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Asymptotic Analysis of LMMSE Multiuser
Receivers for Multi-Signature Multicarrier

CDMA in Rayleigh Fading
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Abstract—This paper considers a multicarrier (MC) code-di-
vision multiple-access system where each user employs multiple
signatures. The receiver is linear and minimizes the mean square
error of the data estimate. Both multiple-user and single-user sys-
tems are considered, as well as single and multiple signatures per
user. In each case, an asymptotic analysis is used to derive the
output signal-to-interference-plus-noise ratio (SINR) as a function
of the system loading, the noise power, and the fading properties of
the channel. Asymptotic in this case means that the number of inde-
pendent subcarriers and number of signatures per user each tends
to infinity with fixed ratio. The associated bit-error rate (BER) is
evaluated for binary phase-shift keying symbols. Simulations show
that the asymptotic SINRs and BERs derived in each case are ac-
curate for realistic finite systems.

Index Terms—Fading channels, large-system analysis, multicar-
rier code-division multiple access (MC-CDMA), multicarrier mod-
ulation, multi-signature.

I. INTRODUCTION

BROADBAND wireless networks require transmission
schemes, which are resilient to both fading and frequency

selectivity, while allowing communication at high data rates
and high mobility rates. Multicarrier code-division multiple
access (MC-CDMA) is well suited to meet such requirements.
This is mainly due to its implicit frequency diversity gain over
alternative schemes such as orthogonal frequency-division
multiplexing (OFDM), and its flexibility allowing multiple
signatures per user, thus achieving high data rates.

We consider the uplink of a multiuser, multi-signature
MC-CDMA system where each user spreads multiple data bits
across multiple subcarriers using a set of frequency-domain
signatures, as in [1] and [2]. A cyclic prefix may be inserted
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to counter the intersymbol interference (ISI) due to multipath.
We consider the receiver structure, whereby symbol detection
is performed via a set of frequency-domain linear minimum
mean-square error (LMMSE) filters. We shall show that the
asymptotic signal-to-interference-plus-noise ratio (SINR) can
be derived as a function of the system load, the noise power, re-
ceived powers, and the fading properties of the channel. Equally
importantly, the average asymptotic bit-error rate (BER) can
be predicted from the analytic results we derive in this paper.
Here, asymptotic means that the number of signatures , and
the number of subcarriers , both tend to infinity, while their
ratio is held fixed at a value we call the system load.

There has been a large body of related work on MC-CDMA,
including a wide range of system design issues such as channel
estimation [3], frequency-offset correction [4], and transmitter
and receiver optimization [5]. In this paper, we focus attention
on the analysis of SINR performance. Recent related results in
this area include a lower bound on the BER of MC-CDMA for
a single user, presented in [6]. BER analysis has also been per-
formed for a RAKE receiver [7], a maximum ratio combining
(MRC) receiver [8], and for the LMMSE receiver in fully loaded
systems [9]. A pairwise error probability (PEP) analysis of the
LMMSE receiver has also been presented in [10]. These results
were derived either using the characteristic function method, or,
in most cases, by resorting to a Gaussian approximation for the
inter-signature interference.

This paper considers an asymptotic (large-system) analysis
approach. This approach has led in the past to important results
for single-signature direct-sequence (DS)-CDMA systems with
random signatures in additive white Gaussian noise (AWGN)
and flat-fading channels (e.g., [11]–[15]). In that case, as the
number of users and the processing gain tend to infinity, with
fixed ratio, the random SINR expression converges to a de-
terministic quantity [11]. Also, large-system asymptotic results
have been shown to be accurate for many realistic (finite) sys-
tems (e.g., see [16]), and hence, are a useful design tool. Asymp-
totic analysis of the MC-CDMA downlink has been consid-
ered in [17]. Here we consider asymptotic analysis of uplink
multi-signature MC-CDMA with multiple signatures per user.

In this paper, we derive the asymptotic output SINR of an
LMMSE receiver for MC-CDMA with frequency-selective
Rayleigh fading channels. Both multiple-user and single-user
systems are considered, as well as single and multiple signa-
tures per user. In each case, the SINR is determined by solving
a set of fixed-point equations. Simulation results show the
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asymptotic analysis accurately predicts the average SINR for
finite systems, such as those with only 16 subcarriers. Impor-
tantly, the computational cost of a Monte Carlo simulation of
the MC-CDMA system far exceeds the cost of computing a
numerical solution to our fixed-point equations.

