
pilot-assisted channel estimation, and no power control. The load
 = 0:125,
and the MMSE filter averages over the interferers’ channels.

A similar comparison, corresponding to Case 2 with ,
is shown in Fig. 8 for ( for the simula-
tion results). This plot shows that the rate 1/4 code is best for

dB but that the rate 1/2 code is the best for larger
(corresponding to very low ). As expected, the rate

1/4 code performs best for the MF.
Our final comparison accounts for inexact channel estimates

based on the discussion of PDR in Section IV. Fig. 9 compares
the performance of the convolutional codes used to generate
the preceding plots. For these results, the load ,

which corresponds to the scenario considered in Section IV with
and . There are propagation paths,

the window for channel estimation is coded symbols,
and the normalized Doppler shift . The data and
channel estimation filters average over the channels of the inter-
ferers (Case 2). Simulation results are shown for .

For each code rate and , we calculate the PDR that
minimizes the probability of error expression as discussed in
Section IV. The optimal PDR is used to compute the union
bound on coded error probability, and is also the PDR used in
the simulation. In contrast to the results with perfect channel
estimates, the results for the MMSE filter with pilot-assisted
channel estimates show that the rate 1/4 code offers a 1 dB gain
relative to the rate 1/2 code uniformly over the range of
shown. The performance is therefore improved in that case by
allocating more degrees of freedom (bandwidth expansion) to
error control coding. Again, the rate 1/4 code is best for the MF.

VI. CONCLUSIONS

We have studied the performance of the linear MMSE re-
ceiver for DS-CDMA as a function of the PDR and code rate
in the presence of frequency-selective fading. A large system
analysis has been presented which can be used to optimize the
PDR and code rate as a function of load, , number of
propagation paths, and channel estimation filter length. If the
MMSE filter averages over the channels of the interferers, cor-
responding to an adaptive filtering implementation in moderate
to fast fading, then our numerical results show that the optimal
PDR for the MMSE receiver is less than that for the MF receiver.
If the MMSE receiver incorporates estimates of the channels for
all users, then the optimal PDR for the MMSE receiver is greater
than that for the MF receiver. For the load and consid-
ered, a minor performance gain is associated with estimating all
of the users’ channels, as opposed to the performance associated
with the adaptive filtering implementation.

The optimal code rate is generally higher for the MMSE
receiver than for the MF receiver, which allows more degrees
of freedom for interference suppression. In the presence of
frequency-selective fading, the MMSE receiver benefits from
using low code rates (again assuming that the MMSE receiver
averages over the channels of the interferers). This benefit is
enhanced with imperfect channel estimates. Our numerical
results for cutoff rate show that in the presence of frequency-se-
lective fading, the performance with the optimal code rate for
the MMSE receiver approaches that for the MF, although the
MMSE receiver is more robust with respect to the choice of a
suboptimal code rate.

APPENDIX

DERIVATION OF (16) AND (23)

Given a matrix , we denote the empirical distribution func-
tion (e.d.f.) of eigenvalues as which has the Stieltjes trans-
form

for (33)

where Im [16].
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Let the matrix where
is Hermitian, is and has i.i.d. elements, is

and diagonal, and , and are independent. It
is shown in [16] that as and ,
converges in distribution to

(34)

where is the limit of the Stieltjes transform of the e.d.f.
of , and is the asymptotic distribution of the diagonal
elements of .

In [3], it is shown that as and , the
SINR at the output of the MMSE filter, , converges in
probability to

(35)

where is the limiting eigenvalue distribution of the random
interference covariance matrix. Since is not defined
for real-valued , and must be in , as in [3], we define

as the limit of as approaches
from within . Since the elements of are i.i.d., (34)
is used with to prove (14).

Orthogonally Multiplexed Pilot

Let be the covariance matrix
of the received signal with an orthogonally multiplexed pilot,
where the columns of are the pilot spreading sequences and

. We wish to evaluate the large system Stieltjes trans-
form . In the proof of (34) in [16], the columns of are
required to be independent so that as ,

for all . Here, the th column of is not independent of theth
column of . However, we show that still converges
to

as

Let and .
Applying the matrix inversion lemma gives

(36)

and

(37)

We now show that as , so that
and

as desired.

Let where

(38)

and

(39)

It will be convenient to write and
where and have rows. We can then

write

(40)

Let where

(41)

, ,
and . Since and are
independent, the random variable converges in proba-
bility to

as [16].
We now show that and

converge to the same determin-
istic value as . We have

(42)

where , and the last step follows from the
matrix inversion lemma. The eigenvalue distribution of

converges almost surely as to a function
with Stieltjes transform that is independent of the elements of

[16]. Consequently, the eigenvalue distribution of
converges al-

most surely as . It follows from [22, Theorem 1.1] that
the eigenvalue distribution of converges almost surely to
a function which depends only on, , , and the distribution
of the diagonal elements of .

The same arguments show that the eigenvalue distribution of
converges to the same function as the system becomes

large. Therefore, as and ,
and in probability. Consequently, we can treat

and as though they were independent random vectors and
rewrite (34) as

(43)
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Combining with (35) gives (16).

Channel Estimation

The signal used for channel estimation (8) can be re-written
as

(44)

where , and
and are the corresponding AWGN and intersymbol

interference. Since consecutive symbols from a given user are
independent with mean zero, the interference covariance matrix
can be written as

...
...

.. .
...

(45)

where we again neglect the intersymbol interference due to mul-
tipath,

(46)

and are matrices whose th columns
contain elements 1 through of and , respectively,
in rows through , and is a diagonal matrix with th entry
given by .

As and the Stieltjes transform of
converges to

(47)

which is independent of . The effects of the pilot and data
signals are accounted for in . From (45) the set of eigen-
values of is equal to the union of the sets of eigenvalues
of . Therefore the e.d.f. of is the scaled
sum of the component e.d.f.s, . Sub-
stituting into (33) gives and
taking the limit of both sides as , we obtain

. Combining this with (35) and
noting that the desired average signal energy per path is

gives (23).
Note that (47) is the same as the analogous limit for a

multicode system in which each user transmitsindependent
spreading sequences, each of length, and with power scaled
by . This approach can be extended to a multirate system
model using variable spreading factors [23]. An alternative
proof of (47) in this latter scenario is presented in [14] using
results from [15]. However, the proof presented here is simpler
and more direct than that used to prove the corollary cited in
[15].
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