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Abstract— We present a unified large-system analysis of linear
receivers for a class of random matrix channels. The technique
unifies the analysis of both the minimum-mean-squared-error
(MMSE) receiver and the adaptive least-squares (ALS) receiver,
and also uses a common approach for both random i.i.d. and
random orthogonal precoding. We derive expressions for the
asymptotic signal-to-interference-plus-noise (SINR) of the MMSE
receiver, and both the transient and steady-state SINR of the ALS
receiver, trained using either i.i.d. data sequences or orthogonal
training sequences. The results are in terms of key system
parameters, and allow for arbitrary distributions of the power
of each of the data streams and the eigenvalues of the channel
correlation matrix. In the case of the ALS receiver, we allow
a diagonal loading constant and an arbitrary data windowing
function. For i.i.d. training sequences and no diagonal loading,
we give a fundamental relationship between the transient/steady-
state SINR of the ALS and the MMSE receivers. We demonstrate
that for a particular ratio of receive to transmit dimensions and
window shape, all channels which have the same MMSE SINR
have an identical transient ALS SINR response. We demonstrate
several applications of the results, including an optimization of
information throughput with respect to training sequence length
in coded block transmission.

Index Terms— Large-System, MMSE, Recursive Least
Squares, MIMO, CDMA.

I. INTRODUCTION

LARGE-system analysis of linear receivers for random
matrix channels has attracted significant attention in

recent years, and has proven to be a powerful tool in their
understanding and design (e.g., see [1] and references therein).
In particular, large-system analysis of the matched filter, decor-
relator, and minimum-mean-squared-error (MMSE) receivers,
which have knowledge of the channel state information, has
been exhaustively studied for the downlink, using results such
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as the Silverstein-Bai theorem [2], Girko’s law [3], and free
probability [4]. In this paper we take a different approach to
the problem, which allows us to consider random i.i.d. and
orthogonal channels (or matrix of signatures) in the same
treatment, in contrast to the existing separate analyses of
i.i.d. [5] and orthogonally precoded [6, 7] channels. The new
approach also allows us to consider a more general class of
signal models, and a receiver which does not have the benefit
of channel state information, namely the adaptive least-squares
(ALS) receiver.

In this paper, we consider both the MMSE and ALS
receivers. The ALS receiver approximates the MMSE receiver
and requires training symbols [8]. In particular, the autocor-
relation matrix of the received vector (an ensemble average),
which is used in the MMSE receiver, is replaced in the ALS
receiver by a sample autocorrelation matrix (a time average).
Given sufficient training symbols, the performance of the ALS
receiver approaches that of the MMSE receiver. In this paper,
two types of adaptive training modes are considered, based on
those presented in [9], where either the training sequence is
known at the receiver, or a semi-blind method is employed. In
a time-varying environment, weighting can be applied to the
errors to create data windowing, which allows for tracking.
When implemented online as a series of rank-1 updates with
exponential windowing, this receiver is often referred to as
the recursive least-squares (RLS) receiver [8]. To prevent ill-
conditioning of the sample autocorrelation matrix with RLS
filtering, diagonal loading can be employed, which refers to
initializing this matrix with a small positive constant times the
identity matrix.

Prior relevant work on ALS techniques (in particular, as
applied to channel equalization and estimation) includes [10],
where an approximate expression is derived for the transient
excess mean-squared-error (MSE) of the ALS receiver with
respect to the MMSE receiver, often referred to as self-noise,
for a general channel model and windowing function. Also,
an approximate expression is given for the convergence time
constant of the receiver when tracking non-stationary signals.
Steady-state and transient analysis of the RLS receiver was
also considered in [11]. A comprehensive treatment of ALS
techniques and variations is contained in [8].

The application of ALS to CDMA was considered in [12],
where the convergence of a blind multiuser detector based
on a stochastic gradient-descent adaptation rule is also ana-
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lyzed. In [9], approximate expressions are given for the rela-
tionship between the MMSE signal-to-interference-plus-noise-
ratio (SINR) and the steady-state ALS SINR with exponential
windowing for DS-CDMA in flat-fading. This was extended in
[13] to a steady-state analysis of two-stage algorithms based on
RLS using decision-directed adaptation. A review of adaptive
interference mitigation techniques is given in [14].

Large-system analysis for ALS receivers was first consid-
ered in [15, 16], which considered DS-CDMA in flat fading
with i.i.d. training sequences, and an ALS receiver with di-
agonal loading and rectangular or exponential weighting. The
transient SINR (i.e., after a given number of training symbols)
and steady-state SINR (i.e., after an unlimited number of
training symbols) of the ALS receiver was derived in the
limit where the number of transmit dimensions, the number
of multiplexed data streams, and the number of training
symbols all tend to infinity with fixed ratios. With rectangular
windowing and no diagonal loading, a relationship between
the MMSE SINR and the transient ALS SINR was given. In
other work, large-system analysis has been applied to so-called
subspace-based blind ALS receivers in [17–19].

In this paper, we consider a more general complex-valued
AWGN matrix-vector channel model of the form r =
HSAb+n, where H is an arbitrary matrix, A is an arbitrary
diagonal matrix, and S is either an i.i.d. or orthogonal matrix.
For example, the model applies explicitly to downlink syn-
chronous direct sequence (DS) or multi-carrier (MC) CDMA
in frequency-selective fading, as well as multi-input multi-
output (MIMO) channels. In fact, if we additionally require
that the data vector b is unitarily invariant, then the MMSE
and ALS results we obtain apply to all AWGN matrix-vector
systems of the form r = Cb+n, provided that the eigenvalues
of CC† converge to a well-behaved deterministic distribution.
As such, the results can be applied to systems not previously
considered in large-system analysis, such as equalization of
single-user finite-impulse-response (FIR) channels.

For this channel model, we derive the SINR of the MMSE
receiver, with either i.i.d. or orthogonal S, in the large-system
limit where the number of transmit and receive dimensions,
and the number of multiplexed data streams all tend to infinity
with fixed ratios. The expression for the SINR is a function of
these ratios and the received SNR, and allows for arbitrary
asymptotic eigenvalue distributions (a.e.d.’s) of AA† and
HH†. This result can also be derived under the same set
of assumptions using the S-transform from free probability.
However, unlike the free probability technique, we show that
the technique used to derive this result also applies to the ALS
receiver.

For the ALS receiver, we extend the work of [16] to the
general channel model described. We consider an arbitrary
data windowing function and both i.i.d. and orthogonal train-
ing sequences. That is, we determine both the transient and
steady-state ALS SINR in the limit described for the MMSE
receiver, and also as the number of training symbols tend to
infinity.

Also, we present an expression which relates the SINR of
the MMSE receiver to the transient and steady-state SINRs of
the ALS receiver for the case of i.i.d. training sequences and

no diagonal loading. We demonstrate that in this situation, for
a particular ratio of receive to transmit dimensions and window
shape, all channels, which have the same MMSE SINR, have
an identical transient ALS SINR response. Since our results
hold for all well-behaved matrix-vector systems for which the
data vector is unitarily invariant (as previously discussed), the
MMSE-ALS relationship is in fact seen to be a fundamental
property of adaptive least-squares estimation.

It is interesting to compare our results to an approximate
expression for the steady-state ALS SINR given in [9] for the
special case of DS-CDMA in a flat-fading channel, with i.i.d.
spreading and exponential weighting. A comparison of the
expressions reveals the approximation in [9] to be excellent,
particularly for large window sizes. Also, we note that for a
general channel model, the study in [11] previously came to
the conclusion that the ALS convergence rate is independent
of the channel; however, their conclusion was based on mak-
ing several approximations, and only exponential windowing
(RLS) was considered. This conclusion was stated for DS-
CDMA in [9]; however, an explicit relationship between the
MMSE SINR and the transient ALS SINR, such as derived in
this paper, is not given in either of those papers.

Unfortunately, we have not determined a simple relationship
between the MMSE SINR and ALS SINR with orthogonal
training sequences and/or diagonal loading. This remains an
open problem. Inspection reveals that with orthogonal training
sequences and no diagonal loading, the transient relationship
will depend on the channel.

During the course of the analysis we solve for the Stieltjés
(or Cauchy) transforms of the a.e.d.’s of both the autocorrela-
tion matrix and the weighted sample autocorrelation matrix
of the received signal. These expressions are found using
matrix manipulations, which do not require the use of free
probability. The first transform can also be derived using free
probability; however, such techniques cannot be applied to
derive the second transform, since the associated constituent
matrices are not free. As such, the results are of independent
mathematical interest.

Through numerical studies, we demonstrate the applicability
of the large-system results to finite systems, and the ben-
efits of orthogonal precoding and training is examined. We
demonstrate an application of the results in the optimization
of information throughput with respect to training sequence
length in coded block transmission.

The paper is arranged as follows. Section II outlines the
general transmission model, the receivers considered, and
defines the large-system limit. Section III discusses the general
approach we take for the analysis. Section IV reviews analyt-
ical approaches to the MMSE SINR problem, and presents
the general solution based on the unified analytical approach.
An alternate expression for the MMSE SINR, different from
those presented in [1], is also presented which allows the
relationship between the MMSE SINR and ALS SINR to be
derived in certain cases in later sections. Section V presents
the general result for the ALS SINR. A simple relationship
between the ALS SINR and MMSE SINR with i.i.d. training
and without diagonal loading is then presented in Section VI.
Finally, numerical studies are presented in Section VII.
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II. SYSTEM MODEL

This paper considers a general matrix-vector transmission
model. It applies to a wide range of practical data communi-
cation systems, including frequency-flat fading MIMO chan-
nels, and both frequency-flat and frequency-selective fading
downlink DS- or MC-CDMA channels.

A. General Transmission Model

In matrix notation1, the received signal in the mth symbol
period is

rm = HSAbm + nm (1)

where
• H ∈ CM×N is a complex-valued channel matrix.
• S = [s1 · · · sK ] ∈ CN×K contains either

– random orthonormal columns, i.e., we assume that S
is obtained by extracting K ≤ N columns from an
N ×N Haar-distributed2 unitary random matrix, or,

– i.i.d. complex elements3 with mean zero and variance
1
N . For example, i.i.d. real & imaginary parts which
are either ±1/

√
2N with equal probability, or i.i.d.

Gaussian with zero mean and variance 1/(2N).
We shall call the first case ‘isometric (iso.) S’, and the
second case ‘i.i.d. S’, as is done in [6].

• A ∈ CK×K is a diagonal matrix of transmit coefficients,
i.e. A = diag(A1, . . . , AK). In fact, the results which
follow depend only the values of Pk = |Ak|2, and so
to simplify notation, without lack of generality, we may
assume Ak, k = 1, . . . ,K, is non-negative and real
valued.

• bm ∈ CK×1 either contains transmit data, or training
symbols (for an ALS receiver). Elements of bm can be
either i.i.d. with zero mean and unit variance3 (for data
and i.i.d. training cases), or they can be drawn from a
set of orthogonal sequences (for orthogonal training, as
explained further in Section II-D).

• nm ∈ CM×1 contains i.i.d., zero mean, circularly
symmetric, complex Gaussian entries with variance per
dimension σ2/2.

• H, S, A, bm, and nm are mutually independent.

B. Discussion

The general transmission model in (1) is widely applicable,
and in particular includes the following systems.

1Notation: All vectors are defined as column vectors and designated with
bold lower case; all matrices are given in bold upper case; (·)T denotes
transpose; (·)† denotes Hermitian (i.e. complex conjugate) transpose; (·)‡
denotes the operation X‡ = XX†; tr[·] denotes the matrix trace; |·| and ‖·‖
denote the Euclidian and induced spectral norms, respectively; IN denotes
the N × N identity matrix; R∗ = {x ∈ R : x ≥ 0}; and, expectation is
denoted E[·].

2 A unitary random matrix Ω is Haar distributed if its probability distribu-
tion is invariant to left or right multiplication by any constant unitary matrix.
If X is a square random matrix with i.i.d. complex Gaussian centered unit
variance entries, then the unitary matrix X

�
X†X

�−1/2 is Haar distributed.
3For technical reasons, we also require the elements have finite positive

moments. Also, if H 6= IN , we additionally require that S is unitarily
invariant, however, we believe the results apply more generally.

• Downlink MC- or DS-CDMA: In this case, S represents
the matrix of K signatures with spreading gain N .
Typically, the number of output dimensions equals the
number of input dimensions and hence H is square.

– For flat-fading DS-CDMA, H = IN and A rep-
resents the combined effect of each users’ transmit
power and channel coefficient.

– For MC-CDMA in frequency-selective fading, H
is the diagonal matrix of the channel frequency
response in each subcarrier, and A represents the
transmit amplitude of each signature.

– For DS-CDMA in frequency-selective fading, H is
a circulant or Toeplitz matrix constructed from the
channel impulse response, and A represents the
transmit amplitude of each signature.

• ‘Rich’ MIMO: The standard point-to-point flat fading
MIMO channel model is given by (1), where K and
N correspond to the number of transmit and receive
antennas, respectively. The standard MIMO channel ma-
trix with i.i.d. circularly symmetric complex Gaussian
coefficients between each pair of transmit and receive
antennas corresponds here to setting H = IN and S i.i.d.
Gaussian. The matrix A defines the transmit amplitudes
on each antenna.

• MIMO with richness parameter: The MIMO channel
model introduced in [20] can also be described by (1),
with S i.i.d. and H = ΦC, where Φ is i.i.d., and C is
diagonal. In this case, S models the propagation from
the transmitter to a ‘scattering array’, modeled by C,
and Φ models the propagation from the scattering array
to the receiver. The rank of the scattering array matrix
determines the richness of the MIMO channel.

• If we additionally require that the data vector b is
unitarily invariant, then the MMSE and ALS asymptotic
SINR results we obtain apply to all AWGN matrix-vector
systems of the form r = Cb+n, under certain conditions
on the channel matrix C, and the data and noise vectors,
b and n. A full explanation is given in Section II-E.

C. MMSE Receiver

The output of the MMSE receiver with full channel state
information (CSI) and knowledge of S for stream k at symbol
interval m is given by

b̂m(k) = c†krm (2)

where

ck = R−1Hsk , (3)

R = (HSA)‡ + σ2IM . (4)

Now, identifying the signal and interference components of
the received signal in (1), i.e., rm = AkHskbm(k) + rI

m, the
corresponding output SINR is defined as

SINRMMSE
k,N =

E[|c†k(rm − rI
m)|2]

E[|c†krI
m|2]

(5)

where the expectation in (5) is with respect to bm and nm. The
subscript N indicates that this is a non-asymptotic quantity.
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D. ALS Receiver

The output of the adaptive least-squares (ALS) receiver with
i training symbols for stream k at symbol interval m > i is
given by

b̂m(k) = ĉ†krm (6)

where

ĉk = R̂−1ŝk , (7)

R̂ =
1
i
RWR† +

µ

η
IM , (8)

R = HSAB† + N , (9)

ŝk =

{
1
iRWbk , with training,
Hsk , semi-blind.

(10)

and where
• B ∈ Ci×K contains training data, where the mth row of

B is b†m. The kth column of B will be denoted as bk.
We consider both i.i.d. and orthogonal training sequences,
i.e.,

– B contains i.i.d. elements with zero mean, unit
variance, and finite positive moments, or,

– B contains either random orthogonal rows or
columns. If K < i then B†B = iIK , and we assume
that 1√

i
B is obtained by extracting K columns from

an i × i Haar-distributed unitary random matrix. If
K > i, then BB† = KIi, and we assume that

1√
K

B† is obtained by extracting i columns from a
K ×K Haar-distributed unitary random matrix.

We shall call the first case ‘i.i.d. B’, and the second case4

‘orthogonal (ort.) B’.
• N ∈ CM×i contains observation noise, where the mth

column is nm.
• µ ∈ R∗ is a diagonal loading constant, and η = i/N .
• W ∈ Ri×i is a diagonal data windowing matrix, i.e.

W = diag(w1, . . . , wi) where wm ∈ R∗ for m =
1, . . . , i. For example, with exponential weighting wm =
εi−m, where ε ∈ (0, 1], or, without windowing W = Ii.

Note that, although strictly speaking the model in (1) applies
only to time-invariant systems, we include windowing to allow
for practical situations such as slowly time varying channels,
or users entering/leaving the system. The term ‘semi-blind’ in
(10) refers to the case when H and sk are known, and there
is no training data, whereas ‘with training’ refers to when just
B is known. For more details on the practical issues, see [9],
where this ALS formulation is considered for DS-CDMA in
flat-fading.

The SINR for the kth stream at the output of the ALS
receiver, SINRALS

k,N , is defined by the right-hand side of (5),
however, with ck replaced by ĉk.

E. Large-System Limit

We define α = K/N and β = M/N , and for the ALS
receiver, η = i/N .

4As the columns of iso. S are orthonormal, while the columns/rows of ort.
B are just orthogonal, we do not refer to B as isometric.

Throughout this paper we consider the asymptotic limit
(M,N,K, i) → ∞ with K/N → α > 0, i/N → η > 0,
and M/N → β > 0 constant. For isometric S, α ≤ 1.

With data windowing it is necessary to consider how
W is defined for each i so that the empirical distribution
function (e.d.f.) of its diagonal values converges to something
appropriate. Any finite window length becomes negligible in
the large-system limit as i → ∞, therefore it is necessary to
scale the window shape with the system size. For example,
as in [16], with exponential windowing we define L = 1

1−ε
as the ‘average’ window length, and take L → ∞ with
L/N → L̄ > 0 constant.

To facilitate the large-system analysis, we also require that
H‡, A2, and W each have a uniformly bounded spectral
norm,5 that is, a bound which is independent of the system
dimension N . Also, we require the empirical distribution
functions of the eigenvalues of A2, H‡, and W to converge in
distribution almost surely to non-random distributions on the
non-negative real axis, which will have compact support due
to the previous assumption. We also assume that the limiting
distributions of A2, H‡, and W are non-trivial, i.e., do not
have all mass at zero.

Proposition 1: The large-system MMSE and ALS SINRs
corresponding to the transmission model in (1) are the same
as the large-system MMSE and ALS SINRs, respectively,
computed for any matrix-vector system of the form r =
Cb + n in which
• C ∈ CM×K , b ∈ CK×1, and n ∈ CM×1 are mutually

independent,
• n satisfies the same conditions as nm above,
• the data/training vector b satisfies the same conditions as

bm above, and additionally is unitarily invariant,6

• the channel matrix C is such that the e.d.f. of C‡

satisfies the conditions on H‡ mentioned in the previous
paragraph,

and corresponds to taking H = C, S to be K ×K isometric,
and A = IK , respectively.

Proof: Since b is unitarily invariant, all data streams
have identically distributed SINRs. Since b has the same
distribution as Ub, where U is a K × K Haar-distributed
random unitary matrix, we see that the distribution of the
MMSE and ALS SINR associated with r′ = CUb + n are,
respectively, the same as that for r, and will share a common
large-system limit, if it exists.

Proposition 1 implies that our model encompasses the clas-
sic equalization model. Namely, r represents N = M samples

5In particular, this condition is required for the derivations in the appen-
dices, which frequently rely on Lemma 9 in Appendix I along with other key
lemmas as a precursor to the asymptotic analysis contained in the remaining
appendices.

6That is, the elements of Ub have the same joint distribution as b for any
K×K unitary matrix U. This is an extra restriction on i.i.d. data vectors. For
training vectors from Haar-distributed matrices, this condition is automatically
satisfied, and is easily verified for α ≥ η (that is, when b is a column from
a Haar-distributed matrix). For α < η, note that Ub corresponds to the
Hermitian transpose of a row of BU†, and BU† can be written as ΘEKU†,
where Θ is i × i Haar, and EK = [IK ,0K,i−K ]†. Alternately, we have
BU† = ΘŨEK , where Ũ is the unitary matrix created by replacing the
upper left K ×K sub-block of Ii with U†. Since Θ is Haar, ΘŨ is also
Haar, and hence BU† has the same distribution as B.
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at the output of a single-input/single-output (SISO) FIR chan-
nel h of length Lc, i.e., r(n) =

∑Lc−1
`=0 h(`)b(n− `) + n(n).

If a cyclic prefix of appropriate length is used, we set C
defined in Proposition 1 equal to the circulant channel matrix.
Therefore, from Proposition 1, the corresponding model (1)
takes A = IN , S as N × N isometric, and H as C or
equivalently as an N × N diagonal matrix with the N -point
DFT of h on the diagonal.