For the multiuser, multi-signature model considered, the anal-
ysis depends on characterizing the asymptotic eigenvalue dis-
tribution (a.e.d.) of a sum of random matrices. This is accom-
plished through a free-matrix approximation and an application
of the -transform [18] (see also [19], which uses the -trans-
form in a different, but related, context.) The matrix approxima-
tion is shown to be accurate over a wide range of system param-
eters of interest.

The paper proceeds as follows. The system model used in
our analysis is described in Section II, and the SINR expression
for the LMMSE receiver is given in Section IV. Necessary theo-
rems and definitions for the analysis are given in Section III. Fol-
lowing this, the fixed-point analytic expressions for the asymp-
totic SINR in each model are derived in Sections V and VI. Sim-
ulation results are presented in Section VIII, which compare the
asymptotic results with the analogous results for finite-size sys-
tems.

II. SYSTEM MODEL

A. Transmitter Model

An MC-CDMA symbol can be interpreted as an OFDM
symbol with data symbols spread across all frequencies via
spreading signatures (or spreading codes) in the frequency
domain [1]. We consider the uplink of a multi-signature
MC-CDMA system with synchronous users. We use
to denote the total number of signatures used, to denote
the number of signatures assigned to user , where

, and to denote the spreading gain, which is
also the number of subcarriers in the multicarrier system. We
use the term system load for the ratio , and
per-user system load for the the ratio .

In matrix notation,1 we denote the vector of data sym-
bols for the th user as . For ease of
exposition, we will absorb the different transmit power levels
of the users into the channel model, and hence, we may as-
sume unit power, zero mean, independent and identically dis-
tributed (i.i.d.) data symbols without loss of generality, so that

.
The matrix is the th user’s spreading matrix,

where the th column of is the spreading signature . For
purposes of analysis, we assume randomly assigned signatures,
where each element of is an i.i.d. circularly symmetric com-
plex random variable, with zero mean and variance . The
asymptotic performance results do not depend on the partic-
ular distribution of the elements, and moreover, in this case, the
asymptotic ( ) SINR of the MMSE receiver converges
almost surely to a deterministic value.

1Notation: all vectors are defined as column vectors and designated with bold
lower case; all matrices are given in bold upper case; (�) denotes transpose;
(�)y denotes Hermitian (i.e., complex conjugate) transpose; tr[�] denotes the
matrix trace; Tr[�] denotes the normalized matrix trace tr[�]=N ; and I denotes
the N �N identity matrix. Expectation is denoted E[�].

B. Channel Model

We assume that all users transmit their symbols synchro-
nously, and any interference between successive MC-CDMA
symbols (ISI) due to multipath is removed by the insertion of a
cyclic prefix of length . The signal-to-noise ratio (SNR)
loss due to this prefix is not considered throughout this paper,
as this loss goes to zero when we evaluate the asymptotic SINR
in Sections V and VI. The received vector in the frequency
domain is given by

(1)

where is a vector of i.i.d. circularly symmetric com-
plex Gaussian random variables, with zero mean and variance

. The frequency-selective channel matrix for the th user,
, is diagonal with the th diagonal element given by

the th user’s channel frequency response in the th subcar-
rier. Note that the are zero-mean circularly
symmetric complex Gaussian random variables with variance

(i.e., Rayleigh fading). The average received SNR for signa-

ture of user is .
Note that in the asymptotic analysis of Sections V and VI,

we assume infinite frequency diversity. That is, as , we
assume that the bandwidth of the signal increases, as opposed
to keeping the bandwidth constant and narrowing the subcar-
rier spacing. This is an important assumption, since in the latter
case, the distribution of the channel matrix would depend on
the coherence bandwidth of the channel, and it is possible that
the SINR would not converge in the almost-sure sense asymp-
totically. This assumption implies that as , the empir-
ical distribution of the subchannels, which form a correlated
random process, almost surely converges in distribution to the
first-order probability distribution.