III. UNIFIED LARGE-SYSTEM ANALYSIS

In Sections IV and V, we derive the asymptotic SINR for
the model (1) with both MMSE and ALS receivers. The SINR
in both cases is directly related to the Stieltjés transform7 of
the a.e.d. of the received signal correlation matrix R for the
MMSE receiver, and R̂ for the ALS receiver. For the MMSE
case, there are a number of existing methods for finding such
transforms directly (see e.g., [1]). However, those methods do
not extend to the ALS problem. We now discuss a general
approach, which applies to both i.i.d. and isometric S for both
the MMSE and the ALS receiver.

The aim is to derive a set of equations for each “constituent”
dimension in R (or R̂), which can be solved for the Stieltjés
transform. For example, R has three constituent dimensions
(K, N , and M ), while R̂ has four, since it also includes i.

Each equation is based on expanding the simple identity
R−1R = IM (or R̂−1R̂ = IM ) in each constituent dimen-
sion. That is, since R (or R̂) is Hermitian, this term in the
identity can be written as a sum of vector outer products,
where the sum index runs up to the value of the dimension.
Taking the normalized trace of both sides of the resulting
equation can be simplified, and involves terms which have
equivalent asymptotic forms, which can be evaluated using an
asymptotic extension to the matrix inversion lemma. These
equivalent forms are in terms of scalar variables, some of
which are mixed matrix moments. Each of these moments
can be expressed in terms of the other variables.

The result is a set of equations, which can be solved for the
Stieltjés transform, and other unknowns (e.g., various matrix
moments). Interestingly, in all cases we consider, the equations
can be written in a form such that solving for the Stieltjés
transform numerically amounts to zero-finding in at most two
dimensions.

IV. ANALYSIS OF MMSE RECEIVER

It has been shown that, for both i.i.d. and isometric S, the
asymptotic SINR for the kth stream at the output of the full-
CSI MMSE receiver in (3) satisfies [7, 21]

max
k≤K

∣∣SINRMMSE
k,N − Pkρ

N
1

∣∣ a.s.−→ 0 (11)

under the limit considered, where a.s.−→ denotes almost-sure
convergence,

ρN
1 =

{
1
N tr[H‡R−1] , i.i.d. S,

1
N−K tr[(HΠ)‡R−1] , iso. S,

(12)

7The Stieltjés (or Cauchy) transform of the distribution of a real-valued
random variable X is the expected value of 1/(X − z), where z ∈ C+ is
the transform variable, and C+ = {x | x ∈ C, Im(x) > 0} (e.g., see [2]).

and Π2 = IN − S‡.
We now discuss some existing methods for computing the

limit of the moment ρN
1 in (12) with the MMSE full-CSI

receiver, and note that the methods do not extend to the
ALS receiver. We then present the main result of this section,
namely, a general SINR expression, which applies to both
i.i.d. and isometric S, derived using the approach discussed
in Section III.

For i.i.d. S, and square invertible H, the SINR can be
obtained in terms of the limiting distribution of H‡ and A2,
using the result of Silverstein and Bai [2] after writing

ρN
1 =

1
N

tr[(SA2S† + σ2(H†H)−1)−1] (13)

as was done in [22], and for more general channel distributions
in [6, Theorem 2]. More generally, a solution for arbitrary
(non-square) channel models can be obtained for i.i.d. S via
Girko’s law (see e.g., [5, Lemma 1], or [23, Theorem IV.2]
for just the Stieltjés transform of R), again in terms of the
limiting distributions of H‡ and A2. We note that neither of
these techniques can be used to compute the output SINR for
the MMSE receiver with isometric S, or the ALS receiver.

For isometric S and square H, the asymptotic SINR was
first presented in [6] with A = IK , and was extended in [7]
to include general A. Although this approach could also be
used to consider non-square H, it does not extend to the ALS
receiver since it relies on the particular structure of R, which
is not shared by R̂.

A. Asymptotic SINR for MMSE Receiver

The following theorem allows us to evaluate the limit of ρN
1

(and hence the asymptotic MMSE SINR) for general channels
and for either i.i.d. or isometric S. The theorem is in terms
of the Stieltjés transform of the e.d.f. of the eigenvalues of
(HSA)‡. That is, we generalize the definition of R from
(4) by replacing σ2 by a complex variable z ∈ C+ (i.e.,
R = (HSA)‡ − zIM ), such that the Stieltjés transform of
the e.d.f. of the eigenvalues of (HSA)‡ is given by GN

R (z) =
1
M tr[R−1]. The theorem is given in terms of the two additional
random sequences ρN

1 ∈ C+, as defined in (12) using the
redefinition of R, and τN

1 ∈ C+. The variable τN
1 is defined

in terms of matrix equations, and is given in Appendix III-A
since the definition is lengthy and is not needed to state the
following result.

Theorem 1: Under the assumptions in Section II-E, as
(M,N,K) → ∞ with M/N → β > 0 and K/N → α > 0
fixed, the Stieltjés transform of the e.d.f. of the eigenvalues of
(HSA)‡, GN

R (z), z ∈ C+, along with ρN
1 and τN

1 satisfy∣∣GN
R (z)− γ1

∣∣ a.s.−→ 0, (14)∣∣ρN
1 − ρ1

∣∣ a.s.−→ 0, (15)∣∣τN
1 − τ1

∣∣ a.s.−→ 0, (16)

where γ1, ρ1, τ1 ∈ C+ are solutions to

γ1 = −z−1

(
1− α

β
ρ1E1,1

)
, (17)
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ρ1 =

−z
−1β∗H1,1 , i.i.d. S,
−z−1β∗H1,1

1− β(1 + zγ1)
, iso. S,

(18)

τ1 = αp̄−

αE1,1 , i.i.d. S,
αE1,1

1− β(1 + zγ1)
, iso. S,

(19)

where β∗ = min(β, 1), and

Ep,1 = E
[

P p

1 + Pρ1

]
, (20)

Hp,1 = E
[

Hp

1 +Hz−1(τ1 − αp̄)

]
, (21)

for p ∈ Z∗. The expectations in (20) and (21) are with respect
to the scalar random variables P and H , respectively, and
the distributions of P and H are the asymptotic eigenvalue
distributions of A2 and the first β∗N = min(M,N) non-zero
eigenvalues of H‡, respectively, and p̄ = E[P ].

Proof: See Appendix III.
Remarks:
• If (17)–(19) has a unique solution8 γ1, ρ1, τ1 ∈ C+ for

any given z ∈ C+, then Theorem 1 additionally implies
that the e.d.f. of the eigenvalues of (HSA)‡ almost surely
converges in distribution to a deterministic distribution,
whose Stieltjés transform is GR(z).
Moreover, we have that ρN

1 converges almost surely to
the deterministic value ρ1 in the limit considered, and
so, letting z = −σ2 + εj and taking ε→ 0, as suggested
by (11), the MMSE SINR of the kth data stream almost
surely converges to Pkρ1.

• For i.i.d. S, Theorem 1 can be obtained via Girko’s law
(see e.g., [23, Theorem IV.2]). For isometric S, this result
appears to be new. However, in both cases Theorem 1 can
be derived (under the same set of assumptions) using the
S-transform from free probability, or the method of [24].
We give a different proof, relying only on elementary
matrix manipulations. The primary reason for presenting
this result is to lead into the ALS analysis, which will
follow the same general procedure outlined in the proof
of Theorem 1 in Appendix III.

• The following steps describe how to find GR(z) numer-
ically via Theorem 1 for specific distributions of P and
H , and given values of z, α, and β.

– Consider (18) as a scalar function of ρ1, i.e.,
X(ρ1) = 0.

– Numerically find the unique positive root of X(ρ1)
using standard techniques (e.g., using a routine such
as fzero in Matlab), where, for a given value of ρ1,
the corresponding values of τ1 and γ1 are directly
evaluated using (19) for τ1, and (17) for γ1.

• In fact, (17) is just one of many possible expressions
which can be derived from the identity 1

M tr[RR−1] = 1.
Other expressions involving γ1 derived in this manner

8Certainly, for i.i.d. S, the equations of Theorem 1 have a unique solution,
since the same result can be obtained via Girko’s law, for which the solution
is known to be unique. Although it is not proved, we believe that this is also
true for isometric S. Numerical studies support this.

include

β(1 + zγ1) = α(1− E0,1) = αρ1E1,1 (22)

= β∗(1−H0,1) = β∗z−1(τ1 − αp̄)H1,1 (23)

These expressions, derived in Appendix III, are used in
the proof of Theorem 1.

• If H is exponentially distributed with mean one (i.e., MC-
or DS-CDMA in frequency-selective Rayleigh fading),
H1,1 = (1 − f(x))/x, where x = z−1(τ1 − αp̄),
and f(x) = x−1 exp

(
x−1

)
Ei
(
x−1

)
where Ei(x) =∫∞

1
e−xtt−1dt is the first-order Exponential Integral.

B. Alternate Representation of MMSE SINR

We now present an alternate expression for the asymptotic
value of SINRMMSE

k,N , which will allow us to determine the
relationship between the asymptotic MMSE SINR and the
asymptotic ALS SINR considered later in Sections V–VI.
This expression depends on the additional random sequences
ρN

j ∈ R∗, j = 2, 3, 4, which, along with the auxiliary random
sequences τN

j ∈ R∗, j = 2, 3, are defined in terms of matrix
equations in Appendix III-A (The definitions of these variables
are lengthy, and are not needed to state the following result;
so to facilitate the flow of results they are not stated here.)

It is shown in Appendix V that, under the assumptions in
Section II-E,

max
k≤K

∣∣∣∣∣SINRMMSE
k,N −

Pk

∣∣ρN
1

∣∣2
ρN
4 + σ2ρN

2

∣∣∣∣∣ a.s.−→ 0 (24)

as (M,N,K) →∞ with M/N → β > 0 and K/N → α > 0.
Moreover,

∣∣ρN
j − ρj

∣∣ a.s.−→ 0, j = 2, 3, 4, and
∣∣τN

j − τj
∣∣ a.s.−→ 0,

j = 2, 3, in the limit considered, where ρj ∈ R∗, j = 2, 3, 4,
and τj ∈ R∗, j = 2, 3, are solutions to the following set of
equations. For i.i.d. S,

ρj =


β∗ |z|−2 (H1,2 + τ2H2,2) , j = 2,
β∗ |z|−2 (1 + τ3)H2,2 , j = 3,
αρ3E1,2 , j = 4.

(25)

τj = αρjE2,2 , j = 2, 3. (26)

while for isometric S,

ρj =


β∗ |z|−2 (H1,2 + τ2H2,2) , j = 2,
β∗ |z|−2 (1 + τ3)H2,2 , j = 3,
α(ρ3E1,2 − |ρ1|2 E1,2) , j = 4.

α(E0,2 − 1) + 1
, (27)

τj =
αρjE2,2 − β∗ |z|−2 |αp̄− τ1|2Hj−1,2

β∗(H0,2 − 1) + 1
, j = 2, 3. (28)

where

Ep,2 = E

[
P p

|1 + Pρ1|2

]
, (29)

Hp,2 = E

[
Hp

|1 +Hz−1(τ1 − αp̄)|2

]
, (30)

for p ∈ Z∗, and Eq,1, Hq,1, q ∈ Z∗, ρ1, τ1, p̄, β∗, P , and H
are determined from Theorem 1.
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Again, assuming that (17)–(19) and also (25)–(28) have
unique solutions, then we also have that the SINR of the
kth data stream converges almost surely to the deterministic
quantity Pk |ρ1|2 /(ρ4 + σ2ρ2).

V. ANALYSIS OF ALS RECEIVER

In this section we derive the asymptotic SINR for the
adaptive receiver, using the general approach discussed in
Section III.

Firstly, we derive the asymptotic transient ALS SINR after
a specified number of training intervals (either with training,
or semi-blind). Our aim is to characterize the typical transient
response of the receiver as a function of η, i.e., as the number
of training symbols increases. The resulting expression is in
terms of several large matrix variables involving the sample
autocorrelation matrix. We present a theorem which gives the
Stieltjés transform of the a.e.d. of the sample autocorrelation
matrix, and fixed-point expressions for each variable required
to compute the asymptotic SINR.

Secondly, from the transient SINR solution we determine
the steady-state asymptotic ALS SINR, that is, the SINR as the
number of training intervals (either with a training sequence,
or semi-blind) goes to infinity (i.e., η → ∞). Without data
windowing, we verify that the solution for the ALS SINR
converges to the MMSE SINR. Then we determine the steady-
state SINR when an arbitrary windowing function is used.

A. Transient ALS SINR

The following result relates the transient SINR of the ALS
receiver to six auxiliary random sequences, ρ̂N

j and ψ̂N
j ,

j = 1, 2, 4. The definitions of these variables are in terms
of matrix traces and quadratic forms, and are quite lengthy.
So, for clarity of presentation, and also since asymptotically
equivalent values of these variables can be calculated from
subsequent results, the definitions are given in Appendix VII-
A.

Theorem 2: In the limit as (M,N,K, i) → ∞ with
M/N → β > 0, K/N → α > 0, and i/N → η > 0 fixed,

max
k≤K

∣∣∣∣∣SINRALS
k,N −

Pk |ak,1|2
∣∣ρ̂N

1

∣∣2
|ak,1|2 (ρ̂N

4 + σ2ρ̂N
2 ) + |ak,2|2 (ψ̂N

4 + σ2ψ̂N
2 )

∣∣∣∣∣
a.s.−→ 0 (31)

where

(ak,1, ak,2) =

{
(1, −Akρ̂

N
1 ) , semi-blind LS,

(Ak(w̄ − ψ̂N
1 ), 1) , LS with training.

(32)

w̄ is the mean of the a.e.d. of W, and the definitions of ρ̂N
j

and ψ̂N
j , j = 1, 2, 4 are given in Appendix VII-A.

Proof: See Appendix VIII. Note that the definitions and
derivations of Appendix VII necessarily precede Appendix
VIII.

Remarks:
• Expressions, which can be used to compute asymptoti-

cally equivalent values of ρ̂N
j and ψ̂N

j , j = 1, 2, 4, are
presented in Theorem 3 and Lemma 1.

• The preceding ALS SINR expression resembles the alter-
nate MMSE SINR expression (24) derived in Section IV-
B. However, a simplified expression for the ALS SINR,
such as that presented for the MMSE SINR in Theorem 1,
is not possible. This is due to the fact that a simplification
of the interference power, as discussed in the proof of (24)
in Appendix V, is not possible for the ALS receiver.

The following Theorem and Lemma give a sufficient num-
ber of relations to calculate the asymptotic moments required
for the asymptotic SINR in (31) of Theorem 2.

In a similar manner to Section IV, firstly we determine
expressions for the Stieltjés transform of the e.d.f. of the
eigenvalues of the sample autocorrelation matrix. That is, we
generalize the definition of R̂ as follows, R̂ = 1

iRWR† −
zIM , where z ∈ C+, such that the Stieltjés transform of the
e.d.f. of the eigenvalues of 1

iRWR† is given by GN
R̂

(z) =
1
M tr[R̂−1]. The result is necessarily stated in terms of the
additional random sequences ν̂N

1 , ρ̂N
1 , τ̂N

1 , ψ̂N
1 , ω̂N

1 , and
r̂N
1 ∈ C+. As in Theorem 2, the definitions of these variables

are in terms of matrix traces and quadratic forms, and are
lengthy. To facilitate the presentation of results, the definitions
of these variables are given in Appendix VII-A.

Theorem 3: Under the assumptions in Section II-E, as
(M,N,K, i) → ∞, with M/N → β > 0, K/N → α > 0,
and i/N → η > 0 fixed, the Stieltjés transform of the e.d.f.
of the eigenvalues of 1

iRWR†, GN
R̂

(z), z ∈ C+, along with
ν̂N
1 , ρ̂N

1 , τ̂N
1 , ψ̂N

1 , ω̂N
1 , and r̂N

1 ∈ C+ satisfy∣∣GN
R̂ (z)− γ̂1

∣∣ a.s.−→ 0, (33)∣∣ρ̂N
1 − ρ̂1

∣∣ a.s.−→ 0,
∣∣τ̂N

1 − τ̂1
∣∣ a.s.−→ 0, (34)∣∣∣ψ̂N

1 − ψ̂1

∣∣∣ a.s.−→ 0,
∣∣ω̂N

1 − ω̂1

∣∣ a.s.−→ 0, (35)∣∣ν̂N
1 − ν̂1

∣∣ a.s.−→ 0,
∣∣r̂N

1 − r̂1
∣∣ a.s.−→ 0. (36)

where γ̂1, ρ̂1, τ̂1, ψ̂1, ω̂1, ν̂1, and r̂1 ∈ C+ are solutions to

γ̂1 = ν̂1

(
1 +

α

β
ρ̂1(ψ̂1 − w̄)Ê1,1

)
, (37)

ν̂1 =
1

σ2W1,1 − z
, (38)

ρ̂1 =


ν̂1β

∗Ĥ1,1 , i.i.d. S,
ν̂1β

∗Ĥ1,1

1− β(1− γ̂1/ν̂1)
, iso. S,

(39)

τ̂1 = αp̄w̄ +


α(ψ̂1 − w̄)Ê1,1 , i.i.d. S,
α(ψ̂1 − w̄)Ê1,1

1− β(1− γ̂1/ν̂1)
, iso. S,

(40)

β∗ = min(β, 1), and

ψ̂1 = w̄ −


W1,1 , i.i.d. B,

W1,1

1− β
η∗ (1− γ̂1/ν̂1)

, ort. B, (41)

ω̂1 =


α

η
ρ̂1Ê1,1 , i.i.d. B,

α
η ρ̂1Ê1,1

1− β
η∗ (1− γ̂1/ν̂1)

, ort. B,
(42)
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η∗ = max(η, α), and

Êp,1 = E

[
P p

1− P ρ̂1(ψ̂1 − w̄)

]
, (43)

Ĥp,1 = E
[

Hp

1−Hν̂1(τ̂1 − αp̄w̄)

]
, (44)

Wp,1 = E
[

W p

1 +Wr̂1

]
, (45)

r̂1 = ω̂1 +
β

η
σ2γ̂1 , (46)

for p ∈ Z∗. The expectations in (43), (44), and (45) are
with respect to the scalar random variables P , H , and W ,
respectively, where the distributions of P , H , and W are
the a.e.d.s of A2, the first β∗N eigenvalues of H‡, and W,
respectively. Also, p̄ = E[P ] and w̄ = E[W ].

Proof: See Appendix VII.
Remarks:
• If (37)–(46) has a unique solution γ̂1, ν̂1, ρ̂1, τ̂1, ψ̂1,
ω̂1, r̂1 ∈ C+ for any given z ∈ C+, then Theorem
3 additionally gives that the e.d.f. of the eigenvalues
of 1

iRWR† almost surely converges in distribution to
a deterministic distribution, whose Stieltjés transform is
GR̂(z).

• Note that for i.i.d. B and µ → 0 (i.e., i.i.d. training
sequences and no diagonal loading), W1,1γ̂1, W1,1ρ̂1,
and W1,1(τ̂1−αp̄w̄) satisfy the same equations as γ1, ρ1,
and (τ1 − αp̄) from Theorem 1. Moreover, due to (50),
we have that W1,1 is a function of only β, η, and the
window shape. This observation, along with the alternate
MMSE SINR expression of Section IV-B, are the key
elements in determining the relationship between the ALS
and MMSE SINRs, outlined later in Section VI.

• For exponential weighting with L̄ < ∞ (where L̄ is
the large-system window size defined in Section II-E),
in Appendix VI the e.d.f. of W is shown to converge in
distribution to the fixed distribution

FW (w) = 1 +
L̄

η
lnw , e−η/L̄ ≤ w ≤ 1 (47)

which is the relevant distribution of W required in (45).
Also, for z → Re(z), values of Wm,1 which are required
can be evaluated using (47), and are given by

W0,1 =
L̄

η
log

(
1 + e−η/L̄r̂1

1 + r̂1

)
+ 1 , (48)

W1,1 =
1
r̂1

(1−W0,1) . (49)

• In fact, (37) is one of many possible expressions, which
can be derived from the identity 1

M tr[R̂R̂−1] = 1. Other
expressions involving γ̂1 derived in this manner include

β(1 + zγ̂1) = η(1−W0,1) , (50)
β(1− γ̂1/ν̂1) = ηω̂1W1,1 (51)

= α(1− Ê0,1) = −αρ̂1(ψ̂1 − w̄)Ê1,1 (52)

= β∗(1− Ĥ0,1) = −ν̂1(τ̂1 − αp̄w̄)β∗Ĥ1,1 . (53)

Note the similarity to the expressions (22)–(23), derived
in a similar manner for the MMSE receiver. These
expressions, derived in Appendix VII, are used in the
proof of Theorem 3.