In this paper, we take a number of asymptotic limits, all of
which let and with for each

, and will be denoted simply by “ .” Also, due to the as-
sumption of infinite frequency diversity, the a.e.d. of the ma-

trix converges to the exponential distribution with
mean , but with the following caveat. In order to establish the
convergence of various measures considered, we need to assume
that the a.e.d. of has compact support, and that there are no
channel nulls, (i.e., exists).2 So technically, we must as-
sume a truncated exponential distribution, where the truncation
value can be arbitrarily large. It can be verified that the associ-
ated truncation error vanishes as the truncation value tends to
infinity.

III. DEFINITIONS, IDENTITIES, AND PRELIMINARY THEOREMS

Definition 1: For an Hermitian matrix with
eigenvalues , the empirical distribution function
(e.d.f.) of the eigenvalues is defined as [20]

cardinality (2)

2If channel nulls exist, these subcarriers can be ignored by simply removing
the appropriate rows and columns from H and S. Therefore, this assumption
does not limit the generality of the final result.
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Under certain conditions, as the e.d.f. for certain
random matrices converges to a fixed distribution, . It is
often useful to express this distribution in terms of its Stieltjes
transform.

Definition 2: The Stieltjes Transform of the distribution
is defined as [20]

for (3)

where .

Theorem 1: [21] Let , where
is an matrix of i.i.d. complex random variables with zero
mean and variance , and assume that

. Let , , and the e.d.f. of
almost surely converges vaguely to a cumulative

distribution function (c.d.f.) as . Let be Her-
mitian for which the e.d.f. of its eigenvalues, ,
converges vaguely to the nonrandom (possibly defective) d.f.

almost surely. Let , , and be independent.
Then, almost surely, , the e.d.f. of the eigenvalues of

, converges vaguely, as , to a (nonrandom) d.f.
, whose Stieltjes transform satisfies

(4)

Theorem 2: [22] Let , where is as
defined in Theorem 1, and is random Hermitian non-
negative definite, with converging almost surely in dis-
tribution to a c.d.f. on as . Then, almost surely,

converges in distribution as to a (nonrandom)
d.f. whose Stieltjes transform satisfies

(5)

Lemma 1: For the definitions and conditions of Theorem 1,
except where the have variance for all , , and

(6)

Proof: The proof consists of considering ,
using Theorem 1, and the identity .

Lemma 2: Define

(7)

where is a matrix, as defined in Theorem 1, except
that each element has variance , and the , , and
are mutually independent across . Define . Then

(8)

Proof: The proof is by induction. The statement is true for
, according to Lemma 1. Now, assume that (8) is true for

some . Then, according to Lemma 1

In what follows, we will need to evaluate the Stieltjes trans-
form associated with the sum of random matrices. This is ac-
complished with the aid of the -transform, and its associated
additivity property.

Definition 3: The -Transform of a distribution in terms of
its Stieltjes transform is defined as [18]

(9)

where is the inverse function (with respect to composition).
We also have

(10)

We will also refer to as the -transform of .
The following important property of the -transform is

based on the theory of free probability. The notion of freeness
in free probability theory is analogous to independence in
classical probability theory. For more precise definitions and
related properties, see [23].

Identity 1: [18] If , and and form
a free family in the large matrix limit, then

.
The computation of the distribution of the sum of free random

matrices is often referred to as the additive free convolution of
the component distributions.

IV. ASYMPTOTIC LMMSE SINR

We consider a standard linear MMSE multiuser receiver,
where the estimate of the symbol carried on the th signature
of the th user is given by

where

(11)

The SINR for the th signature of user is

(12)

where is with the th signature removed.
Due to [14, Lemma 1], and the fact that the asymptotic dis-

tributions of and are the same, we may state

(13)
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(14)

(15)

where denotes the normalized trace . We ob-
serve that the SINR for each signature of user is the same
asymptotically. Therefore, we have omitted the index from

in (13) and all analysis which follows.
In order to establish the convergence of (15), we first consider

the convergence of the e.d.f. of . The positive moments
, can be shown to converge under the

truncated distribution assumption for [24]. This implies the
almost-sure convergence of the e.d.f. of . Moreover, this
implies that the expected value of any bounded continuous func-
tion of the eigenvalues of converges almost surely [25, Th.
4.4.1]. In particular, the function , on the truncated support,
is bounded and continuous, which gives the almost-sure conver-
gence of the e.d.f. of . Finally, this implies that the mean
of the e.d.f. of , (i.e., ) converges almost surely.