• Note that Êp,1, Ĥp,1, and Wp,1 are all of the form Xp,1 =
E [Xp/(1 + xX)], for which the following simple and
useful identity holds.

E[Xp] = E
[
Xp 1 + xX

1 + xX

]
= Xp,1 + xXp+1,1 (54)

for p ∈ Z∗. Observe also that the last equality in each of
(22), (23), (52) and (53) follows from the identity (54), as
does (49). This identity also relates (50) to (51), although
in a less obvious way.

• The set of equations in Theorem 3 can be solved numeri-
cally in a similar manner to that discussed for the MMSE
case after Theorem 1. Here, however, it is advantageous
to consider (39) and (42) as a two-dimensional equation
in the variables9 ρ̂1 and r̂1. During zero finding, given
these values, the remaining variables γ̂1, ν̂1, τ̂1, ψ̂1, ω̂1,
Ê1,1, Ĥ1,1, and W1,1 can be directly calculated.

• For reference, an independent treatment of the as-
ymptotic distribution of sample covariance matrices of
information-plus-noise signals is given in [25].

Using Theorem 3, we may now calculate ρ̂1 and ψ̂1, which
are asymptotically equivalent to ρ̂N

1 and ψ̂N
1 , two of the

quantities which appear in the asymptotic SINR expression
of Theorem 2.

The following Lemma gives expressions, which may be
solved for quantities asymptotically equivalent to ρ̂N

j , ψ̂
N
j ∈

R∗, j = 2, 4, and which occur in (31) of Theorem 2. This
Lemma introduces more auxiliary random sequences, namely,
γ̂N

j , ρ̂N
j , ψ̂N

j , ω̂N
j , r̂N

j ∈ R∗, j = 2, 3, 4, plus ν̂N
j , τN

j ∈ R∗,
j = 2, 3, which are defined in terms of matrix traces and
quadratic forms in Appendix VII-A.

Lemma 1: In addition to the assumptions and definitions
of Theorem 3, under the limit specified,

∣∣γ̂N
j − γ̂j

∣∣ a.s.−→ 0,∣∣ρ̂N
j − ρ̂j

∣∣ a.s.−→ 0,
∣∣∣ψ̂N

j − ψ̂j

∣∣∣ a.s.−→ 0,
∣∣ω̂N

j − ω̂j

∣∣ a.s.−→ 0,∣∣r̂N
j − r̂j

∣∣ a.s.−→ 0, j = 2, 3, 4, and
∣∣ν̂N

j − ν̂j

∣∣ a.s.−→ 0,∣∣τN
j − τj

∣∣ a.s.−→ 0, j = 2, 3, where γ̂j , ρ̂j , ψ̂j , ω̂j , r̂j ∈ R∗,
j = 2, 3, 4, and ν̂j , τj ∈ R∗, j = 2, 3, are solutions to the
following equations.

γ̂j =


z−†(

η

β
r̂2W1,2 − γ̂1) , j = 2,

β∗

β
(ν̂2Ĥ1,2 + |ν̂1|2 τ̂2Ĥ2,2)) , j = 3,

α

β
(ρ̂2Ê1,2 + ψ̂2 |ρ̂1|2 Ê2,2) , j = 4,

(55)

ν̂j =

{
|ν̂1|2 (1 + σ2r̂2W2,2) , j = 2,
σ2 |ν̂1|2 r̂3W2,2 , j = 3,

(56)

9That is, unless z → 0 is being considered (i.e., no diagonal loading),
in which case it is necessary to instead consider ρ̂1 and ω̂1 as the search
variables, since r̂1 depends only on β, η, and W0,1 due to (50).
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ρ̂j =


β∗(ν̂2Ĥ1,2 + τ̂2 |ν̂1|2 Ĥ2,2)− αψ̂2 |ρ̂1|2 Ê1,2 , j = 2,
β∗(ν̂3Ĥ1,2 + (1 + τ̂3) |ν̂1|2 Ĥ2,2)− αψ̂3 |ρ̂1|2 Ê1,2 , j = 3,
α(ρ̂3Ê1,2 + ψ̂3 |ρ̂1|2 Ê2,2 − (1 + ψ̂4) |ρ̂1|2 Ê1,2) , j = 4,

α(Ê0,2 − 1) + 1
, (59)

τ̂j =

{
α(ψ̂2Ê1,2 + |w̄ − ψ̂1|2ρ̂2Ê2,2)− β∗ν̂2 |αp̄w̄ − τ̂1|2 Ĥ1,2 , j = 2,
α(ψ̂3Ê1,2 + |w̄ − ψ̂1|2ρ̂3Ê2,2)− β∗ |αp̄w̄ − τ̂1|2 (ν̂3Ĥ1,2 + |ν̂1|2 Ĥ2,2) , j = 3,

β∗(Ĥ0,2 − 1) + 1
, (60)

For i.i.d. S,

ρ̂j =


β∗(ν̂2Ĥ1,2 + |ν̂1|2 τ̂2Ĥ2,2) , j = 2,
β∗(ν̂3Ĥ1,2 + |ν̂1|2 (1 + τ̂3)Ĥ2,2) , j = 3,
α(ρ̂3Ê1,2 + ψ̂3 |ρ̂1|2 Ê2,2) , j = 4,

(57)

τ̂j = α(ψ̂j Ê1,2 + |w̄ − ψ̂1|2ρ̂j Ê2,2) , j = 2, 3, (58)

while for isometric S, see (59)–(60). For i.i.d. B,

ψ̂j = r̂jW2,2 , (61)

ω̂j =

{
α
η (ρ̂j Ê1,2 + |ρ̂1| ψ̂j Ê2,2) , j = 2, 3,
α
η (ρ̂4Ê1,2 + |ρ̂1|2 (1 + ψ̂4)Ê2,2) , j = 4,

(62)

while for orthogonal B,

ψ̂j =r̂jW2,2 −
α

η∗
|w̄ − ψ̂1|2ρ̂j Ê1,2 , j = 2, 3,

r̂4W2,2 −
α

η∗
|w̄ − ψ̂1|2(ρ̂4Ê1,2 + |ρ̂1|2 Ê2,2) , j = 4,

α
η∗ (Ê0,2 − 1) + 1

,

(63)
ω̂j =
α

η
(ρ̂j Ê1,2 + |ρ̂1|2 ψ̂j Ê2,2)− σ2 β

η∗
γ̂j |ω̂1|2W2,2 , j = 2, 3,

α

η
(ρ̂4Ê1,2 + |ρ̂1|2 (1 + ψ̂4)Ê2,2)− σ2 β

η∗
γ̂4 |ω̂1|2W2,2 , j = 4,

η
η∗ (|ω̂1|2W2,2 − 2 Re(ω̂1W1,1)) + 1

.

(64)

Also,

Êp,2 = E

[
P p

|1− P ρ̂1(ψ̂1 − w̄)|2

]
, (65)

Ĥp,2 = E

[
Hp

|1−Hν̂1(τ̂1 − αp̄w̄)|2

]
, (66)

Wp,2 = E

[
W p

|1 +Wr̂1|2

]
, (67)

r̂j = ω̂j + σ2 β

η
γ̂j , j = 1, . . . , 4, (68)

for p ∈ Z∗, where γ̂1, ν̂1, ρ̂1, τ̂1, ψ̂1, ω̂1, r̂1, Êq,1, Ĥq,1,
and Wq,1, q ∈ Z∗, are determined by Theorem 3, and again
z → −µ/η.

Proof: The proof of Lemma 1 follows the same approach
as the derivation of Theorem 3. That is, the above expressions

for ν̂j , ρ̂j , τ̂j , ψ̂j , ω̂j , and r̂j are derived in the same manner
as the expressions for ν̂1, ρ̂1, τ̂1, ψ̂1, ω̂1, and r̂1 in Theorem
3, respectively. Also, as the expression for γ̂1 in Theorem 3 is
derived from the identity R̂R̂−1 = IM , so the expression for
γ̂2 in (55) is derived from the identity R̂†R̂−†R̂−1 = R̂−1.
A full derivation can be found in [26, Appendix D.7].

Remarks:
• For exponential weighting with L̄ < ∞, as z → Re(z),

the required expressions for Wm,2 can be evaluated using
(47), and are given by

W1,2 =
w̄

(1 + r̂1)(1 + e−η/L̄r̂1)
, (69)

W2,2 =
1
r̂1

(W1,1 −W1,2) , (70)

where w̄ = L̄
η (1− e−η/L̄).

• Note that Êp,2, Ĥp,2, and Wp,2 are all of the form Xp,2 =
E
[
Xp/ |1 + xX|2

]
, for which the following simple and

useful identity holds.

Xp,1 = E

[
(1 + x†X)Xp

|1 + xX|2

]
= Xp,2 + x†Xp+1,2 (71)

for p ∈ Z∗. This identity can be used to simplify the
calculation of certain terms in Lemma 1, and also gives
(70).

• These equations can be solved numerically using three
zero-finding routines, two of which are for two variables,
while the third is for one variable. Specifically,

1) First solve the subset of equations given by (68),
(55), (56), and depending on the type of S, (57) and
(58), or (59) and (60), and depending on the type of
B, (61) and (62), or (63) and (64), to find r̂2, γ̂2, ν̂2,
ρ̂2, τ̂2, ψ̂2, and ω̂2. This can be done numerically
using a zero-finding routine for the two variables r̂2
and ρ̂2.

2) Solve the subset of equations given by (68), (55),
(56), and depending on the type of S, (57) and (58),
or (59) and (60), and depending on the type of B,
(61) and (62), or (63) and (64), to find r̂3, γ̂3, ν̂3,
ρ̂3, τ̂3, ψ̂3, and ω̂3. This can be done numerically
using a zero-finding routine for the two variables ω̂3

and ρ̂3.
3) Now solve the subset of equations given by, (68),

(55), and depending on the type of S, (57) or (59),
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and depending of the type of B, (61) and (62), or
(63) and (64), to find r̂4, γ̂4, ρ̂4, ψ̂4, and ω̂4. This
can be done numerically with a zero-finding routine
for one variable, namely ψ̂4.

• The solution (55) is one of many possible ex-
pressions, which can be derived from the identity
1
M tr[R̂†R̂−†R̂−1] = 1

M tr[R̂−1]. All possible expres-
sions involving γ̂2 derived in this manner include

γ̂1 + z†γ̂2 =
η

β
r̂2W1,2 , (72)

γ̂2ν̂1 − γ̂1ν̂2 =
α

β
((ψ̂1 − w̄)†ρ̂2 + ρ̂1ψ̂2) |ν̂1|2 Ê1,2 (73)

=
β∗

β
((τ̂1 − αp̄w̄)†ν̂2 + ν̂1τ̂2) |ν̂1|2 Ĥ1,2 . (74)

When solving the set of equations in Lemma 1, both
of these expressions are more useful than (55) when
considering z → 0 (i.e. no diagonal loading).

B. Steady-State ALS SINR

We now determine the steady-state ALS SINR, that is, the
SINR as the number of training intervals η → ∞ (either
with a training sequence, or semi-blind), from the transient
ALS SINR expressions in Section V-A. Of course, with no
windowing (i.e., W = Ii), the output SINR converges to
that of an MMSE receiver with full CSI. We first verify this
result, and then turn to the more interesting case of data
windowing and (optionally) diagonal loading. We will see
that the steady-state response is the same for both i.i.d. and
orthogonal training sequences, which matches intuition, since
i.i.d. training sequences become orthogonal as η →∞.

An approximate analysis of the steady-state performance of
the ALS receiver with exponential windowing was presented
in [9] for DS-CDMA with flat fading. The large-system steady-
state ALS performance is considered in [16, Corollary 2]. In
[16], results from asymptotic analysis of reduced rank filters
are used, which rely on arguments related to non-crossing
partitions. Here we give a more direct derivation of the large-
system steady-state performance of the ALS receiver for the
general transmission model (1).

Strictly speaking, Theorems 1 and 3 require z ∈ C+, how-
ever for the following discussion we shall implicitly consider
z → −σ2 and z → −µ/η, respectively.

1) No Windowing: We first consider the limit of the equa-
tions in Theorem 3 as η → ∞, and show that without
windowing (i.e., W = Ii) the ALS SINR converges to the
MMSE SINR.

First note that ω̂1 → 0 for both i.i.d. and orthogonal B,
which means Wp,q → 1, and therefore ψ̂1 → 0 and ν̂1 →
1/σ2. Moreover, Êp,q → Ep,q and Ĥp,q → Hp,q from Theorem
1. We see that the expressions for the ALS moments γ̂1, ρ̂1

and τ̂1 from Theorem 3 converge to the MMSE moments γ1,
ρ1, and τ1, respectively, in Theorem 1 at z → −σ2 as η →∞.

Now consider the limit of the equations in Lemma 1 with
no windowing as η → ∞. Clearly, ω̂2, ω̂3, and ω̂4 all → 0,
and hence also ψ̂2, ψ̂3, and ψ̂4 also → 0 for either i.i.d. or
orthogonal B. It follows that ν̂2 → (1/σ2)2 and ν̂3 → 0.

Substituting the preceding limits into (57)–(60), we see
immediately that as η →∞, the variables ρ̂2, ρ̂3, ρ̂4, τ̂2, and
τ̂3 satisfy the same set of equations as ρ2, ρ3, ρ4, τ2, and τ3 for
the MMSE receiver, which appear in the SINR expression in
Section IV-B, given by (25)–(28). Therefore, ρ̂4 +σ2ρ̂2 → ρ1

as η → ∞, and therefore the ALS SINR converges to the
MMSE SINR as η →∞. The diagonal loading constant µ/η
disappears in this limit.

2) Fixed-Length Data Windowing: The following results
apply to fixed-length windowing functions. That is, the large-
system window size does scale with η.10 For example, in the
case of exponential windowing this corresponds to fixed L̄.
More precisely, we define fixed-length windowing as

lim
η→∞

ηE[Wη] > 0 , (75)

lim
η→∞

FWη (w) =

{
0 , w < 0,
1 , w ≥ 0.

(76)

where, for given η, Wη denotes a scalar r.v. with distribution
FWη

(w), given by the (compactly supported) a.e.d. of W.
In other words, FWη converges in distribution to a delta-
distribution at zero as η → ∞, with the mean of Wη of
order η−1. For example, for exponential windowing, the mean
window size is w̄ = L̄

η (1− e−η/L̄).
We have the following corollary to Theorem 2, Theorem

3, and Lemma 1, which specifies the steady-state ALS SINR
with fixed-length windowing.

Corollary 1: Under the limit specified in Theorem 2, and
also as η → ∞, provided all asymptotic moments exist, the
asymptotic steady-state SINR for the ALS receiver for stream
k with fixed-length windowing is given by the asymptotic ALS
SINR specified in Theorems 2, 3, and Lemma 1, where
• the i.i.d. B relations are used for both i.i.d. and ort. B,
• z is replaced by −µ,
• η is replaced by one, and,
• the variables w̄ and Wp,q are replaced by w̃ and W̃p,q,

where

w̃ = lim
η→∞

ηw̄ , (77)

W̃p,q = lim
η→∞

ηWp,q . (78)
Proof: See Appendix IX.

Remark:
• With exponential windowing, w̃ = L̄, and from (78) we

have

W̃1,1 =
β(1− µγ̃1)

r̃1
, (79)

W̃1,2 =
L̄

1 + r̃1
, (80)

W̃2,2 =
1
r̃1

(
W̃1,1 − W̃1,2

)
, (81)

where r̃1 = exp( β
L̄

(1−µγ̃1))−1, and we have used (50)
to obtain (79).

10Of course, the actual window size should increase with N in order to
define a meaningful large-system limit, as explained in Section II-E. Here we
are referring to the large-system window size after the large-system limit has
been determined. With exponential windowing this is the difference between
L and L̄.
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VI. RELATIONSHIP BETWEEN MMSE AND ALS
RECEIVERS

In this section we present a simple relationship between
the SINRs of the MMSE and ALS receivers given in the
previous sections. We note that this relationship has recently
been studied in the special case H = IN , i.i.d. S, i.i.d. training,
and no diagonal loading. An approximate relation was given
for rectangular windowing in [17], with a corresponding exact
large-system expression given in [16, Corollary 1]. Also, [9]
obtained approximate expressions for the steady-state SINR
relationship (η →∞) with exponential windowing.

A. Transient Response

The following theorem applies to any H, both i.i.d. and
isometric S, and any windowing shape. The only restrictions
are that there is i.i.d. training and no diagonal loading (i.e.,
µ = 0). The theorem relates the expressions in Theorem 3 and
Lemma 1 to the alternate MMSE SINR expression of Section
IV-B.

Theorem 4: For the kth data stream, the asymptotic SINR
of the full-CSI MMSE receiver SINRMMSE

k is related to the
asymptotic SINR of the ALS receiver with i.i.d. training se-
quences, data windowing, and no diagonal loading, SINRALS

k ,
according to

SINRALS
k =

SINRMMSE
k

ζ + ζ−1
SINRMMSE

k

(82)

with training sequences, and

SINRALS
k =

SINRMMSE
k

ζ + (ζ − 1)SINRMMSE
k

(83)

for semi-blind training, with either i.i.d. or isometric S, where

ζ =
W1,1

W1,2
(84)

which depends only on η, β, and the window shape.
Proof: See Appendix X.

Remarks:
• To calculate ζ, note that from (50) we have W0,1 = 1−

β
η for any window shape. Since W0,1 is a fixed known
function of r̂1, we can invert this equation to find r̂1. For
example, with exponential windowing, we obtain from
(48) that

r̂1 =
eβ/L̄ − 1

1− e(β−η)/L̄
(85)

and with rectangular windowing, r̂1 = β/(η− β). Given
r̂1, we can directly calculate Wp,q from the definition
given in (45), and ζ from (84). The point here is that r̂1,
Wp,q, and ζ are essentially constants, depending only on
β, η, and the window shape.

• Remarkably, Theorem 4 implies that SINRALS
k only de-

pends on β, η, the window shape, and SINRMMSE
k . That

is, the convergence rate of the ALS SINR to the steady-
state value is independent of the channel (of course, the
steady-state value itself depends on the channel). Stating
this another way, for a particular β and window shape,

all channels, which have the same MMSE SINR, have
an identical transient ALS SINR response. ‘Channel’ here
refers to the product HSA. This has been observed in [9,
11], although a transient SINR relationship, such as that
given in Theorem 4, has not previously been determined.

• Recall that due to Proposition 1, Theorem 4 also holds
for the general AWGN model r = Cb + n for which
b is unitarily invariant, and the eigenvalues of C‡ are
well behaved. In that sense, Theorem 4 is a fundamental
property of linear estimation.

• In fact, our assumption that the additive noise nm is i.i.d.
complex Gaussian distributed is an unnecessary restric-
tion, as all results presented hold for any distribution such
that nm is unitarily invariant, and the elements of nm are
i.i.d. with zero mean and variance σ2.

• With exponential windowing we have

ζ =
β(1− e−η/L̄)

L̄(1− e(β−η)/L̄)(1− e−β/L̄)
(86)

and for rectangular windowing, we have ζ = 1+β/(η−
β). With rectangular windowing and β = 1 (i.e., square
H) this matches the expression derived in [16] for DS-
CDMA with i.i.d. signatures in flat fading.

Unfortunately, we do not have a compact expression, analo-
gous to Theorem 4, which relates the ALS and MMSE SINRs
with orthogonal training sequences and/or diagonal loading,
although it seems likely that such a relationship exists. What
we can say is that with orthogonal training sequences and no
diagonal loading the moments of Theorem 1 and Theorem 3
are related via

ρ̂1 =
DB

W1,1
ρ1 , (87)

γ̂1 =
1

W1,1
γ1 , (88)

τ̂1 =
W1,1

DB
(τ1 − αp̄) + αw̄p̄ , (89)

where DB = 1 − α
η∗ ρ1E1,1. Interestingly, these relationships

depend on the channel through DB (which was not the case
with i.i.d. training). Finding a complete compact relation for
the SINRs with orthogonal training and/or diagonal loading
remains an open problem.

B. Steady-State Response

For the steady-state response (η → ∞) with fixed-length
data windowing, Theorem 4 holds with

ζ =
W̃1,1

W̃1,2

(90)

where W̃p,q = limη→∞ ηWp,q. This result is proved simply
by letting η → ∞ in Theorem 4. Of course, this steady-state
relationship also holds for orthogonal training sequences.