V. ASYMPTOTIC ANALYSIS: SINGLE-USER CASE

In this section, we assume that a single user transmits at any
one time. For notational simplicity, in this section, we often drop
the user subscript . Here we derive the asymptotic SINR using
techniques similar to those used for DS-CDMA in [11], [12],
and [14]. We also give a SINR expression for fixed channels.
In Section VI, we consider the more general multiuser multi-
signature case.

Note that (15) can be written as

(16)

where . Since is Hermitian, it is possible
to find a unitary matrix of eigenvectors and a corresponding
diagonal matrix of eigenvalues, such that , and
therefore, (16) can be rewritten as

(17)

where is the th eigenvalue of , and and are
as defined in (3) and (2), respectively. Note that the last expres-
sion is written as a limit since, strictly speaking, the Stieltjes
transform is not defined on the real axis.

Applying Theorem 1 to the matrix , and evaluating at
gives the following expression for , or equivalently,
as defined in (17):

(18)

where .
To complete the solution, we seek the a.e.d. of .

Despite the correlation between adjacent subcarrier gains,
the e.d.f. of the eigenvalues of converges in distribution to
the c.d.f. of a diagonal element of , due to the assumption
of infinite frequency diversity. Since the subcarrier gains

, are complex Gaussian with variance ,
the powers are exponentially distributed

with c.d.f. . Hence, the a.e.d. of
is given by

for (19)

Using (3) and (19), we obtain

(20)

where and is the exponential integral with
, given by

(21)

The main result of this section is now obtained in the form
of a fixed-point equation for the average asymptotic SINR for
single-user multi-signature MC-CDMA. Combining (20) and
(18) gives

(22)

where . This equation predicts the asymptotic
SINR for MC-CDMA as a function of only the system load, ,
the noise power, and the variance of the subcarrier gains. This
equation has no closed-form solution, and hence, we must solve
it numerically.

Note that for finite frequency diversity, the asymptotic
LMMSE SINR does not converge unless the limit is condi-
tioned on the channel. Consider the case of a known channel
with equal-width coherence bands. Each subcarrier within
coherence band is assumed to have the same channel coeffi-
cient, . Letting leads to

Here denotes the approximate asymptotic SINR with co-
herence bands.

VI. ASYMPTOTIC ANALYSIS: MULTIUSER CASE

We now assume that multiple users transmit simultaneously.
While this is a generalization of the model considered in the
previous section, the analysis is not a straightforward extension.

A. Single Signature per User

Consider the case where for all . We will evaluate
the SINR for each user as with fixed . More-
over, assume that there are only possible received powers

, and that the proportion of users within the
th power class remains fixed at . (This restriction is relaxed

later.) In this section, we will assume uncorrelated subchannel
gains. Since (13) converges almost surely, it must converge to
its expectation. If we average (14) over the distribution of the
th channel in the limit, then we obtain

(23)
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since and are independent, and where is the power
class for user . Since the a.e.d. of is the same as the
a.e.d. of , we can state

(24)

Now, to determine , we use Lemma 2. Note that in this
scenario, can be written as

(25)

where contains the channel-modified signatures of all
the users in the th power class. Note that each element of is
the product of a random signature element and a random complex
Gaussian channel value, and hence, the elements of have zero
mean, variance , and are i.i.d. Therefore, meets the as-
sumptions on the variable in the statement of Lemma 2, and
we can apply Lemma 2 to (25), with , to obtain

Since , we find

which is simply extended to any density of user powers

where is the proportion of users with average power .
This must be solved numerically.

In summary, the following equations give the asymptotic
SINR for single-signature multiuser MC-CDMA:

(26)

(27)

Note that this is identical to the so-called Tse–Hanly for-
mula [11]. This shows that the asymptotic MMSE SINR of
MC-CDMA with infinite frequency diversity in a frequency-se-
lective channel is the same as the asymptotic MMSE SINR of
DS-CDMA in an AWGN channel.

B. Multiple Signatures per User

We now assume multiple users with multiple signatures, and
evaluate the SINR as and with fixed . The
number of users is held fixed in this case. The main difficulty
in this section comes from the fact that the channel for each user
is the same across all assigned signatures, but is different from
and independent of the other users’ channels.