With exponential weighting, we have from (86) that ζ =
β

L̄(1−e−β/L̄)
. Note that as L̄ → ∞ (i.e., as we increase the

window size) ζ → 1 (using L’Hôpital’s rule), and SINRALS
k →

SINRMMSE
k , as expected.



12 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. XX, XXXX 2006

In [9], similar approximate relationships were derived for
the steady state performance of the ALS receiver with expo-
nential windowing for DS-CDMA in flat fading. The equiva-
lent value of ζ there is ζ ′ = 1−ε

2ε (N − 1), which converges to
ζ ′ → 1

2L̄
+ 1 as N → ∞ after substituting ε = 1− 1

NL̄
. Fig.

1 shows a plot of this approximation, which is quite accurate
when compared to the exact large-system value at β = 1,
particularly for large L̄.

0 1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

3.5

L

ζ

β=4
β=2
β=1
β=1, Approximate value from Poor & Wang, 1997.
β=0.5

Fig. 1. ζ vs. L̄ for η = ∞ and a range of β, from (84).

C. Capacity Relationship

Consider the difference in capacity per data stream11 of the
MMSE and the ALS receivers, defined as MCk

ALS = log(1 +
SINRMMSE

k )− log(1+ SINRALS
k ). We have from (82) and (83)

MCk
ALS = ln

(
1 +

(
1− 1

ζ

)
SINRMMSE

k

)
(91)

with semi-blind training, and

MCk
ALS = ln

1 +

 1− 1
ζ

SINRMMSE
k −1

ζ + 1

SINRMMSE
k

 (92)

with training sequences.
As ζ → 1, the capacity difference approaches zero, whereas

as ζ → ∞, the difference approaches ln
(
1 + SINRMMSE

k

)
.

Recall that ζ only depends on η (the ratio of training symbols
to transmit dimensions), β (the ratio of receive to transmit
dimensions), and the window shape, and does not depend on
the SNR, the (normalized) number of data streams α, or the
channel distribution. Nor does this value depend on whether
S is i.i.d. or isometric. Fig. 1 shows the steady-state value of
ζ vs. L̄ with exponential windowing and a range of β values.

11That is, we are assuming each data stream is independently coded and
decoded. Also, we are assuming that the residual multi-access interference
(MAI) is Gaussian, which one would expect to be valid in the asymptotic
limit considered due to the central limit theorem.

VII. NUMERICAL STUDIES

We now present various applications of the results presented
in previous sections. We shall focus on three example systems:
• The first is the standard model of a MIMO channel with

rich scattering, for which we set H = IN and S i.i.d.,
so that K and N represent the number of transmit and
receive antennas, respectively.

• The second example system is CDMA in frequency-
selective Rayleigh fading, for which S contains either
i.i.d. or isometric signatures, and H is a square N ×N
matrix (hence β = 1), for which the a.e.d. of the channel
correlation matrix H‡ is exponential with mean one (i.e.,
fH(h) = exp(−h) for h > 0 is the density used to
compute the Ĥp,q values).

• The third example system is a SISO FIR channel with a
cyclic prefix, as described after Proposition 1 in Section
II-E, where h = [0.227, 0.46, 0.688, 0.46, 0.227]† (i.e.,
where the ALS and MMSE receiver is used to equalize
the so-called Proakis Channel-C [27, pp. 616]). That is,
the empirical results will be obtained using H given by
the circulant matrix obtained from h, and S = A = IN .
As described in Proposition 1, the analytic results are
obtained from the isometric S equations with α = 1, and
H distributed according to the spectra of h, i.e., FH(h) =
1
N

∑N
n=1 u(h − Q(n)), where u(t) is the step function,

and Q(n) = |DFTn
N (h)|2, where DFTn

N (h) denotes the
nth element of the N -point discrete Fourier transform of
h.

Unless otherwise stated, we shall assume equal transmit
power per data stream (i.e., A = IK), and SNR= 10 dB,
where SNR is defined as the energy transmitted per data stream
in each symbol interval, divided by σ2.

In the following plots we determine empirical values from
averages of a size N = 32 system with QPSK modulation
for comparison with the large-system results. The asymptotic
values for the MMSE curves have been determined from
Theorem 1, and the asymptotic values for the ALS curves have
been determined from Theorem 2, Theorem 3, and Lemma
1. The steady-state values of the ALS receiver have been
determined from Corollary 1. Where possible, the ALS SINR
has been determined from the MMSE SINR using Theorem
4 (i.e., any situation with i.i.d. training sequences and no
diagonal loading).

A. Transient ALS SINR response and comparison with empir-
ical values

1) MIMO example: Firstly, we demonstrate the relevance
of the large-system limit to practical finite systems. Fig. 2
shows both asymptotic and empirical values of MMSE and
ALS SINR vs. training length for the example MIMO system
with rich scattering. For the ALS receiver, the diagonal loading
value is µ = 0.1, and rectangular windowing is used. Clearly,
the empirical (finite) values match the analytic (asymptotic)
values very closely.

Note that the orthogonal training sequences clearly outper-
form the i.i.d. training sequences, particularly for ‘small’ η.
This gap also widens as the number of receive dimensions
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decreases. Also, the performance of the semi-blind ALS
receiver is comparable to the performance of the ALS receiver
with training for the 2 to 1 transmit to receive antennas ratio
case, but is significantly worse in the 1 to 2 transmit to receive
antennas ratio case.

2) CDMA in frequency-selective fading: Fig. 3 shows
empirical and asymptotic values of MMSE and ALS SINR
vs. η for the example CDMA system in frequency-selective
Rayleigh fading with α = 0.50. The ALS receiver uses rec-
tangular windowing and a diagonal loading constant µ = 0.1.
Curves are shown for both i.i.d. and isometric signatures, and
i.i.d. and orthogonal training sequences. Again, the empirical
(finite) values match the analytic (asymptotic) values.

Figure 3(b) shows the intuitively pleasing result that for a
small number of training symbols (i.e., small η), orthogonal
training sequences improve the performance of the ALS re-
ceiver more than isometric signatures, and as η increases, this
situation is quickly reversed. This is due to the fact that the K
i.i.d. training sequences of length i become ‘more orthogonal’
as i increases, and also since isometric signatures consistently
outperform i.i.d. signatures.

In subsequent plots, we shall omit the empirical values, and
concentrate on applications of the analytical results.

3) Equalization: Fig. 4 shows empirical and asymptotic
values of MMSE and ALS SINR vs. η for the example SISO
FIR system at 20dB SNR. The ALS receiver uses exponential
windowing and a diagonal loading constant µ = 0.1. Curves
are shown for both i.i.d. and orthogonal training sequences.
Note that Proposition 1 requires that bm is unitarily invariant,
whereas the empirical values in the figure are based on
standard QPSK modulation (i.e., bm is not unitarily invariant).
Clearly, at least in this case, the asymptotic results are a very
good approximation for non-unitarily invariant data vectors.

We remark that, in practice, an adaptive LS equalizer for
a SISO FIR channel would process the inputs sequentially,
as opposed to the block processing assumed here. Hence, the
convergence to steady-state would require much less training
than what is shown in Fig. 4. Characterizing the transient
performance of such an adaptive equalizer remains an open
problem.

B. Capacity with exponential windowing

Now we examine the performance of the ALS receiver with
both rectangular and exponential windowing, relative to the
MMSE receiver. Fig. 5 shows the capacity difference per-
signature as a function of the window size L̄ (determined from
(91) and (92)) for the example CDMA system in frequency-
selective Rayleigh fading with i.i.d. signatures, i.i.d. training,
and a system load of α = 0.75. Curves for the ALS receiver
are shown with both rectangular and exponential windowing,
and diagonal loading constant µ = 0. Also, fP (p) = 3

4δ(p −
1) + 1

4δ(p −
1
2 ), that is, one quarter of the signatures are

transmitted at half the power of the remaining signatures.
In this figure, we do not take into account the loss in rate due

to the training. This is considered in the following subsection.
Rather, for a single channel use at a certain SNR, we wish
to see the relative capacity of the MMSE receiver (using full

CSI) and the ALS receiver, as a function of the number of
training symbols used to generate the filter. Also, for the ALS
receiver, we wish to compare exponential windowing with
rectangular windowing at a given value of η as a function
of the exponential windowing window size, L̄.

Firstly, we see that for either type of windowing, increasing
the number of training symbols is an exercise in diminishing
returns. Also, we see that as the window size increases,
exponential windowing asymptotes to rectangular windowing,
as would be expected for the time-invariant system model (1).
Of course, exponential windowing is included to allow for
time-varying channels. As such, the curves for exponential
windowing are a valid approximation for a time-varying sys-
tem in which the coherence time of the system12 is at least as
large as the effective window size created by the exponential
windowing. As such, the values of capacity or SINR obtained
represent best possible values, which are only attained if the
system remains static for the duration of the ALS training
period. Extending these results to time-varying systems is an
open problem, and is likely to be difficult.

C. Application: Throughput Optimization

We now demonstrate how the results can be used to opti-
mize the throughput with packet transmissions. More training
symbols gives a higher ALS SINR, but leaves less room
for data-carrying symbols in the packet. Clearly, there is an
optimal ratio of training symbols to data-carrying symbols.
Such an optimization has been considered for MIMO block
fading channels and SISO FIR channels in [28, 29] with
an optimal (maximum-likelihood) receiver. In that work, the
training symbols are used to estimate the channel directly.
A lower bound on the capacity is derived, and is used to
optimize the training length. Related work in [30] applies the
large-system transient analysis in [16] for the MIMO i.i.d.
channel to optimize the training length with an ALS receiver
(without exponential windowing or diagonal loading). It is
shown there that for large packet lengths (`) the training length
that maximizes capacity grows as O(

√
`). Optimization of

power levels between the training and data symbols is also
investigated.

Suppose we consider a packet containing T > i symbols,
of which the first i are training symbols, and the remainder
consists of data-carrying symbols. There are K equal power
data streams, which are coded independently with capacity-
achieving13 codes with rate Rc = log2(1 + SINRALS). We
focus on the ALS receiver with known training symbols. The
number of information bits per block is therefore KRc(T −
i), while the number of transmit dimensions per block is
NT . Therefore, the number of information bits per transmit
dimension (hereafter referred to as ‘normalized capacity’) is
C = αReff, where Reff = Rc(1−η/`) and ` = T/N . We shall
consider the additional limit T → ∞ with T/N → ` > 0 in
order to optimize C with respect to the normalized training

12‘Coherence time’ here refers to the number of symbols over which HSA
and σ2 remain approximately constant.

13Here we assume that the residual interference at the receiver output is
i.i.d. circularly symmetric complex Gaussian.
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Fig. 2. SINR vs. training length: (Rich MIMO) equal transmit power per antenna, SNR= 10dB, µ = 0.1, rectangular windowing. Comparison with empirical
values N = 32, QPSK modulation.
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Fig. 3. SINR vs. training length: CDMA in frequency-selective fading, SNR=10dB, α = 0.50, µ = 0.1, rectangular windowing, equal power per signature,
exponential distribution for a.e.d. of H‡. Comparison with empirical values N = 32, QPSK modulation.

length η. We keep Eb/σ
2 = SNR/Reff constant, and unless

otherwise stated, in the numerical examples Eb/σ
2 = 10 dB.

Fig. 6(a) shows the normalized capacity of the example
CDMA system in frequency-selective fading as a function of
η and α for a normalized block length of ` = T/N = 15.
The ALS receiver uses rectangular windowing and no diagonal
loading. Fig. 6(b) shows the additional normalized capacity
obtained, relative to the results for i.i.d. training in Fig. 6(a),
if orthogonal training sequences are used. Although not shown,
plots analogous to Fig. 6 may also be obtained for iso. S.

Fig. 6(a) shows that there is an optimum value of η/`, i.e.,
the ratio of training length to block length, for each value
of system load, α. Fig. 7(a) shows the value of normalized

capacity at the optimum value of η, again for ` = 15,
as a function of the system load α. Fig. 7(b) shows the
corresponding value of η (expressed as a percentage of `)
which maximizes the normalized capacity. Also shown in Fig.
7(a) is the normalized capacity of the MMSE receiver at the
same value of Eb/σ

2, for both types of signatures. Of course,
the MMSE receiver assumes perfect CSI.

We now consider throughput optimization for the example
MIMO system, and consider the growth in normalized capacity
with respect to the normalized block length, `. In this example,
since K represents the number of transmit dimensions, the
number of transmit dimensions per block is KT , and hence
the number of information bits per transmit dimension is C =
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Fig. 5. Capacity difference between ALS and MMSE receivers vs. window size of exponential window: CDMA in frequency-selective fading, i.i.d.
signatures, i.i.d. training, SNR=10dB, α = 0.75, µ = 0, rectangular and exponential windowing. Note the window size for rectangular windowing is η. Also,
fP (p) = 3

4
δ(p− 1) + 1

4
δ(p− 1

2
). Curves shown correspond to the first 3/4 of the signatures. Note that the scale of the vertical axis of Fig. 5(b) is twice

that of Fig. 5(a).

Reff. Figure 8(a) shows the growth in normalized capacity,
optimized with respect to η/`. These results show that the
gain in using orthogonal training sequences appears to be more
pronounced in situations where there is a high ratio of transmit
antennas to receive antennas (i.e., α > 1).

Figures 8(b) and 9 show the optimal value of training
length η corresponding to Figure 8(a), for i.i.d. and orthogonal
training sequences, respectively. In Figure 8(b), η is expressed
as a percentage of the block length `. In Figure 9, it is
interesting to note the case α = 4, where we see that η < 4
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Fig. 4. SINR vs. training length: Equalization of Proakis C-channel (i.e.,
H circulant matrix constructed from impulse response, and S = A = IN )
at SNR=20dB. The ALS receiver uses µ = 0.1, exponential windowing,
with training using i.i.d. and orthogonal training sequences. Comparison with
empirical values N = 32, QPSK modulation. Analytic values are obtained
using isometric S equations with α = β = 1, as specified by Proposition 1.

is never optimal. Recall that for α > η, we have orthogonal
rows of B and for α < η, we have orthogonal columns of B.
Clearly, orthogonal columns are preferable. If the axis were
extended, we would see the same behavior in the other curves.

VIII. CONCLUSIONS

Determining the transient behavior of ALS algorithms with
random inputs is a classical problem, which is relevant to
many communications applications, such as equalization and
interference suppression. The large-system results presented
here are the first set of exact results, which characterize the
transient performance of ALS algorithms for a wide variety of
channel models of interest. Namely, our results apply to any
linear input-output model (see Proposition 1), where the input
is unitarily invariant, and the channel matrix has a well-defined
a.e.d. with finite moments. As such, these results can be used
to evaluate adaptive equalizer performance in the context of
space-time channels. This represents a significant generaliza-
tion of the previous large-system results in [16], which apply
only to an i.i.d. channel matrix. Furthermore, the analytical
approach relies only on elementary matrix manipulations, and
is general enough to allow for orthonormal spreading and/or
training sequences, in addition to i.i.d. sequences. Numerical
results were presented, showing that orthogonal training se-
quences can significantly outperform i.i.d. training sequences.

For the general ALS algorithm and model considered, the
output SINR can be expressed as the solution to a set of
nonlinear equations. These equations are complicated by the
fact that they depend on a number of auxiliary variables, each
of which is a particular large matrix moment involving the
sample covariance matrix. Still, it is relatively straightforward
to solve these equations numerically. Illustrative examples
were presented showing the effect of training length on the
capacity of a block fading channel.
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(b) Additional normalized capacity obtained using orthogonal training signa-
tures

Fig. 6. Throughput optimization: CDMA in frequency-selective fading, i.i.d. S, normalized block length T/N = 15, rectangular windowing, no diagonal
loading, Eb

σ2 =10 dB. Fig. 6(b) shows the additional normalized capacity (with respect to Fig. 6(a)) obtained if orthogonal training sequences are used.
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Fig. 7. Throughput optimization: CDMA in frequency-selective fading, normalized block length T/N = 15, rectangular windowing, no diagonal loading,
Eb
σ2 =10 dB, equal power per signature, exponential distribution for a.e.d. of H‡.

In the case of i.i.d. training sequences and no diagonal
loading, the set of equations for output SINR yields a simple
relationship between the SINRs for ALS and MMSE receivers,
which accounts for an arbitrary data shaping window. This
relation shows that ALS performance depends on the chan-
nel matrix only through the MMSE. In other words, ALS
performance is independent of the channel shape given a
target output MMSE. Whether or not an analogous relation
holds with orthogonal training sequences and/or diagonal
loading remains an open problem. Application of the analysis
presented here to more general channel models (e.g., multi-
user/multi-antenna) is also a topic for further study.

APPENDIX I
PRECURSOR TO ASYMPTOTIC ANALYSIS

Definition 1: Let {aN}N=1,... and {bN}N=1,... denote a
pair of infinite sequences of complex-valued random variables
indexed by N . These sequences are defined to be asymptot-
ically equivalent, denoted aN � bN , iff |aN − bN |

a.s.−→ 0 as
N → ∞, where a.s.−→ denotes almost-sure convergence in the
limit considered.
Clearly� is an equivalence relation, transitivity being obtained
through the triangle inequality. We shall additionally define
asymptotic equivalence for sequences of N × 1 vectors and
N × N matrices in an identical manner as above, where the
absolute value is replaced by the Euclidean vector norm and
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the associated induced spectral norm, respectively.
If aN � bN and xN � yN , it follows that (aN + xN ) �

(bN +yN ), again due to the triangle inequality. Multiplication,
however, requires a little more care.

Lemma 2: If aN � bN and xN � yN , and if |aN |, |yN |
and/or |bN |, |xN | are uniformly bounded above14 over N , then
aNxN � bNyN . Similarly, aN/xN � bN/yN if |aN |, |yN |−1

and/or |bN |, |xN |−1 are uniformly bounded above over N .
Proof: See Appendix II-A.

Note that the multiplicative part of Lemma 2 holds for
any mixture of matrices, vectors or scalars for which the
dimensions of aN and xN are such that aNxN makes sense,

14A sequence {aN}N=1,... of complex-valued N × 1 vectors or scalars
is uniformly bounded above over N if supN |aN | < ∞, or in the case of
complex-valued N ×N matrices, supN ‖aN‖ < ∞.

due to the submultiplicative property of the spectral norm.
The following definition and related results, however, are
concerned with scalar complex sequences.

Also, it can be shown that any of the requirements for
uniform upper bounds in Lemma 2 may be relaxed to either:

|zN | = O(lnp(N)) , 0 ≤ p <∞, (93)

or,

|zN | ≤ |z′N |
a.s.−→ c as N →∞, (94)

where c is a finite positive deterministic constant which does
not depend on N , and {z′N}n=1,... is a judiciously chosen
sequence which is used to bound |zN |. Here, |zN | is any of
|aN |, |bN |, |xN |, |yN |, |xN |−1, or |yN |−1. Also, f(N) =
O(g(N)) means that there exists some finite positive constant
C such that, for large enough N , Cg(N) is an upper bound
on f(N).

The relaxed bound in (93) is a consequence of the fact
that

∑∞
N=1

lnm(N)
Nn = d

dxm ζ(x)
∣∣
x=n

is finite for any finite
integers m ≥ 0 and n ≥ 2, and where ζ(x) is the Riemann
Zeta function. Of course, the uniform upper bound condition
is subsumed by (93) with p = 0.

Also, the relaxed bound in (94) is referred to as being
bounded above almost surely. That is, |zN | < 2c < ∞ for
all N > N ′ for N ′ sufficiently large, with probability one.

Definition 2: Let {{aN,n}n=1,...,N}N=1,... and
{{bN,n}n=1,...,N}N=1,... denote a pair of infinite sequences,
indexed by N . The N th element is a complex-valued sequence
of length N , indexed by n. These sequences are defined to be
uniformly asymptotically equivalent, denoted aN,n

n� bN,n,
iff maxn≤N |aN,n − bN,n|

a.s.−→ 0 as N →∞.
Also we define aN and bN,n (as defined in Definitions 1 and 2
above) as being uniformly asymptotically equivalent (denoted
aN

n� bN,n), if aN,n
n� bN,n where aN,n = aN for all n =

1, . . . , N .
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As was the case with �, if aN,n
n� bN,n and xN,n

n� yN,n, it
follows that (aN,n+xN,n)

n� (bN,n+yN,n). For multiplication
of two sequences, we have the following result, analogous to
Lemma 2.

Lemma 3: If aN,n
n� bN,n and xN,n

n� yN,n, and if
|aN,n|, |yN,n| and/or |bN,n|, |xN,n| are uniformly bounded
above over N and n, then aN,nxN,n

n� bN,nyN,n. Similarly,
aN,n/xN,n

n� bN,n/yN,n if |aN,n|, |yN,n|−1 and/or |bN,n|,
|xN,n|−1 are uniformly bounded above over N and n.
As in the discussion after Lemma 2, the requirements for
uniform upper bounds in Lemma 3 may be relaxed to either
of (93) or (94), except that in this case |zN | is any of
maxn≤N |aN,n|, maxn≤N |bN,n|, etc.

Lemma 4: If aN,n
n� bN,n, then 1

N

∑N
n=1 aN,n �

1
N

∑N
n=1 bN,n.
Proof: This follows immediately from∣∣∣∣∣ 1

N

N∑
n=1

(aN,n − bN,n)

∣∣∣∣∣ ≤ max
n≤N

|aN,n − bN,n| .

Lemma 5: For N = 1, . . ., let XN = MN − zIN , where
MN is an N ×N Hermitian matrix and z ∈ C+, and suppose
uN ∈ CN . Denote uN = u†NX−1

N uN . If |uN |−1 and ‖XN‖
are uniformly bounded above by b and B, respectively, then

Im(uN ) ≥ Im(z)(bB)−2

and hence uN ∈ C+.
Proof: See Appendix II-B.

The following lemma is an asymptotic extension of the
matrix inversion lemma, and is used extensively in the subse-
quent appendices to remove matrix dimensions as described
in Section III. It is based on an approach in [16].

Lemma 6: Let YN = XN + vNu†N + uNv†N + cNuNu†N ,
where vN ,uN ∈ CN , cN ∈ R∗, and XN = MN−zIN , where
MN is an N ×N Hermitian matrix and z ∈ C+. Denote

εN = u†NX−1
N vN ,

uN = u†NX−1
N uN ,

vN = v†NX−1
N vN .

Assume that as N →∞,

|εN |
a.s.−→ 0 (95)

and

b = sup
N
|uN |−1

<∞ , (96)

B = sup
N

max {‖XN‖, |vN | , |uN | , |cN |} <∞ . (97)

Then,∣∣∣∣Y−1
N uN −

X−1
N (uN − uNvN )

1− uN (vN − cN )

∣∣∣∣ a.s.−→ 0 , (98)∣∣∣∣Y−1
N vN −

X−1
N (−vNuN + (1 + cNuN )vN )

1− uN (vN − cN )

∣∣∣∣ a.s.−→ 0 ,

(99)

as N →∞, and

δ = inf
N
|1− uN (vN − cN )| > 0 (100)

where δ depends only on b, B, and Im(z).
Proof: See Appendix II-C.

In addition, we remark that it can be shown the restrictive
requirements of uniform upper bounds in (96)–(97) may be
replaced by bounds of the form given in either (93) or (94).

Lemma 7: Let AN be an N×N Hermitian matrix, and sup-
pose supN ‖AN‖ <∞. Using the definitions and assumptions
of Lemma 6, additionally define

ε
(1)
N = u†NX−1

N ANX−1
N vN , (101)

ε
(2)
N = v†NX−1

N ANX−1
N uN , (102)

úN = u†NX−1
N ANX−1

N uN , (103)

v́N = v†NX−1
N ANX−1

N vN . (104)

Then,

tr[ANY−1
N ] � tr[ANX−1

N ]

+
uN v́N + (vN − cN )úN − ε

(1)
N − ε

(2)
N

1− uN (vN − cN )
(105)

Proof: See Appendix II-D.
Lemma 8: [2, Lemma 2.6] Let z ∈ C+, A and B N ×N

Hermitian, τ ∈ R, and q ∈ CN×1. Then,∣∣tr [((B− zIN )−1 − (B + τqq† − zIN )−1
)
A
]∣∣ ≤ ‖A‖

Im(z)
.

Lemma 9: [32, Lemma 1] Let CN be an N ×N complex-
valued matrix with a uniformly bounded spectral norm, i.e.,
supN ‖CN‖ < ∞, and y = [X1, . . . , XN ]†/

√
N , where the

Xi’s are i.i.d. complex random variables with mean zero, unit
variance, and finite eighth moment. Then

E

[∣∣∣∣y†CNy − 1
N

tr[CN ]
∣∣∣∣4
]
≤ c

N2

where the constant c > 0 does not depend on N , C, nor on
the distribution of Xi.

Lemma 10: Let S be K < N columns of an N ×N Haar
distributed random matrix, and suppose s is a column of S.
Let XN be an N × N complex-valued matrix, which is a
non-trivial function of all columns of S except s, and has a
uniformly bounded spectral norm. Then, provided K/N →
α < 1 as (N,K) →∞,

E

[∣∣∣∣s†XNs− 1
N −K

tr[ΦXN ]
∣∣∣∣4
]

= O(N−2)

where Φ = IN − (S‡ − s‡).
Proof: This result is a straightforward extension of [7,

Proposition 4].
Throughout the subsequent derivations, we shall use the fact

that since we have assumed that the e.d.f.’s of A2, HH†,
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and W converge in distribution almost surely to compactly
supported non-random distributions on R∗, we have [33]

lim
K→∞

1
K

K∑
k=1

f(Pk) = E[f(P )] , (106)

lim
N→∞

1
β∗N

β∗N∑
n=1

f(d2
n) = E[f(H)] , (107)

lim
i→∞

1
i

i∑
m=1

f(wm) = E[f(W )] , (108)

almost surely, where dn is the nth singular value of H, and
f : R∗ → R∗ is any fixed, bounded, continuous function on
the support of the a.e.d. of A2, the first β∗N eigenvalues of
HH†, and W, respectively.

APPENDIX II
PROOFS FOR APPENDIX I

A. Lemma 2
Proof: The fact that aNxN � bNyN can be seen after

writing aNxN−bNyN = aNxN−bNyN +aNyN−aNyN and
hence |aNxN − bNyN | ≤ |aN | |xN − yN | + |yN | |aN − bN |.
Alternatively, we may add and subtract bNxN from aNxN −
bNyN to obtain |aNxN − bNyN | ≤ |xN | |aN − bN | +
|bN | |xN − yN |. The division property, aN/xN � bN/yN , can
be shown in the same way∣∣∣∣aN

xN
− bN
yN

∣∣∣∣ ≤
{ |aN ||xN−yN |

|xN ||yN | + |aN−bN |
|yN |

|bN ||xN−yN |
|xN ||yN | + |aN−bN |

|xN |
.

If we have that |yN | is uniformly bounded below by some
constant 0 < δ < ∞, then, given a realization for which
|xN − yN | → 0, we may take N ′ sufficiently large such that
|xN − yN | ≤ δ/2 and hence |xN | ≥ δ/2 for all N ≥ N ′.
Using this fact, and the uniform upper bounds for |aN | or
|bN |, we obtain the result. The same argument holds if we
have that |xN | is uniformly bounded below.

B. Lemma 5
Proof: First, we note the inequality (from the proof of

[31, Lemma 16.5])

x†x
x†Y−1x

≤ x†Yx
x†x

(109)

for any x ∈ CN , x 6= 0, and Hermitian positive definite N×N
complex-valued matrix Y.

Now,

Im(uN ) =
1
2j

u†N (X−1 −X−†)uN

= Im(z)u†N (X†X)−1uN (110)

and hence using (109) and the bounds for |uN |−1 and ‖XN‖,
we obtain

1
Im(uN )

=
1

Im(z)u†N (X†X)−1uN

≤
u†NX†XuN

Im(z)(u†NuN )2
≤ ‖X‖2

Im(z) |uN |2

which, with z ∈ C+ gives the result.

C. Lemma 6

Proof: We consider a realization for which (95) holds,
and take N ′ sufficiently large such that |εN | ≤ 1/2 so that

|1 + εN | ≥ 1/2 , ∀N ≥ N ′ . (111)

Now, note that uN ∈ C+ due to Lemma 5 and (96)–(97).
Also, due to the definition of XN ,

‖X−1
N ‖ ≤ Im(z)−1 . (112)

Therefore, |uN | ≤ B2 Im(z)−1 due to (97) and (112). Also,
Im(−u−1

N ) = Im(uN )/ |uN |2 and
∣∣u−1

N

∣∣ ≤ Im(uN )−1. Addi-
tionally, note that Im(vN ) ≥ 0, using an identical argument
to (110). Using these facts we obtain∣∣∣∣ 1

1− uNvN

∣∣∣∣ =
∣∣−u−1

N

∣∣∣∣−u−1
N + vN

∣∣ ≤
∣∣u−1

N

∣∣
Im(−u−1

N + vN )

≤
∣∣u−1

N

∣∣
Im(−u−1

N )
≤ |uN |2

Im(uN )2
≤
(
bB2

Im(z)

)4

. (113)

And so,

δ′ = inf
N
|1− uNvN | > 0 . (114)

In the same way, also using cN ∈ R∗, we obtain an identical
uniform upper bound on |1− uN (vN − cN )|−1, and hence
obtain (100).

In what follows, we will drop the dependence on N from
uN , vN , cN , uN , vN , XN , and YN to clarify the derivations.
Define X1 and X2 according to the following equations

Y = X2 + cuu† ,

X2 = X1 + uv† ,

X1 = X + vu†.

The matrix inversion lemma gives

Y−1 = X−1
2 − cX−1

2 uu†X−1
2

1 + cu†X−1
2 u

, (115)

X−1
2 = X−1

1 − X−1
1 uv†X−1

1

1 + v†X−1
1 u

, (116)

X−1
1 = X−1 − X−1vu†X−1

1 + u†X−1v
. (117)

First consider X−1
1 , and note from (117), (95), Lemma 2,

(97), (111), and (112) that

X−1
1 � X−1 −X−1vu†X−1 . (118)

In fact, in the remainder of the proof, we shall repeatedly use
(95), (97), (100), (111), (112) and (114) in order to apply
Lemma 2, without explicitly stating this, however, it should
be clear from the context.

From (118) we obtain

X−1
1 u � X−1(u− uv) , (119)

X−1
1 v � X−1v ,

v†X−1
1 � (v† − vu†)X−1 , (120)

u†X−1
1 � u†X−1 .
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From this, we obtain

u†X−1
1 u � u ,

v†X−1
1 v � v ,

v†X−1
1 u � −uv , (121)

u†X−1
1 v � 0 .

Before we consider X−1
2 , we first analyze the denominator

of the second term in (116). Firstly, due to (121), we may
take N ′ large enough such that

∣∣v†X−1
1 u + uv

∣∣ < δ′/2 for
all N ≥ N ′, and hence with (114) we obtain

∣∣1 + v†X−1
1 u

∣∣ ≥
δ′/2. With this fact, we obtain (1+v†X−1

1 u)−1 � (1−uv)−1,
since∣∣∣∣ 1

1 + v†X−1
1 u

− 1
1− uv

∣∣∣∣ =
∣∣v†X−1

1 u + uv
∣∣∣∣1 + v†X−1

1 u
∣∣ |1− uv|

≤ 2
(δ′)2

∣∣v†X−1
1 u + uv

∣∣ , ∀N ≥ N ′ . (122)

Now consider X−1
2 , for which from (116) and the preceding

discussion we obtain

X−1
2 v = X−1

1 v − X−1
1 uv†X−1

1 v
1 + v†X−1

1 u

� X−1
1 v − vX−1

1 u
1− uv

� 1
1− uv

X−1(−vu + v) .

Similarly,

X−1
2 u � 1

1− uv
X−1(u− uv) , (123)

v†X−1
2 � 1

1− uv
(−vu† + v†)X−1 ,

u†X−1
2 � 1

1− uv
(u† − uv†)X−1 , (124)

and so,

u†X−1
2 v � v†X−1

2 u � − vu

1− uv
,

u†X−1
2 u � u

1− uv
,

v†X−1
2 v � v

1− uv
,

1 + cu†X−1
2 u � 1− u(v − c)

1− uv
. (125)

Before considering Y−1, we note that from (97),
(100), (125), and similar arguments preceding (122), that∣∣1 + cu†X−1

2 u
∣∣ ≥ δ/2 for all N ≥ N ′′ for N ′′ sufficiently

large, and hence 1/(1+cu†X−1
2 u) � (1−uv)/(1−u(v−c)).

Considering Y−1 using (115) and the preceding discussion,
we obtain

Y−1u =
X−1

2 u
1 + cu†X−1

2 u
� 1

1− u(v − c)
X−1(u− uv) .

Similarly,

Y−1v = X−1
2 v − c

u†X−1
2 v

1 + cu†X−1
2 u

X−1
2 u

� X−1
2 v + c

vu

1− u(v − c)
X−1

2 u

� 1
1− u(v − c)

X−1(−vu + (1 + uc)v) .

D. Lemma 7

Proof: The proof continues from the proof of Lemma 6.
Again, we drop the subscript N for convenience. We see from
(95), (117), (111) and (101) that

tr[AX−1
1 ] � tr[AX−1]− ε(1)

while (116), (119), (120), (121), and (101)–(104) give

tr[AX−1
2 ] � tr[AX−1

1 ]− (v† − vu†)X−1AX−1(u− uv)
1− uv

= tr[AX−1
1 ] +

uv́ + vú− ε(2) − uvε(1)

1− uv
.

Similarly, (123), (124) and (101)–(104) give

u†X−1
2 AX−1

2 u � (u† − uv†)X−1AX−1(u− uv)
(1− uv)2

=
ú+ u2v́ − u(ε(1) + ε(2))

(1− uv)2

and finally (115) and (125) yield

tr[AY−1] � tr[AX−1
2 ]− c

1− uv

1− u(v − c)
u†X−1

2 AX−1
2 u .

Combining the above, we obtain (105).

APPENDIX III
PROOF OF THEOREM 1

The analysis in these appendices is based on removing
a single dimension from matrices and vectors, as described
in Section III. The dimension removed will correspond to a
particular data stream, transmit/receive dimension, or symbol
interval. For example, in what follows, Rtn represents the
matrix R with the nth transmit dimension removed. The
symbol tn is used in this case since the nth transmit dimension
is removed. We will use dk when removing the kth data stream,
and rm for removing the mth received symbol interval.

Appendix I contains several important definitions and results
required for the following analysis. In particular, we define

k�
and

n� according to Definition 2 in Appendix I, where the
maximum is over k ≤ K and n ≤ N , respectively, and the
limit is as (M,N,K) →∞ with K/N → α > 0 and M/N →
β > 0 constant, as described in Section II-E.
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A. Definitions

Let R = (HSA)‡ − zIM , z ∈ C+. The Stieltjés transform
of the e.d.f. of the eigenvalues of (HSA)‡ is given by
GN

R (z) = γN
1 , and the MMSE SINR in (5) is given by Pkρ

N
1,k,

where

γN
j =

1
M

tr[X(j)] , for j = 1. , (126)

ρN
j,k = h†kX

(j)
dk

hk , for j = 1, . . . , 4., 0 < k ≤ K,
(127)

where hk = Hsk, and

X(j) =


R−1 , j = 1,
R−†R−1 , j = 2,
R−†H‡R−1 , j = 3,
R−†(HSA)‡R−1 , j = 4.

Furthermore, X(j)
dk

is defined by removing the kth data stream,
0 < k ≤ K, from X(j), by replacing R, S, and A by Rdk

,
Sdk

, and Adk
, respectively, where

Rdk
= (HSdk

Adk
)‡ − zIM ,

Sdk
is S with the kth column removed, and Adk

is A with the
kth row and column removed. That is, Rdk

= R− Pkhkh
†
k.

The following proposition shows that we may substitute H
with an equivalent matrix, without lack of generality. This
substitution is essential in the analysis which follows.

Proposition 2: For the model (1), the distribution of both
the Stieltjés transform of the e.e.d. of (HSA)‡ and the MMSE
SINR are invariant to the substitution of VD for H, where V
is an M ×M Haar-distributed random unitary matrix, and D
is a M ×N diagonal matrix containing the singular values of
H.

Proof: Let T be an independent M×M Haar-distributed
random matrix. Now, note that the quantities of interest,
namely γN

j and ρN
j,k, are unchanged by the substitution of

TH for H. That is,

γN
1 =

1
N

tr[R−1] =
1
M

tr[T‡R−1]

=
1
M

tr[((THSA)‡ − zIM )−1] .

Writing THS = (TUM )D(U†
NS), where UMDU†

N is the
singular value decomposition of H, the unitary invariance of
T and S infers the result for the Stieltjés transform. A similar
treatment of ρN

j,k gives the result for the MMSE SINR.
Therefore, in the remainder of this appendix, we substitute
H with VD everywhere.15 We denote the nth column of V
as vn, for 0 < n ≤ M , and define vn = 0 for n > β∗N .
Define {d1, . . . , dβ∗N} as the diagonal elements of D, note
that β∗N = min(M,N), and define dn = 0 for n > β∗N .

For isometric S only, we also require the following general-
ization of the system model and asymptotic limit.16 We shall
assume that D and S have dimensions M × N̄ and N̄ ×K,

15We stress that VD is an equivalent matrix, as defined in Proposition 2,
as opposed to a decomposition of H.

16Without this step, it is not possible to show the uniform asymptotic
equivalence in (130).

respectively, where 0 < N̄ < N . Also, we shall include the
limit N̄ →∞ with N̄/N → ς where ς ∈ (0, 1). That is,

diag (D) = {d1, . . . , dβ∗N} ,
S† = [s̃1 · · · s̃N̄ ] ,

where the definition of β∗ is extended to β∗ = min(β, ς).
Note also that sk now has dimension N̄×1, and the maximum
involved in

n� shall be over n ≤ N̄ . The desired result will
be obtained by considering ς → 1−. For i.i.d. S, N̄ = N , and
hence ς = 1 and β∗ = min(β, 1).

We can now define

τN
j,n = u†nX(j)

tn
un , for j = 1, 2, 3., 0 < n ≤ β∗N, (128)

where un = Htn
Stn

A2s̃n. Also, X(j)
tn

denotes X(j) with
the effect of the nth transmit dimension removed, 0 < n ≤
β∗N , by replacing R, H, and S with Rtn

, Htn
, and Stn

,
respectively, where

Rtn = (HtnStnA)‡ − zIM ,

Htn = VtnDtn ,

and where Vtn and Stn are V and S with their nth column
and row removed, respectively, and Dtn is D with both the
nth column and row removed.

Returning to (127) and (128), note that these quadratic
forms are uniformly asymptotically equivalent to the following
expressions, derived in Appendix IV. These will be important
in the subsequent analysis.

ρN
j,k

k� ρN
j =

{
1
N tr[H‡X(j)] , i.i.d. S,

1
N−K tr[(HΠ)‡X(j)] , iso. S,

(129)

τN
j,n

n� τN
j =

{
1
N tr[(HSA2)‡X(j)] , i.i.d. S,

1
N−N̄

tr[(HSA2Ξ)‡X(j)] , iso. S,
(130)

where

Π2 = IN̄ − SS† , (131)

Ξ2 = IK − S†S . (132)

Also, note that

s†kH
†Hsk

k� β∗E[H] > 0 (133)

from Lemma 9 or Lemma 10, the Borel-Cantelli lemma, and
(107). The positivity of (133) is implied by β∗ > 0 and
E[H] > 0. Note that E[H] > 0 is implied by the assumption
that the distribution of H has a compact support on R∗, and
does not have all mass at zero.

In addition, letting cn = s̃†nA2s̃n and p̄ = E[P ], we have

cn
n� αp̄ . (134)

This is shown in a similar manner to (133) using (106). For
iso. S it first requires s̃n written as described before (178).

We now give several bounds on particular matrix and vector
norms which are required in order to apply Lemmas 2 and 3
later. Firstly, the assumption that z ∈ C+ gives

‖R−1‖ ≤ Im(z)−1 . (135)
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Secondly, the assumptions on H, S, and A outlined in Section
II imply

Hmax = sup
N
‖H‖2 <∞ , (136)

sup
N
‖A‖2 <∞ , (137)

‖S‖2 � (1 +
√
α)2 , (i.i.d. S), (138)

|sk|2
k� ς , (139)

|s̃n|2
n� α , (140)

where (138) is due to [34], while (139) and (140) are shown in
an identical manner to (133) and (134), respectively. Of course,
‖S‖ = 1 for isometric S. Moreover, (135)–(140) imply that
all of

‖R‖ , (141)
max
n≤N

max{|un| , |cn|} , (142)

max{
∣∣ρN

j

∣∣ , max
k≤K

∣∣ρN
j,k

∣∣} , for j = 1, . . . , 4. , (143)

max{
∣∣τN

j

∣∣ , max
n≤N

∣∣τN
j,n

∣∣} , for j = 1, . . . , 3. , (144)

are bounded above almost surely, that is, have a upper bounds
of form given in (94). For this to be the case for (141), it also
requires the assumption that |z| <∞.