Consider the asymptotic SINR in the multiuser case, given
by (15). If we were now to attempt an asymptotic analysis of
the SINR, directly following the technique used for DS-CDMA
in [11] (where ), and for single-user multi-signature
MC-CDMA in Section V, the next step would be to attempt to

determine the Stieltjes transform of the a.e.d. of . How-
ever, this is not straightforward, so that we now seek an alternate
approach.

Consider the following identity [26, Ch.4]:

(28)

Examining the last term on the right-hand side of (28) gives

(29)

Therefore, as while , each
, and hence, (28) and (29) give

(30)

To compute for this multi-signature case, we use The-
orem 2 to first compute , the Stieltjes transform of the

a.e.d. of . Note that has the same eigen-

values as . Since we assume infinite frequency diversity
and the subcarrier values are complex Gaussian, the a.e.d. of
is an exponential distribution with mean equal to , the average
received power of user . We therefore have

(31)

where

(32)

and is given by (21).
We would now like to use the a.e.d.s of the matrices to

find the a.e.d. of . If the ’s were asymptotically free, we
would be able to use the -transform and Identity 1 directly.
It turns out, though, that they are not asymptotically free. To
our knowledge, there are no existing methods for computing the
a.e.d. of sums of nonfree matrices of this form.

We proceed to approximate the by a set of equivalent
asymptotically free matrices, as follows. From [23, Th. 4.3.5],
we know that unitarily invariant random matrices with limit
distributionshavingboundedsupportareasymptoticallyfree. It is
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shown in [24] that and each , , has a limit distribution
with bounded support. We will, therefore, approximate by

(33)

(34)

where is a set of independent random unitary
matrices. Note that has the same eigenvalues as

, however, the important difference is that the and
matrices form an asymptotically free family. This allows

the use of the -transform to compute the distribution of the
sum given in (33), which contains a single constant matrix and
unitarily invariant matrices with limit distributions on a compact
support.

The approximation of by leads us to calculate
in place of in (30). In Sec-

tion VIII, we present numerical results which show that this ap-
proximation is very accurate over a wide range of parameters
(SNRs and user loads ). Furthermore, the first few asymptotic
moments of can be computed using a similar technique to
that presented in [27, App. B]. Comparing with the moments of

shows that the first three moments are identical, and that the
difference in fourth moments increases with load and SNR,
but is relatively small over a wide range of SNRs and loads.
Because the output SINR can be accurately approximated by a
reduced-rank expression that depends only on the first few posi-
tive moments of [27], this moment analysis indicates that the
asymptotic SINR obtained from using instead of should
be quite close to the actual asymptotic SINR.

We now use Definition 3 and Identity 1 to compute the
Stieltjes transform of (33) as follows:

In summary, the following equations must be solved to
find the fixed point , which can then be substituted into (30)
to find the asymptotic SINR, where :

(35)

for (36)

In the general case, (30) is an equation with unknowns.
However, if all the ’s are equal, (all users have the same
number of signatures), then asymptotically the values

Fig. 1. Normalized standard deviation of single-user multiple-signature
MC-CDMA empirical SINR for � = 0:5.

are the same for all and converge to the value . Hence

(37)

follows from (30), and the asymptotic SINR for each user is
.

VII. ASYMPTOTIC BER

Provided that the asymptotic output multiple-access interfer-
ence (MAI) plus noise is Gaussian (as suggested in [28] and
[29] for DS-CDMA), the asymptotic BER for binary phase-shift
keying (BPSK) symbols is given by the classical result [30,
Ch.5]

(38)

where . This equation holds
for the single-user and multiuser cases in Sections V and VI,
and is supported by numerical results for systems with large ,
shown in Section VIII.

VIII. NUMERICAL RESULTS

In what follows, we compare our asymptotic results to sim-
ulation results, corresponding to a MC-CDMA communication
system with random spreading signatures, independent subcar-
rier complex gains, and binary data symbols.

A. Single-User, Multiple-Signature Simulations

Fig. 1 shows the empirical normalized standard deviation
(normalized by the SINR) of the LMMSE output SINR as a
function of , in the case of a single user with for
a range of per-signature received SNRs. These curves were
found by averaging (12) over many random system realizations.
From the figure, we observe that the SINR converges as
increases. Although not shown, we have also observed that
any difference between the average empirical and asymptotic
SINR values disappears rapidly as increases. This effect has
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Fig. 2. Asymptotic and empirical BPSK BER for single-user
multiple-signature MC-CDMA and OFDM with N = 16.