B. Derivations

We start by applying Lemma 6 to R = Rdk
+Pkhkh

†
k, i.e.,

to extract the kth data stream from R, as described in Section
III. Namely, we substitute R, Rdk

, 0, hk, and Pk for YN ,
XN , vN , uN , and cN in the Lemma, respectively. Condition
(95) is satisfied trivially, while (133) and (136)–(141) satisfy
(96) and (97), respectively, in the almost-sure sense. Hence,17

Lemma 6 states that

R−1hk �
R−1

dk
hk

1 + PkρN
1,k

, (145)

inf
N

max
k≤K

∣∣1 + Pkρ
N
1,k

∣∣ > 0 , a.s. (146)

This may be applied to the following identity to obtain

1 =
1
M

tr[RR−1] = −zγN
1 +

1
M

K∑
k=1

Pkh
†
kR

−1hk

� −zγN
1 +

α

β

1
K

K∑
k=1

Pkρ
N
1,k

1 + PkρN
1,k

. (147)

Now, due to (129), (137), (143), (146), and Lemma 3, it
follows that

Pkρ
N
1,k

1 + PkρN
1,k

k� Pkρ
N
1

1 + PkρN
1

. (148)

From (147), (148), and Lemma 4 we obtain

1 + zγN
1 � α

β
ρN
1 EN

1,1 =
α

β
(1− EN

0,1) (149)

17Of course, (145) holds with = in place of �, due to the matrix inversion
lemma. We use Lemma 6 instead in order to obtain (146), which is needed
to show (148).

where

EN
p,1 =

1
K

K∑
k=1

P p
k

1 + PkρN
1

.

For future reference, note that from (145), following the
proof of (149) gives

1
N

tr[(HSA2)‡R−1] =
1
N

K∑
k=1

P 2
k ρ

N
1,k

1 + PkρN
1,k

� α(p̄− EN
1,1) ,

(150)

1
N

tr[(HS)‡R−1] =
1
N

K∑
k=1

ρN
1,k

1 + PkρN
1,k

� αρN
1 EN

0,1 .

(151)

To prove the remaining equations in Theorem 1, we consider
another expansion of the correlation matrix R, this time to
remove the nth transmit dimension, 0 < n ≤ β∗N , as
described in Section III.

R = (HtnStn + dnvns̃†n)A2(HtnStn + dnvns̃†n)† − zIM

= Rtn + dnunv†n + dnvnu†n + d2
ncnvnv†n (152)

where un and cn are defined after (128) and above (134),
respectively.

We now apply Lemma 6 to (152), where YN , XN , vN , uN ,
and cN in the statement of the Lemma correspond to R, Rtn ,
dnun, vn, and cn, respectively. We shall now verify that the
conditions of the Lemma are satisfied. For any n ≤ β∗N , since
H†

tn
vn = 0 we have Rtn

vn = −zvn and R†
tn

vn = −z†vn,
and moreover

v†nR−1
tn

vn = −z−1 , (153)

u†nR−1
tn

vn = v†nR−1
tn

un = 0 , (154)

where v†nR−1
tn

vn corresponds to uN in the Lemma, and (154)
satisfies condition (95) of the Lemma. Since |vn| = 1, condi-
tion (96) is satisfied, and along with (141)–(142) condition
(97) is satisfied in the almost-sure sense. Note that τN

1,n,
defined in (128), corresponds to vN in the Lemma. Therefore,

R−1vn �
R−1

tn

(
vn + dnz

−1un

)
1 + d2

nz
−1(τN

1,n − cn)
, (155)

R−1un �
R−1

tn

(
−dnτ

N
1,nvn + (1− d2

ncnz
−1)un

)
1 + d2

nz
−1(τN

1,n − cn)
, (156)

inf
N

min
n≤N̄

∣∣1 + d2
nz
−1(τN

1,n − cn)
∣∣ > 0 , a.s. , (157)

which we shall now use to derive (18) and (19). Note that (157)
will be required when using Lemma 3, to satisfy almost-sure
uniform bound conditions.

With i.i.d. S, we see from (130) that (150) gives an
expression for τN

1 . For isometric S, we see from (130) that in
addition to (150) we require

1
N

tr[(HSA2S†)‡R−1] =
1
N

N̄∑
n=1

tr[(HSA2s̃n)‡R−1]

=
1
N

N̄∑
n=1

tr[(un + dncnvn)‡R−1] (158)
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where we have used HSA2s̃n = un + dncnvn. Continuing
with the preceding application of Lemma 6, we may use
Lemma 7 to determine an equivalent asymptotic representation
of the argument in the sum in (158), where AN in the
statement of Lemma 7 corresponds to (un + dncnvn)‡. That
is, using (154), (155), and (156), we note that the terms cor-
responding to ε(1)N and ε(2)N are both asymptotically equivalent
to −d2

ncnz
−1τN

1,n, while the terms corresponding to úN , v́N ,
and tr[ANX−1

N ] are asymptotically equivalent to d2
nc

2
nz
−2,

d2
n(τN

1,n)2, and τN
1,n − d2

nc
2
nz
−1, respectively. Therefore, after

some algebra, we obtain from (105)

tr[(un + dncnvn)‡R−1] � cn +
τN
1,n − cn

1 + d2
nz
−1(τN

1,n − cn)
(159)

and from Lemma 3, (130), and (134) we obtain

cn +
τN
1,n − cn

1 + d2
nz
−1(τN

1,n − cn)
n� αp̄+

τN
1 − αp̄

1 + d2
nz
−1(τN

1 − αp̄)
(160)

noting that the bounds required for the application of Lemma
3 are almost-surely satisfied by (144), p̄ <∞, and (157).

We therefore obtain from (158), (159), (160), and Lemma
4 that
1
N

tr[(HSA2S†)‡R−1] � ςαp̄+ (τN
1 − αp̄)(β∗(HN

0,1 − 1) + ς)

(161)

where

HN
p,1 =

1
β∗N

β∗N∑
n=1

d2p
n

1 + d2
nz
−1(τN

1 − αp̄)
.

Moreover, from (130), (150), and (161) we have

τN
1 =

1
N − N̄

(
tr[(HSA2)‡R−1]− tr[(HSA2S†)‡R−1]

)
� 1

1− ς

(
α(p̄− EN

1,1)− ςαp̄− (τN
1 − αp̄)(β∗(HN

0,1 − 1) + ς)
)

(162)

or equivalently,

τN
1 � αp̄−

αEN
1,1

β∗(HN
0,1 − 1) + 1

. (163)

For i.i.d. S, using (129) and (154)–(155) in the same manner
as the derivation of (161), we have that

ρN
1 =

1
N

β∗N∑
n=1

d2
nv†nR−1vn � 1

N

β∗N∑
n=1

−z−1d2
n

1 + d2
nz
−1(τN

1,n − cn)

� −β∗z−1HN
1,1 (164)

and similarly from (129), (151), and (164) we obtain for
isometric S

ρN
1 � 1

1− α

(
−β∗z−1HN

1,1 − αρN
1 EN

0,1

)
. (165)

We now simplify the preceding solution by noting that
the identity 1

M tr[RR−1] = 1 may also be expanded in the

dimension N , as opposed to the dimension K in (149). That
is,

1 + zγN
1 =

1
M

β∗N∑
n=1

dns̃†nA2(S†tn
H†

tn
+ dns̃nv†n)R−1vn .

(166)

Applying (154) and (155) to the argument to the above sum
gives

s̃†nA2(S†tn
H†

tn
+ dns̃nv†n)R−1vn

�
(u†n + dncnv†n)R−1

tn
(vn + dnz

−1un)
1 + d2

nz
−1(τN

1,n − cn)
(167)

n� 1− 1
1 + d2

nz
−1(τN

1 − αp̄)
(168)

and so applying Lemma 4 to (166) with (168) gives

1 + zγN
1 � β∗

β
(1−HN

0,1) . (169)

We now use (169) and (149) to simplify (163) and (165)
in the case of isometric S. Combining (169) with (149) gives
1 + β∗(HN

0,1 − 1) � 1 − β(1 + zγN
1 ), which combined with

(163) gives

τN
1 � αp̄−

αEN
1,1

1− β(1 + zγN
1 )

. (170)

Similarly, combining (149) with (165) gives

ρN
1 �

−β∗z−1HN
1,1

1− β(1 + zγN
1 )

. (171)

In summary, the expressions (149), (150), (164), (170), and
(171) may be expressed as

x(N)(z) = Φ(N)
(
x(N)(z)

)
+ ε(N)(z) (172)

where x(N)(z) denotes the random vector
[γN

1 (z), ρN
1 (z), τN

1 (z)]T (Note that we have highlighted the
dependence of γN

1 , ρN
1 , and τN

1 on z for what follows). Also,
each element of ε(N) almost-surely converges to zero, and
the vector-valued function Φ(N) is given by

Φ(N)
(
x(N)(z)

)
=

 z−1
(

α
β ρ

N
1 (z)EN

1,1 − 1
)

−β∗z−1DN (z)HN
1,1

α(p̄−DN (z)EN
1,1)


where DN (z) = 1 for i.i.d. S, and DN (z) =(
1− β

(
1 + zγN

1 (z)
))−1

for isometric S.
We now show that x(N)(z) has a limit by the following

steps.18

1) Consider a countable family (zκ)κ∈N with an accumu-
lation point contained in a compact subset of C+.

2) Note that on a set Ω1(κ) with probability one,
ε(N)(zκ) → 0 for each κ.

3) Each element of the vector x(N) is analytic and bounded
on C+, due to the definitions (126) and (129)–(130).

4) Due to point 3, we may apply Montel’s theorem [36]
to state that there exists a subsequence x(N`) of x(N)

18This follows essentially the same steps as the proof of [35, Theorem 2.5].
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which converges uniformly on each compact subset of
C+ to a function x∗ analytic on C+. Denote x∗(z) =
[γ1(z), ρ1(z), τ1(z)]T .

5) Due to the almost-sure convergence of the e.d.f.’s of
HH† and A2, it follows from point 4, (106), and (107)
that, on {N`}, HN`

p,1 → Hp,1 and EN`
p,1 → Ep,1 for p =

0, 1, where

Ep,1 = E
[

P p

1 + Pρ1(z)

]
,

Hp,1 = E
[

Hp

1 +Hz−1(τ1(z)− αp̄)

]
.

6) Now, due to (172) and points 2, 4, and 5, on the set
Ω =

⋂
κ Ω1(κ) (which has probability one), we must

have that

x∗(zκ) = Φ∗ (x∗(zκ)) (173)

for each κ, where Φ∗ is the function

Φ∗ (x∗(z)) =

 z−1
(

α
β ρ1(z)E1,1 − 1

)
−β∗z−1D(z)H1,1

α(p̄−D(z)E1,1)

 (174)

where D(z) = 1 for i.i.d. S, and D(z) =
(1− β (1 + zγ1(z)))

−1 for isometric S.
7) Moreover, on Ω, since x∗(z) is analytic, we have the

analytic continuation x∗(z) = Φ∗ (x∗(z)) for each z ∈
C+ (due to the identity theorem [36]).

8) Assuming this set of equations has a unique solution
x(z), we have x∗(z) = x(z), and that on Ω, every
convergent subsequence of (x(N)(z))N∈N converges to
the same point x(z). Moreover, this implies almost-sure
convergence of the whole sequence, i.e., on Ω, x(N)(z)
converges to x(z) for each z ∈ C+, as stated in (14)–
(16).

Finally, (173)–(174) gives (17)–(19) at ς → 1−.

C. Shortcut to (163).
Note that due to the conditions of Lemma 10, the uniform

asymptotic equivalence in (130) does not hold for isometric
S if N̄/N → 1. This is the motivation for introducing the
independent parameter N̄ and specifying N̄/N → ς < 1.
Moreover, this extra step yields the trace expression in (130),
which was used in (162) to derive the relationship (163) for
τN
1 . However, the following argument shows that it is possible

to arrive at (163) directly, without introducing the parameter
N̄ , and without relying on Lemma 10 to provide an expression,
which does not depend on n.

First, we note that since S†S = IK , we may state
1
N

tr[(HSA2)‡R−1] =
1
N

tr[(HSA2S†)‡R−1] . (175)

Now we assume (without proof) that, τN
j,n is uniformly as-

ymptotically equivalent to another sequence, which does not
depend on n. In that case, for isometric S with N̄ = N , we
can write

τN
j,n

n� τN
j =

1
N

N∑
n=1

τN
j,n (176)

With this assumption, (161) holds at ς = 1, and combining
this with (175) and (150) gives

α(p̄− EN
1,1) � αp̄+ (τN

1 − αp̄)(β∗(HN
0,1 − 1) + 1) ,

which indeed corresponds to (163) at ς = 1. Moreover,
establishing the convergence of (172) to (173) is unaffected
by the parameter ς .

In what follows, we will use this argument as a shortcut
to derive analogous relations in Appendix VII. The assump-
tion (176) can be proven by introducing N̄ , and taking the
appropriate limits with N̄/N → ς < 1. Because we cannot
take N̄ = N when N is finite (see Lemma 10), this does not
establish (176) for N̄/N = 1. However, this assumption, com-
bined with (175), leads to the same expressions in Theorem
1, which are obtained by introducing the parameter N̄ , and
taking ς → 1− after the large-system limit.

APPENDIX IV
PROOF OF (129) AND (130) IN APPENDIX III.

Here we show maxk≤K

∣∣∣ρN
j,k − ρN

j

∣∣∣ a.s.−→ 0 and

maxn≤N

∣∣τN
j,n − τN

j

∣∣ a.s.−→ 0 for j = 1 in the limit considered.
The remaining cases j = 2, 3, 4 are shown in an identical
manner using the same results as outlined below.

For isometric S, we need the following representation.
Let θk and θ̃

†
n denote the kth column and nth row of the

N ×N Haar distributed matrix Θ from which S is obtained,
respectively. Define Ex = [Ix,0x,N−x] for 0 ≤ x ≤ N , so
that S = EN̄ΘE†K , sk = EN̄θk, s̃n = EK θ̃n, and therefore

ρN
1,k = tr[(HEN̄θk)‡R−1

dk
] , (177)

τN
1,n = tr[(HtnStnA2EK θ̃n)‡R−1

tn
] . (178)

Define

ρN ′

1,k =

{
1
N tr[H‡R−1

dk
] , i.i.d. S,

1
N−K tr[(HΠdk

)‡R−1
dk

] , iso. S,

ρN ′′

1,k =
1

N −K
tr[(HΠ)‡R−1

dk
] , iso. S,

Π2
dk

= Π2 + s‡k .

For i.i.d. S, we may apply Lemma 9 to (127). For isometric
S, we may we apply Lemma 10 to (177), noting that the
appropriate choice of orthogonal projection matrix is IN −
(ΘE†K)‡ + θ‡k, and simplify using

E†
N̄

(IN − (ΘE†K)‡)EN̄ = Π2

where Π is defined in (131). Hence we have ρN
1,k

k� ρN ′

1,k for
both i.i.d. and isometric S, due to the Borel-Cantelli lemma.

Now, for isometric S, we have
∣∣∣ρN ′

1,k − ρN ′′

1,k

∣∣∣ = 1
N−K

∣∣∣ρN
1,k

∣∣∣,
which with (143) gives ρN ′

1,k

k� ρN ′′

1,k . Also, from Lemma 8 we

have
∣∣∣ρN

1 − ρN ′′

1,k

∣∣∣ ≤ Hmax
Im(z)N for i.i.d. S, and ≤ Hmax

Im(z)(N−K) for

isometric S (Hmax is defined in (136)), and hence ρN ′′

1,k

k� ρN
1 .

Putting these together, we have ρN
1,k

k� ρN ′

1,k

k� ρN
1 for i.i.d. S,

and ρN
1,k

k� ρN ′

1,k

k� ρN ′′

1,k

k� ρN
1 for isometric S, as claimed in

(129).
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Turning our attention to τN
1,n, for i.i.d. S define

τN ′

1,n =
1
N

tr[(HtnStnA2)‡R−1
tn

] ,

τN ′′

1,n =
1
N

tr[(Htn
Stn

A2)‡R−1] .

Firstly, τN
1,n

n� τN ′

1,n from Lemma 9 and the Borel-Cantelli
lemma. Now, applying Lemma 7 to∣∣∣τN ′

1,n − τN ′′

1,n

∣∣∣ = 1
N

∣∣tr[(Htn
Stn

A2)‡(R−1 −R−1
tn

)]
∣∣

and using (143)–(144), and (157) it is straightforward to show
τN ′

j,n

n� τN ′′

j,n . Also,∣∣∣τN ′′

1,n − τN
1

∣∣∣ = ∣∣∣∣ 1
N

tr[R−1((HtnStnA2)‡ − (HSA2)‡)]
∣∣∣∣

=
∣∣∣∣ 1
N

tr[R−1(dnunv†n + dnvnu†n + d2
ncnvnv†n)]

∣∣∣∣
≤ 1
N Im(z)

(
2dn |un|+ d2

n |cn|
)

(179)

where un and cn are defined in Appendix III-A, and we have
used |vn| = 1 and (135). It is clear from (136) and (142)
that the terms inside the bracket of (179) are almost-surely
uniformly bounded above over N and n ≤ N , so τN ′′

1,n

n� τN
1 .

Moreover, as τN
1,n

n� τN ′

1,n

n� τN ′′

j,n

n� τN
1 , and therefore we

have completed the proof of (130) for i.i.d. S.
Now turning to (130) for isometric S, we may apply Lemma

10 to (178), where the appropriate choice of orthogonal
projection matrix is IN−((EN̄Θ)†)‡+θ̃

‡
n, and simplify using

EK

(
IN − ((EN̄Θ)†)‡

)
E†K = Ξ2 .

where Ξ is defined in (132). Then, using the same steps
outlined above in showing ρN

1,k

k� ρN
1 and τN

1,n

n� τN
1 for

i.i.d. S, it can be shown that τN
1,n

n� τN
1 also for isometric S.

APPENDIX V
ALTERNATE MMSE SINR OF SECTION IV-B

Note from (145) that the filter R−1
dk

hk has the same SINR
as R−1hk. The associated signal and interference powers

are Pk

∣∣∣ρN
1,k

∣∣∣2 and ρN
4,k + σ2ρN

2,k respectively, as defined
in Appendix III-A. It is easily shown that the latter term
simplifies to ρN

1,k (when z → −σ2), and hence the MMSE
SINR is Pkρ

N
1,k. Namely,

ρN
4,k + σ2ρN

2,k

= h†kR
−†
dk

(Rdk
+ zIM )R−1

dk
hk + σ2h†kR

−†
dk

R−1
dk

hk

→ h†kR
−1
dk

hk as z → −σ2 .

We now seek expressions for each of the variables which
enter the interference power, without using the preceding
simplification. Following on from the assumptions and results
of Appendix III, firstly, note that in extension to (153)–(154),

v†nX(j)
tn

vn =

{
|z|−2

, j = 2,
0 , j = 3,

(180)

v†nX(j)
tn

un = u†nX(j)
tn

vn = 0 , j = 1, 2, 3. , (181)

for n = 1, . . . , β∗N . Also, define

EN
p,2 =

1
K

K∑
k=1

P p
k∣∣1 + PkρN

1

∣∣2 ,
HN

p,2 =
1

β∗N

β∗N∑
n=1

d2p
n∣∣1 + d2

nz
−1(τN

1 − αp̄)
∣∣2 .

Considering terms which arise in ρN
j , defined in (129), we

have from (155) and (145), and additionally using (180)–(181),

1
N

tr[H‡X(j)] =

{
1
N

∑β∗N
n=1 d

2
nvnX(j)vn , j = 2, 3,

1
N

∑K
k=1 Pkh

†
kR

−†H‡R−1hk , j = 4.

�


β∗ |z|−2 (HN

1,2 + τN
2 HN

2,2) , j = 2,
β∗ |z|−2 (1 + τN

3 )HN
2,2 , j = 3,

αρN
3 EN

1,2 , j = 4.
(182)

which corresponds to ρN
j for i.i.d. S. Additionally note that

1
N

tr[(HS)‡X(j)] =
1
N

K∑
k=1

h†kX̂
(j)hk

�

{
αρN

j EN
0,2 , j = 2, 3.,

α(ρN
4 EN

0,2 +
∣∣ρN

1

∣∣2 EN
1,2) , j = 4.

(183)

Combining (182) and (183) according to (129) for isometric
S gives

ρN
j �



β∗ |z|−2 (HN
1,2 + τN

2 HN
2,2)

α(EN
0,2 − 1) + 1

, j = 2,

β∗ |z|−2 (1 + τN
3 )HN

2,2

α(EN
0,2 − 1) + 1

, j = 3,

α(ρN
3 EN

1,2 −
∣∣ρN

1

∣∣2 EN
1,2)

α(EN
0,2 − 1) + 1

, j = 4.

Considering terms which arise in τN
j , defined in (130), we

have from (145)

1
N

tr[(HSA2)‡X(j)] =
1
N

K∑
k=1

P 2
k h†kX

(j)hk � αρN
j EN

2,2

(184)

for j = 2, 3, which corresponds to τN
j for i.i.d. S. Additionally,

noting from (155)–(156) that

R−1(un + dncnvn) �
R−1

tn

(
un + dn(cn − τN

1,n)vn

)
1 + d2

nz
−1(τN

1,n − cn)

we obtain that

1
N

tr[(HSA2S†)‡X(j)] =
1
N

N̄∑
n=1

tr
[
(un + dncnvn)‡X(j)

]
� τN

j (β∗(HN
0,2 − 1) + ς) + β∗ |z|−2 ∣∣αp̄− τN

1

∣∣2HN
j−1,2

(185)

for j = 2, 3, also using (180). Combining (184) and (185)
according to (130) for isometric S, and solving for τN

j gives

τN
j �

αρN
j EN

2,2 − β∗ |z|−2 ∣∣αp̄− τN
1

∣∣2HN
j−1,2

β∗(HN
0,2 − 1) + 1

, j = 2, 3.

(186)
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It follows (using the same arguments outlined after (171)
in the proof of Theorem 1, this time assuming that (25)–(28)
has a unique solution) from Theorem 1, (106), (107), (182),
(183), (184), and (186), that for all z ∈ C+,

∣∣ρN
j − ρj

∣∣ a.s.−→ 0,
j = 2, 3, 4, and

∣∣τN
j − τj

∣∣ a.s.−→ 0, j = 2, 3, where ρj and
τj ∈ R∗ are solutions to (25)–(28). In addition, since ρN

4,k +

σ2ρN
2,k

k� ρN
4 +σ2ρN

2 and ρN
1,k

k� ρN
1 , the SINR satisfies (24).

APPENDIX VI
PROOF OF (47): CONVERGENCE OF THE E.D.F. OF W FOR

EXPONENTIAL WEIGHTING

With exponential weighting, the e.d.f. of the i × i matrix
W corresponds to the distribution of a random variable, Wi,
which is uniformly distributed on the set {εi(1−j/i) : j =
1, . . . , i}, where ε = (1 − η

L̄i
) is the exponential weighting

constant. The corresponding distribution function is FWi
(w).

To prove convergence in distribution of the a.e.d. of W to
FW (w), we show that limi→∞ FWi

(w) = FW (w) where
FW (w) is given in (47), i.e., pointwise convergence. We have

FWi(w) = Pr(Wi ≤ w) = Pr(εi(1−Ji) ≤ w)

= Pr
(
Ji ≤ 1− lnw

i ln ε

)
=

1
i

i∑
j=1

u

(
j

i
− 1 +

lnw
i ln ε

)
(187)

for εi ≤ w < 1, where Ji is a discrete random variable
uniformly distributed on the set {j/i : j = 1, . . . , i}, and
where u(t) is the step function, i.e., u(t) is zero for t < 0 and
unity for t ≥ 0. Now,

lim
i→∞

i ln ε = lim
i→∞

log(1− η
iL̄

)
i−1

=
limi→∞

∂
∂i log(1− η

iL̄
)

limi→∞
∂
∂i i

−1

=
limi→∞

η
L̄i2

L̄
L̄− η

i

limi→∞−i−2
= −η/L̄

and similarly, the limit of the lower bound on w simplifies to
limi→∞ εi = e−η/L̄. Taking the limit of the Riemann sum in
(187) then gives

lim
i→∞

FWi
(w) =

∫ 1

1+ L̄
η ln w

dt = 1 +
L̄

η
lnw

where we have also used limi→∞ FWi
(w = 1) = 1. This

establishes that as i→∞, Fi(w) converges in distribution to
F (w) = 1 + L̄

η lnw for e−η/L̄ < w < 1.

APPENDIX VII
PROOF OF THEOREM 3

As in Appendix III, the analysis in this appendix is based
on removing a single dimension from matrices and vectors, as
described in Section III. We will use tn when removing the nth

transmit dimension, dk when removing the kth data stream,
and rm for removing the mth received symbol interval.

We define
k�,

n�, and
m� according to Definition 2 in

Appendix I, where the maximum is over k ≤ K, n ≤ N , and
m ≤ i, respectively, and the limit is as (M,N,K, i) → ∞
with K/N → α > 0, i/N → η > 0, and M/N → β > 0
constant, as described in Section II-E.

A. Definitions

As in Appendix III, throughout this appendix, we substitute
H with VD without loss of generality, where V is an M×M
Haar-distributed unitary matrix, D is a diagonal M×N matrix
containing the singular values of H. The justification for this
substitution in this case will be established later in Proposition
3. We denote the nth column of V as vn, and define vn = 0
for n > M . Also define dn via diag(D) = {d1, . . . , dβ∗N},
and let dn = 0 for n > β∗N .

Define the following quantities

r̂N
j,m =

1
i
r†mX̂(j)

rm
rm , j = 1, . . . , 4, 0 < m ≤ i , (188)

γ̂N
j,m = ñ†mX̂(j)

rm
ñm , j = 1, , . . . , 4., 0 < m ≤ i , (189)

ω̂N
j,m = ωmX̂(j)

rm
ωm , j = 1, . . . , 4, 0 < m ≤ i , (190)

ρ̂N
j,k = h†kX̂

(j)
dk

hk , j = 1, . . . , 4, 0 < k ≤ K , (191)

ψ̂N
j,k = q†kX̂

(j)
dk

qk , j = 1, . . . , 4, 0 < k ≤ K , (192)

τ̂N
j,n = τ †nX̂(j)

tn
τn , j = 1, 2, 3, 0 < n ≤ β∗N , (193)

ν̂N
j,n = v†nX̂(j)

tn
vn , j = 1, 2, 3, 0 < n ≤ β∗N , (194)

where

ñm =
1√
i
nm ,

ωm =
1√
i
HSAbm ,

hk = Hsk ,

qk =
1
i
Rdk

Wbk ,

τn =
1
i
Rtn

WBAs̃n ,

and

X̂(j) =


R̂−1 , j = 1,
R̂−†R̂−1 , j = 2,
R̂−†H‡R̂−1 , j = 3,
R̂−†(HSA)‡R̂−1 , j = 4.

Further, we define X̂(j)
rm , X̂(j)

dk
, and X̂(j)

tn
by removing the

contribution of the mth training symbol, the kth data stream,
and the nth transmit dimension, respectively, from X̂(j) as
follows:
• To remove the contribution of the mth received training

symbol interval, for some 0 < m ≤ i, replace R̂ and R
with R̂rm

and Rrm
, respectively, where

R̂rm
= Rrm

Wrm
R†

rm
− zIM (195)

and Rrm
and Wrm

are R and W with the mth column,
and mth row and column removed, respectively. That is,
R̂rm = R̂− wm

i r‡m.
• To remove the contribution of the kth data stream, for

some 0 < k ≤ K, replace R̂, R, S, A, and B with R̂dk
,

Rdk
, Sdk

, Adk
, and Bdk

, respectively, where

R̂dk
=

1
i
Rdk

WR†
dk
− zIM ,

Rdk
= HSdk

Adk
B†

dk
+ N ,
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and Sdk
and Bdk

are S and B with their kth columns
removed, respectively, and Adk

is A with the kth column
and row removed.

• To remove the contribution of the nth transmit dimension,
for some 0 < n ≤ β∗N , replace R̂, R, H, and S with
R̂tn

, Rtn
, Htn

, and Stn
, respectively, where

R̂tn =
1
i
RtnWR†

tn
− zIM ,

Rtn
= Htn

Stn
AB† + N ,

Htn
= Vtn

Dtn
,

and Vtn and Stn are V and S with the nth column and
row removed, respectively. Also, Dtn

is D with the nth

column and row removed.
Considering (189)–(194) asymptotically, it can be shown

using the same steps as in the proof of (129) and (130) in
Appendix IV that

η

βσ2
γ̂N

j,m

m� γ̂N
j =

1
M

tr[X̂(j)] , (196)

r̂N
j,m

m� r̂N
j = ω̂j + σ2 β

η
γ̂N

j , (197)

ω̂N
j,m

m� ω̂N
j =


1
i tr[(HSA)‡X̂(j)] , i.i.d. B,
1
i

∑i
m=1 ω̂

N
j,m , ort. B, α < η,

K
i(K−i) tr[(HSAΥ)‡X̂(j)] , ort. B, α > η,

(198)

and

ρ̂N
j,k

k� ρ̂N
j =

{
1
N tr[H‡X̂(j)] , i.i.d. S,

1
N−K tr[(HΠ)‡X̂(j)] , iso. S,

(199)

ψ̂N
j,k

k� ψ̂N
j =


1
i2 tr[(RW)‡X̂(j)] , i.i.d. B,

1
i(i−K) tr[(RWΥ)‡X̂(j)] , ort. B, α < η,
1
K

∑K
k=1 ψ̂

N
j,k , ort. B, α > η,

(200)

and

τ̂N
j,n

n� τ̂N
j =

{
1

Ni2 tr[(RWBA)‡X̂(j)] , i.i.d. S,
1
N

∑N
n=1 τ̂

N
j,n , iso. S,

(201)

ν̂N
j,n

n� ν̂N
j =

1
β∗N

β∗N∑
n=1

ν̂N
j,n , (202)

where Π is defined in (131) (with N̄ = N and hence Π2 =
Π), and

Υ =

{
Ii − 1

i BB† , α < η,

IK − 1
K B†B , α > η.

Although the derivations of the uniform asymptotic equiva-
lence in (199)–(202) are not shown, note that they rely on
expressions derived later in this appendix, namely (231)–(233)
and (244)–(246).

Also, analogous to the discussion in Appendix III-C, we
assume that ν̂N

j,n is uniformly asymptotically equivalent to
another sequence, which does not depend on n, in which case
ν̂N

j,n

n� ν̂N
j , as stated in (202). Applying the shortcut described

in Appendix III-C will give an asymptotic expression for ν̂N
j ,

which, in the large-system limit, leads to (38) in Theorem 3.
To make this rigorous, we could introduce a new independent
parameter N̄ , corresponding to the number of columns in V.
Then, the large-system limit would also contain the condition
N̄ → ∞ with N̄/N → ς < 1, and (38) is obtained by
letting ς → 1− (after taking the large-system limit). A similar
argument is applied to the other variables ω̂N

j,m

m� ω̂N
j (for ort.

B, α < η), ψ̂N
j,k

k� ψ̂N
j (for ort. B, α > η), and τ̂N

j,n

n� τ̂N
j

(for iso. S).
Note that (133) again applies, and also

w̄k
k� w̄ , (203)

ĉn
n� αw̄p̄ , (204)

1
i
r†mrm

m� αβ∗η−1p̄E[H] + σ2βη−1 > 0 , (205)

for 0 < k ≤ K, 0 < n ≤ N , and 0 < m ≤ i, where

w̄k =
1
i
b†kWbk ,

ĉn =
1
i
s̃†nAB†WBAs̃n ,

p̄ = E[P ], and w̄ = E[W ]. (203) is shown in identical manner
to (133) and (134), in this case using (108). (204) can be
shown in an identical manner to (134), also using (203), i.e.,

ĉn
n� 1
iN

tr[WBA2B†] =
1
N

K∑
k=1

Pkw̄k � αw̄p̄ .

Finally, (205) can be shown from 1
i r
†
mrm

m� 1
i tr[(HSA)‡ +

σ2IM ] using (106), (133), and i
∣∣n†mωm

∣∣2 m� tr[(HSA)‡] �
αβ∗

η E[P ]E[H].
We now give several bounds on particular matrix and vector

norms which are required in order to apply Lemmas 2 and 3
later. Firstly, the assumption that z ∈ C+ gives

‖R̂−1‖ ≤ Im(z)−1 . (206)

Recall that assumptions on H, S, and A outlined in Section II
again give (136)–(140), and additionally the assumptions on
W, B and N give

sup
N
‖W‖ <∞ , (207)

1
i
‖B‖2 � (1 +

√
αη−1)2 , (i.i.d. B) , (208)

1
i
‖N‖2 � σ2(1 +

√
αη−1)2 , (209)

1
i
|bk|

2 k� 1 , (210)

1
i
|bm|2

m� αη−1 , (211)

1
i
|nm|2

m� βη−1 , (212)

where (208)–(209), like (138), is due to [34]. Of course,
1
N ‖B‖

2 = η∗ for orthogonal B. Moreover, (136)–(140) and
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(206)–(212) imply that all of

‖R̂‖ , (213)
max
k≤K

max{|hk| , |qk| , w̄k} , (214)

max
n≤N

max{|τn| , |ĉn|} , (215)

max{
∣∣r̂N

j

∣∣ ,max
m≤i

∣∣r̂N
j,m

∣∣} , for j = 1, . . . , 4. , (216)

max{
∣∣ρ̂N

j

∣∣ ,max
k≤K

∣∣ρ̂N
j,k

∣∣} , for j = 1, . . . , 4. , (217)

max{
∣∣∣ψ̂N

j

∣∣∣ ,max
k≤K

∣∣∣ψ̂N
j,k

∣∣∣} , for j = 1, . . . , 4. , (218)

max{
∣∣τ̂N

j

∣∣ ,max
n≤N

∣∣τ̂N
j,n

∣∣} , for j = 1, . . . , 3. , (219)

max{
∣∣ν̂N

j

∣∣ ,max
n≤N

∣∣ν̂N
j,n

∣∣} , for j = 1, . . . , 3. , (220)

are bounded above almost surely, that is, have a upper bounds
of form given in (94). For this to be the case for (213), it also
requires the assumption that |z| <∞.

B. Derivations

Note that γ̂N
1 = 1

M tr[R̂−1] is the Stieltjés transform of the
e.d.f. of the eigenvalues of 1

iRWR†. The proof of Theorem
3 proceeds as described in Section III, by applying Lemma
6 to remove the effect of the mth training interval, kth data
stream, and nth transmit dimension from R̂, 0 < m ≤ i,
0 < k ≤ K, 0 < n ≤ β∗N . The removal of each dimension
generates a pair of variables; expressions for which are then
derived. Additionally, these results are applied to expansions
of the identity R̂R̂−1 = IM to yield relationships between
GN

R̂
(z) and the variables generated.

1) Expanding Dimension i: From Lemma 6, (188), (195),
(205), and (213) we have that

R̂−1rm � RmR̂−1
rm

rm , (221)

inf
N

max
m≤i

∣∣1 + wmr̂
N
1,m

∣∣ > 0 , a.s. , (222)

where Rm = 1/(1 + wmr̂
N
1,m). In addition, since

ω†
mR̂−1

rm
ñm

m� ñ†mR̂−1
rm

ωm
m� 0 (223)

due to i
∣∣∣ω†

mR̂−1
rm

ñm

∣∣∣ m� σ2ω̂2, we have from the matrix
inversion lemma and (223) that

R̂−1ωm � RmR̂−1
rm

(
(1 + wmγ̂

N
1,m)ωm − wmω̂

N
1,mñm

)
,

(224)

R̂−1ñm � RmR̂−1
rm

(
−wmγ̂

N
1,mωm + (1 + wmω̂

N
1,m)ñm

)
.

(225)

Now, we expand the identity R̂−1R̂ = IM along dimension
i using (221). We have that

1 =
1
M

tr[R̂−1R̂] = −zγ̂N
1 +

1
M

i∑
m=1

wmr̂
N
1,m

1 + wmr̂N
1,m

.

(226)

It follows from Lemma 3, (197), (216), (207), and (222) that

wmr̂
N
1,m

1 + wmr̂N
1,m

m� wmr̂
N
1

1 + wmr̂N
1

. (227)

Moreover, from (226), (227), and Lemma 4, we have

1 + zγ̂N
1 �

{
η
β (1−WN

0,1)
η
β r̂

N
1 WN

1,1

(228)

where the expressions in the right hand side of (228) are
related via (54), and

WN
p,1 =

1
i

i∑
m=1

wp
m

1 + wmr̂N
1

.

2) Expanding Dimension K: In this case, we write

R̂ =
1
i
(Rdk

+Akhkb
†
k)W(Rdk

+Akhkb
†
k)† − zIM

= R̂dk
+Akqkh

†
k +Akhkq

†
k + w̄kPkhkh

†
k . (229)

We now apply Lemma 6 to (229), where YN , XN , uN , vN ,
and cN in the Lemma correspond to R̂, R̂dk

, hk, Akqk,
and Pkw̄k, respectively. Therefore, uN and vN in the Lemma
correspond to ρ̂N

1,k and Pkψ̂
N
1,k, respectively. Note that

h†kR̂
−1
dk

qk
k� q†kR̂

−1
dk

hk
k� 0 (230)

due to N
∣∣∣h†kR̂−1

dk
qk

∣∣∣2 k� ψ̂N
3,k and (218) for i.i.d. S, and simi-

larly with isometric S, it can be shown (N −K)
∣∣∣h†kR̂−1

dk
qk

∣∣∣2
has a finite, almost-sure, uniform upper bound. And so, (230)
satisfies condition (95) of the Lemma. Additionally, (133) and
(213)–(214) satisfy conditions (96) and (97) of the Lemma,
respectively, in the almost-sure sense.

Therefore, from Lemma 6 we have

R̂−1hk � KkR̂−1
dk

(hk −Akρ̂
N
1,kqk) , (231)

R̂−1qk � KkR̂−1
dk

(−Akψ̂
N
1,khk + (1 + w̄kPkρ̂

N
1,k)qk) ,

(232)

inf
N

min
k≤K

∣∣∣1− Pkρ̂
N
1,k(ψ̂N

1,k − w̄k)
∣∣∣ > 0 , a.s. , (233)

where Kk = 1/(1− Pkρ̂
N
1,k(ψ̂N

1,k − w̄k)).
Now, we expand the identity R̂−1R̂ = IM along dimension

K using (231)–(232). We have

1 + zγ̂N
1 =

1
iM

tr[R̂−1HSAB†WR†] +
1
iM

tr[R̂−1NWR†] .

(234)

Expanding the first term in (234) with respect to dimension
K using (231)–(232), we have

1
iM

tr[R̂−1HSAB†WR†] =
1
iM

K∑
k=1

Akb
†
kWR†R̂−1hk

� 1
M

K∑
k=1

AkKk(Akw̄khk + qk)†R̂−1
dk

(hk −Akρ̂
N
1,kqk)

�

{
α
β (1− ÊN

0,1)
−α

β ρ̂
N
1 (ψ̂N

1 − w̄)ÊN
1,1

(235)

where we have used (199), (200), (203), (230), and (233), and
define

ÊN
p,1 =

1
K

K∑
k=1

P p
k

1− Pkρ̂N
1 (ψ̂N

1 − w̄)
.
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Now considering the second term in (234), using (221),
(223), and (196) we see

1
iM

tr[R̂−1NWR†] =
1
M

i∑
m=1

wm(ωm + ñm)†R̂−1
rm

ñm

1 + wmr̂N
1,m

� σ2γ̂N
1 WN

1,1 . (236)

Combining (234), (235), and (236) gives

β(1− γ̂N
1 /ν̂

N
1 ) � α(1− ÊN

0,1) = −αρ̂N
1 (ψ̂N

1 − w̄)ÊN
1,1 .
(237)

Note that up until this point, none of the analysis has relied
on the fact that we have made the substitution of H with
VD. Therefore, we are in a position to state the following
proposition, which shows that this substitution is valid. Note
that the analysis in the remainder of this appendix relies on
this substitution having been made throughout.

Proposition 3: For the model (1), the distribution of both
the Stieltjés transform of the e.e.d. of 1

iRWR† and the as-
ymptotically equivalent ALS SINR given in (31) are invariant
to the substitution of VD for H, where V is an M × M
Haar-distributed random unitary matrix, and D is a M × N
diagonal matrix containing the singular values of H.

Proof: Using (231)–(232), we may derive the asymptot-
ically equivalent form of the ALS SINR given in (31) (see
Appendix VIII), which depends on ρ̂N

j and ψ̂N
j , j = 1, . . . , 4.