Fig. 3. Asymptotic and empirical BPSK BER for single-user
multiple-signature MC-CDMA.

been previously observed for MC-CDMA [9], and confirms the
derivations in Section IV.

Fig. 2 shows asymptotic and empirical BER for MC-CDMA
systems. The asymptotic BER is computed from (22) and (38),
and the empirical BER assumes with binary symbols.
The figure shows that the empirical BER agrees with the ana-
lytic results, thus demonstrating the validity of the BER expres-
sion (38). Also shown are empirical and analytic BER curves
for (uncoded) OFDM, which cross the MC-CDMA curve at
low SNR, as expected. When thermal noise dominates, the fre-
quency diversity of MC-CDMA allows it to outperform OFDM,
and when intersignature interference dominates, the orthogo-
nality of OFDM gives it the advantage. Since each subcarrier
is a Rayleigh flat-fading channel, the analytic BER for uncoded
OFDM using BPSK is given by [30, Ch. 14]

where is the average SNR per subchannel.

Fig. 4. Asymptotic and empirical SINR for multiuser multi-signature
MC-CDMA.

Fig. 5. Asymptotic and empirical BPSK BER for multiuser multi-signature
MC-CDMA.

Fig. 3 shows the asymptotic BER as a function of system load
. This plot allows achievable data rates to be calculated for

the MC-CDMA system. For example, in order to meet a BER
when the received SNR per signature is 14 dB, a system

loading of up to 0.6 is allowed, corresponding to 0.6 bits per
subcarrier with binary signaling.

B. Multiuser, Multi-Signature Simulations

Fig. 4 shows the analytic and empirical output SINR of a
multi-signature multiuser MC-CDMA system with four users.
Fig. 5 shows the corresponding empirical and asymptotic BER
found using (38). For these two figures, each user has the same
number of signatures, and . User 3 has per-signature
average received power (i.e., the value on the horizontal
axis) and users 1, 2, and 4 have per-signature average received
power 6, 3, and 3 dB, respectively, relative to .

The figures clearly show that the approximation made in de-
termining in Section VI-B is valid in this scenario. Also note
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Fig. 6. Empirical and asymptotic values of � , and empirical values of
Tr[R ] versus per-signature SNR for a range of � for two equal-power,
equal-rate users.

Fig. 7. Asymptotic and empirical SINR versus� for multiuser multi-signature
MC-CDMA.

that the approximate asymptotic result more closely matches
the empirical result at lower SNRs, as our discussion in Sec-
tion VI-B indicated.

Let us examine the range of parameters over which the ap-
proximation used to determine is valid. We consider the case
of two equal-power, equal users. Fig. 6 shows the empir-
ical finite (true) value of (with dashed lines) for . It
also shows the empirical and asymptotic value of determined
from (which our analysis uses as an approximation for ).
The dotted lines for empirical values cannot be seen, as they co-
incide with the asymptotic values, shown as solid lines. Clearly,
for a wide range of and SNRs, the approximation is accurate,
especially for . It remains now to investigate how these
small inaccuracies in the high-SNR/high- region impact the
asymptotic SINR.

Fig. 7 shows the asymptotic and empirical SINR as a function
of total system load, in the same scenario as Fig. 6. Here we
observe that the approximation error only increases slightly for
higher SNR or higher ; however, it is clear that this approxi-
mation error is negligible for all practical values of system load,
and over a wide range of SNRs.

IX. CONCLUSIONS

We have derived analytic SINR and BER expressions
for MC-CDMA systems using an LMMSE receiver in
Rayleigh fading channels. We derived results for multiuser and
single-user models, and with both multiple and single signa-
tures per user. The asymptotic SINRs are derived as a function
of the system load (number of signatures per subcarrier), the
noise power, the users’ powers, and the fading properties of
the channel. Our multiuser, multi-signature analysis relies
on approximating certain covariance matrices by unitarily
invariant matrices, which are asymptotically free. Comparison
with simulation results show that the asymptotic results based
on this approximation accurately predict the performance (e.g.,
output SINR) of finite-size systems over a wide range of system
parameters of interest.
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