Now note that the distributions of γ̂N
1 , ρ̂N

j and ψ̂N
j , j =

1, . . . , 4 are unchanged by the substitution of H by VD. That
is, let T be an independent M ×M Haar-distributed random
matrix. Then,

γ̂N
1 =

1
M

tr[R̂−1] =
1
N

tr[TT†R−1]

=
1
M

tr[((TR)W(TR)† − zIM )−1] .

Note that TR = THSAB† + TN, and so, writing HS =
(TUM )D(U†

NS), where UMDU†
N is the singular value

decomposition of H, the unitary invariance of T, S, and N
implies the result for the Stieltjés transform of R̂. A similar
treatment of ρ̂N

j and ψ̂N
j gives the result for the asymptotically

equivalent form of the ALS SINR given in (31).
3) Expanding Dimension N : Writing

R =
β∗N∑
n=1

dnvn(BAs̃n)† + N

and substituting this into (8), in a similar manner to (229), we
have for some 1 ≤ n ≤ β∗N ,

R̂ = R̂tn
+ dnvnτ †n + dnτnv†n + d2

nĉnvnv†n . (238)

We now apply Lemma 6 to (238), where YN , XN , uN , vN ,
and cN in the Lemma correspond to R̂, R̂tn

, vn, dnτn,
and d2

nĉn, respectively. Therefore, uN and vN in the Lemma
correspond to ν̂N

1,n and d2
nτ̂

N
1,n, respectively. We have (213),

(215), and |vn| = 1, which almost-surely satisfy conditions
(96)–(97) of the Lemma. We now show

v†nR̂−1
tn

τn
n� τ †nR̂−1

tn
vn

n� 0 (239)

which, with (136) satisfies condition (95) of the Lemma. To
see this, note that v†nτn

n� 0, since

N
∣∣v†nτn

∣∣2 =
N

i2
(v†nNWBAs̃n)‡

n� 1
i2M

tr[(NWBA)‡]

� σ2α

η
E[P ]E[W 2] . (240)

Also, since H†
tn

vn = 0, we have

R̂tn
vn =

1
i
Rtn

WN†vn − zvn . (241)

From (241), we find

zτ †nR̂−1
tn

vn
n� 1
i
τ †nR̂−1

tn
RtnWN†vn

=
1
i

i∑
m=1

wmn†mvnτ †nR̂−1
tn

rm . (242)

Considering the argument in the preceding sum, note that

wmn†mvnτ †nR̂−1
tn

rm
m�

wmσ
2τ †nR̂−1

tn
vn

1 + wmr̂N
1,tn

(243)

where we define γ̂N
1,tn

, r̂N
1,tn

, and ω̂N
1,tn

from γ̂N
1 , r̂N

1 , and ω̂N
1

in (196), (197), and (198), respectively, with the contribution
of transmit dimension n removed, as explained in Appendix
VII-A. Returning to (242), and additionally using 1+zγ̂N

1,tn
�

r̂N
1,tn

1
M

∑i
m=1

wm

1+wmr̂N
1,tn

, which is shown in an identical
manner to (228), it follows that

τ †nR̂−1
tn

vn

zω̂N
1,tn

r̂N
1,tn

n� 0 .

Now, since z, ω̂N
1,tn

, and r̂N
1,tn

are in C+ almost surely (through
an application of Lemma 5), and also since

∣∣r̂N
1,tn

∣∣ is almost-
surely uniformly bounded above over N and n ≤ N (which
is shown identically to (216)), we have (239).

So we may apply Lemma 6 to (238), to obtain

R̂−1vn � VnR̂−1
tn

(vn − dnν̂
N
1,nτn) , (244)

R̂−1τn � VnR̂−1
tn

(−dnτ̂
N
1,nvn + (1 + d2

nĉnν̂1)τn) , (245)

inf
N

min
n≤N

∣∣1− d2
nν̂

N
1,n(τ̂N

1,n − ĉn)
∣∣ > 0 , a.s. , (246)

for 1 ≤ n ≤ β∗N , where Vn = 1/(1− d2
nν̂

N
1,n(τ̂N

1,n − ĉn)).
Now, we expand the identity R̂−1R̂ = IM along dimension

N using (244)–(245). Continuing from (234), we may expand
the first term along dimension N to obtain

1
iM

tr[R̂−1HSAB†WR†] =
1
iM

β∗N∑
n=1

dns̃†nAB†WR†R̂−1vn

� 1
M

β∗N∑
n=1

dnVn(dnĉnvn + τn)†R̂−1
tn

(vn − dnν̂
N
1,nτn)

� 1
M

β∗N∑
n=1

d2
nVnν̂

N
1,n(ĉn − τ̂N

1,n)

�

{
−β∗

β (ĤN
0,1 − 1)

−ν̂1(τ̂N
1 − αp̄w̄)β∗

β Ĥ
N
1,1

(247)
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where

ĤN
p,1 =

1
β∗N

β∗N∑
n=1

d2p
n

1− d2
nν̂

N
1 (τ̂N

1 − αp̄w̄)

and we have also used (201), (202), (204), and (246).
Combining (234), (247), and (236) gives

β(1− γ̂N
1 /ν̂

N
1 ) = β∗(1− ĤN

0,1) = −ν̂N
1 (τ̂N

1 − αp̄w̄)β∗ĤN
1,1 .

(248)

4) Identities via moment definitions: In order to find ex-
pressions for ω̂N

1 , ρ̂N
1 , ψ̂N

1 , τ̂N
1 , and ν̂N

1 , we now apply (221),
(224)–(225), (231)–(232), and (244)–(245) to expansions of
the definitions of these variables, or expressions related to
them. After applying (221) or (224)–(225), we shall use (196),
(197), (198), (223), and (227) in conjunction with Lemmas 3
and 4 to further simplify the resulting expression. Similarly,
after applying (231)–(232), we shall use (199), (200), (217),
(218), (203), (230), and (233) in conjunction with Lemmas
3 and 4 to further simplify the resulting expression. Finally,
after applying (244)–(245), we shall use (201), (202), (219),
(220), (204), (239), and (246) in conjunction with Lemmas 3
and 4 to further simplify the resulting expression.

Firstly, consider ω̂N
1 in (198). From (231)–(232) we obtain

1
i
tr[(HSA)‡R̂−1] � 1

i

K∑
k=1

PkKkh
†
kR̂

−1
dk

(
hk −Akρ̂

N
1 qk

)
� α

η
ρ̂N
1 ÊN

1,1 (249)

which corresponds to ω̂N
1 for i.i.d. B. For orthogonal B with

α < η, we use (249) and 1
i B

†B = IK to obtain

α

η
ρ̂N
1 ÊN

1,1 �
1
i2

tr[(HSAB†)‡R̂−1] � 1
i

i∑
m=1

ω†
mR̂−1ωm

� ω̂N
1 (1− ω̂N

1 WN
1,1) (250)

which is proven in an identical manner to (228), also using
(224), and may be simplified using (228) to give

ω̂N
1 �

α
η ρ̂

N
1 ÊN

1,1

1− β
η (1− γ̂N

1 /ν̂
N
1 )

. (251)

Now if α > η, we have directly from (249) and (250)

ω̂N
1 =

α

η

1
K − i

tr[ΥA†S†H†R̂−1HSA]

� α

α− η

(
α

η
ρ̂N
1 ÊN

1,1 −
η

α
ω̂N

1 (1− ω̂N
1 WN

1,1)
)
.

Combining this with (228) gives

ω̂N
1 =

α
η ρ̂

N
1 ÊN

1,1

1− β
α (1− γ̂N

1 /ν̂
N
1 )

. (252)

Now we consider τ̂N
1 , defined in (201), using (231)–(232).

Firstly, note that 1
iRWbk = 1

i (Rdk
+Akhkb

†
k)Wbk = qk+

Akw̄khk, and hence

1
Ni2

tr[(RWBA)‡R̂−1] =
1
Ni2

K∑
k=1

Pktr[(RWbk)‡R̂−1]

=
1
N

K∑
k=1

Pktr[(qk +Akw̄khk)‡R̂−1]

� α
1
K

K∑
k=1

PkKk(ψ̂N
1 − w̄Pkρ̂

N
1 (ψ̂N

1 − w̄))

� α(w̄p̄+ (ψ̂N
1 − w̄)ÊN

1,1) (253)

which corresponds to τ̂N
1 for i.i.d. S. To find an expression for

τ̂N
1 with isometric S, we use S†S = IK and (253) in reverse,

i.e.,

α(w̄p̄+ (ψ̂N
1 − w̄)ÊN

1,1)

� 1
Ni2

tr[(RWBAS†)‡R̂−1]

� 1
N

N∑
n=1

Vn(τn + dnĉnvn)†R̂−1
tn

(τn + dn(ĉn − τ̂N
1,n)vn)

� 1
N

N∑
n=1

(
ĉn + (τ̂N

1,n − ĉn)Vn

)
� αp̄w̄ + (τ̂N

1 − αp̄w̄)(β∗(ĤN
0,1 − 1) + 1) (254)

where we have used 1
iRWBAs̃n = 1

i (Rtn +
dnvns̃n)WBAs̃n = τn + dnĉnvn. Moreover, using
(248) to simplify (254) we obtain

τ̂N
1 � αp̄w̄ +

α(ψ̂N
1 − w̄)ÊN

1,1

1− β(1− γ̂N
1 /ν̂

N
1 )

. (255)

Now we consider ρ̂N
1 defined in (199), using (244)–(245).

Firstly,

1
N

tr[H‡R−1] =
1
N

β∗N∑
n=1

d2
nv†nR̂−1vn

� 1
N

β∗N∑
n=1

d2
nVnv†nR̂−1

tn
vn � ν̂N

1 β
∗ĤN

1,1 (256)

which corresponds to ρ̂N
1 with i.i.d. S. Note that

1
N tr[(HS)‡R̂−1] � αρ̂N

1 ÊN
0,1 follows from an analogous

derivation to (249). Therefore, combining this with (256), we
obtain for isometric S,

ρ̂N
1 =

1
1− α

(
1
N

tr[H‡R̂−1]− 1
N

tr[(HS)‡R̂−1]
)

� 1
1− α

(β∗ν̂N
1 ĤN

1,1 − αρ̂N
1 ÊN

0,1) .

Moreover, combining this with (237) gives

ρ̂N
1 =

β∗ν̂N
1 ĤN

1,1

1− β(1− γ̂N
1 /ν̂

N
1 )

. (257)

Now we consider ψ̂N
1 , as defined in (200), using (221).

Firstly,

1
i2

tr[(RW)‡R̂−1] =
1
i

i∑
m=1

w2
mr̂

N
1,m

1 + wmr̂N
1,m

� w̄ −WN
1,1

(258)
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which corresponds to ψ̂N
1 for i.i.d. B. Note that

1
Ni2 tr[(RWB)‡R̂−1] � α(w̄ + (ψ̂N

1 − w̄)ÊN
0,1) from

an analogous derivation to (253). Therefore, combining this
with (258), we obtain for orthogonal B and α < η,

ψ̂N
1 =

η

η − α

(
1
i2

tr[(RW)‡R̂−1]− 1
i3

tr[(RWB)‡R̂−1]
)

� η

η − α
(w̄ −WN

1,1 −
α

η
(w̄ + (ψ̂N

1 − w̄)ÊN
0,1)) .

Moreover, combining with (237) gives

ψ̂N
1 = w̄ −

WN
1,1

1− β
η (1− γ̂N

1 /ν̂
N
1 )

. (259)

Finally, for orthogonal B and α > η, from (258) and
1
K B†B = Ii, we have

w̄ −WN
1,1 �

1
Ki2

tr[(RWB)‡R̂−1]

� w̄ + (ψ̂N
1 − w̄)ÊN

0,1

following an analogous derivation to (253). Moreover, com-
bining with (237) gives

ψ̂N
1 � w̄ −

WN
1,1

1− β
α (1− γ̂N

1 /ν̂
N
1 )

. (260)

To derive an expression for ν̂1, we start with (241) and
obtain

1 + zν̂N
1,n =

1
i

i∑
m=1

wmn†mvnv†nR̂−1
tn

rm (261)

for which, like (243), we have

wmn†mvnv†nR̂−1
tn

rm
m�
wmσ

2ν̂N
1,n

1 + wmr̂N
1

(262)

where we have additionally used r̂N
1,m,tn

n� r̂N
1,m

m� r̂N
1 , which

follows from Lemma 7, continuing on from the application
of Lemma 6 in Appendix VII-B.3. Therefore, from (261) and
(262), we obtain

1 + zν̂N
1 � σ2ν̂N

1 WN
1,1 . (263)

It follows (using the same arguments outlined after (171) in
the proof of Theorem 1, this time assuming that the resulting
equations have a unique solution) from (106)–(108), (197),
(235), (249), (251), (252), (253), (255), (256), (257), (258),
(259), (260), and (263) that, with probability one, for all
z ∈ C+,

∣∣∣GN
R̂

(z)− γ̂1

∣∣∣→ 0,
∣∣ρ̂N

1 − ρ̂1

∣∣→ 0,
∣∣τ̂N

1 − τ̂1
∣∣→ 0,∣∣∣ψ̂N

1 − ψ̂1

∣∣∣ → 0,
∣∣ω̂N

1 − ω̂1

∣∣ → 0,
∣∣ν̂N

1 − ν̂1
∣∣ → 0, and∣∣r̂N

1 − r̂1
∣∣ → 0, where γ̂1, ρ̂1, τ̂1, ψ̂1, ω̂1, ν̂1, and r̂1 ∈ C+

are solutions to (37)–(46).

APPENDIX VIII
PROOF OF THEOREM 2: ASYMPTOTIC SINR

This proof continues on from the proof of Theorem 3 in
Appendix VII. Firstly, note that the steering vector (10) can
be written as

ŝk =

{
qk +Akw̄khk , ALS with training,
hk , semi-blind ALS.

(264)

That is, (231) is the equivalent asymptotic form for the semi-
blind LS filter given in (7). Also, using (264), (231)–(232)
we obtain the equivalent asymptotic form for the ALS filter
with training. We can express the asymptotic form for both
receivers as

ck � KkR̂−1
dk

(aN
k,1hk + aN

k,2qk) (265)

where

(aN
k,1, a

N
k,2) =

{
(Ak(w̄k − ψ̂N

1,k), 1) , ALS with training,
(1, −Akρ̂

N
1,k) , semi-blind ALS.

We now compute the large-system SINR for the filter (265)
for stream k, and symbol interval m > i. For notational
simplicity, we drop the subscript m in this appendix. Note
therefore that in this appendix bdk

denotes bm with the
kth element removed. Since Kk cancels in the ratio when
calculating the SINR, we ignore this constant. The signal
component is

Akc
†
khkb(k) � Ak

(
aN

k,1hk + aN
k,2qk

)†
R̂−†

dk
hkb(k)

� Aka
N†
k,1b(k)h†kR̂

−†
dk

hk

using (137), (217), and (230). The interference component is

c†k (HSdk
Adk

bdk
+ n)

�
(
aN

k,1hk + aN
k,2qk

)†
R̂−†

dk
(HSdk

Adk
bdk

+ n)

� aN†
k,1

(
h†kR̂

−†
dk

HSdk
Adk

bdk
+ h†kR̂

−†
dk

n
)

+ aN†
k,2

(
q†kR̂

−†
dk

HSdk
Adk

bdk
+ q†kR̂

−†
dk

n
)
.

Therefore, the signal power is asymptotically equivalent to

Pk |ak,1|2
∣∣∣ρ̂N

1,k

∣∣∣2. Also, the interference power, averaged over
the data symbols and noise is asymptotically equivalent to∣∣aN

k,1

∣∣2 (ρ̂N
4,k + σ2ρ̂N

2,k) +
∣∣aN

k,2

∣∣2 (ψ̂N
4,k + σ2ψ̂N

2,k) .

Moreover, from (191), (192), (199), (200), we have

SINRALS
k,N

k�
Pk

∣∣∣aN
k,1

∣∣∣2 |ρ̂1|2∣∣∣aN
k,1

∣∣∣2 (ρ̂N
4 + σ2ρ̂N

2 ) +
∣∣∣aN

k,2

∣∣∣2 (ψ̂N
4 + σ2ψ̂N

2 )
.

(266)

APPENDIX IX
STEADY-STATE ALS SINR WITH WINDOWING

By inspection of Theorem 3 and Lemma 1, we note the
following limits as η →∞:

γ̃j = lim
η→∞

{
γ̂1/η , j = 1,
γ̂j/η

2 , j = 2, 3, 4.

ω̃j = lim
η→∞

{
ω̂1 , j = 1,
ω̂j/η , j = 2, 3, 4.

r̃j = lim
η→∞

{
r̂1 , j = 1,
r̂j/η , j = 2, 3, 4.
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and

ρ̃j = lim
η→∞

{
ρ̂1/η , j = 1,
ρ̂j/η

2 , j = 2, 3, 4.

ψ̃j = lim
η→∞

{
ηψ̂1 , j = 1,
ψ̂j , j = 2, 3, 4.

and

ν̃j = lim
η→∞

{
ν̂1/η , j = 1,
ν̂j/η

2 , j = 2, 3.

τ̃j = lim
η→∞

{
ητ̂1 , j = 1,
τ̂j , j = 2, 3.

and

w̃ = lim
η→∞

ηw̄ ,

W̃p,q = lim
η→∞

ηWp,q ,

Ẽp,q = lim
η→∞

Êp,q ,

H̃p,q = lim
η→∞

Ĥp,q .

Moreover, the variables γ̃j , ρ̃j , τ̃j , ψ̃j , ω̃j , ν̃j , r̃j , Ẽp,q, H̃p,q,
and W̃p,q satisfy the same set of equations as γ̂j , ρ̂j , τ̂j , ψ̂j ,
ω̂j , ν̂j , r̂j , Êp,q, Ĥp,q, and Wp,q, respectively (for appropriate
values of j, m, and n), if we set z = −µ, η = 1, and assume
that B is i.i.d..

APPENDIX X
SKETCH OF PROOF OF THEOREM 4

We provide a sketch of the proof for i.i.d. S only, mainly
due to the fact that the equations are simpler to manipulate.
However, the same approach is valid for isometric S.

Firstly, according to the remark made after Theorem 3, with
i.i.d. B and µ = 0 we have W1,1ρ̂1 = ρ1. That is, the term
ρ̂1 in the numerator of the asymptotic SINR in (31) can be
written as 1

PkW1,1
SINRMMSE

k .
Consider the denominator of the alternate MMSE SINR

expression in Section IV-B with i.i.d. S. Solving (25)–(26)
for ρ4 + σ2ρ2 gives

ρ4 + σ2ρ2 =
β∗(αE1,2H2,2 − zH1,2)
z2 − αβ∗E2,2H2,2

,

which from Appendix V equals ρ1.
The next step is to simplify the ρ̂4 + σ2ρ̂2 term in the

denominator of the ALS SINR (31). To do this, we solve (57),
(58), (61), and (56) to find ρ̂3, τ̂3, ψ̂4, ν̂3 in terms of ρ̂4 and
ρ̂2, and then substitute into (57). We then solve (55), (58), and
(61) for γ̂2 τ̂2, and ψ̂2 in terms of ρ̂4 and ρ̂2, and substitute
into (57). Combining these results gives

ρ̂4 + σ2ρ̂2 =
ρ̂1
W1,2

(1− α
W2,2
W1,1

ρ̂1Ê1,1)

1− α
W2,2
W1,1

ρ̂1(Ê1,2 + ρ̂1W1,1Ê2,2)
.

Now we use the identity (71) to obtain Ê1,1 = Ê1,2 +
ρ̂1W1,1Ê2,2, and so we have that

ρ̂4 + σ2ρ̂2 =
ρ̂1

W1,2
=

1
PkW1,1W1,2

SINRMMSE
k . (267)

Next we simplify the ψ̂4 + σ2ψ̂2 term in the denominator
of the ALS SINR (31). To do this, we solve (55), (62), (61),
(61) and (62) for γ̂2, ω̂2, ψ̂2, ψ̂4, and ω̂4, and form the sum

ψ̂4 + σ2ψ̂2 =
W2,2((ρ̂4 + σ2ρ̂2)Ê1,2 + ρ̂2

1Ê2,2)W1,2α+ σ2βγ̂1

W1,2(η − αρ̂2
1Ê2,2W2,2)

.

Substituting (267) and r̂1 = 1
η (αρ̂1Ê1,1 +βσ2γ̂1), and simpli-

fying with (71) gives

ψ̂4 + σ2ψ̂2 =
W1,1

W1,2
− 1 . (268)

Substituting (267) and (268) into (31) along with the ex-
pressions for âk,1 and âk,2 from (32), and simplifying gives
(82) and (83).
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