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Correspondence

On the Average Near—Far Resistance for MMSE N-tap MMSE detector proposed in [11N(is the processing gain),
Detection of Direct Sequence CDMA Signals which consists of anV-tap linear filter followed by a threshold
with Random Spreading device. The tap spacing is equal to the chip interval, and the taps
are selected to minimize the mean squared error (MSE) between the
Upamanyu MadhowSenior Member, IEEE transmitted symbol and the filter output.
and Michael L. Honig Fellow, IEEE We consider both synchronous and asynchronous CDMA systems.

Although most systems in practice are asynchronous, consideration
of a synchronous system facilitates exposition of the ideas behind
Abstract—The performance of a near—far-resistant, finite-complexity, the proofs of our results. We derive tight upper and lower bounds on
minimum mean squared error (MMSE) linear detector for demodulating  the ayerage near—far resistance of the MMSE detector. These bounds
direct sequence (DS) code-division multiple access (CDMA) signals is vt timall f istant I detecti h
studied, assuming that the users are assigned random signature sequences‘f",pp y 10 any OP imally near— ar;res!s ant muftiuser de e.C lon scheme
We obtain tight upper and lower bounds on the expected near—far (linear or nonlinear) that used-chip-spaced observations over a
resistance of the MMSE detector, averaged over signature sequences andsingle symbol interval to detect each symbol. This is because, for a
delays, as a function of the processing gain and the number of users. fixed observation interval and sampling rate, the MMSE detector, and

Since the MMSE_detector is optimally near—far-resistant, the_se _bounds its zero-forcing (or decorrelating) analog, have maximum nearfar
apply to any multiuser detector that uses the same observation interval

and sampling rate. The lower bound on near—far resistance implies that, "e€sistance [6], [7], [11]. The near—far resistance of Ahéap MMSE

even without power control, linear multiuser detection provides near—far- detector considered here also provides a lower bound for that of
resistant performance for a number of users that grows linearly with the  infinite-memory multiuser detectors such as the optimal (maximum-
processing gain. likelihood) multiuser detector [21] and the decorrelating detector

Index Terms—CDMA (code-division multiple access), direct sequence, [6], [7], with equality for synchronous CDMA. This leads to the

interference suppression, multiuser detection, random signature sequence, approximate rule that the maximum number of strong interferers that
spread spectrum. the V-tap detector (and hence more complex multiuser detectors) can
effectively suppress growearly with the processing gaifv. This

is in contrast to the matched-filter receiver, whose near—far resistance

It has b v sh hat I . q is zero with high probability even fawo simultaneous users.
thas been recently shown that linear minimum mean squared erok . 1onqom signature sequence model considered has been used to

(ll\D/Ig/I(S:E)NTZceiyerslfo; direct seﬁquefnce cgde-divis]ion mutI)tIipIe accﬁﬁﬁalyze the performance of the matched-filter receiver [14], [25], to
,( J ) signais do not sutter ror.n.t € near—far problem o thEptain performance limits for matched-filter-based timing acquisition
interference floor in performance exhibited by conventional match? DS-CDMA systems [12], and to derive timing acquisition schemes
fllter_ receptlon.[ll]. The use of the MMSE crlter_lon for CDM_Afo single-user DS systems [3]. When the signature sequences have
receivers was first proposed in [26]. More recently, it was recogniz iriod much larger than the symbol interval (as in the current
by several authors [1], [11], [13], [16] that, for CDMA system S-95 DS-CDMA air interface [17]), an average with respect to

in which the signature sequences are short (i.e., the period of @gnature sequences can be interpreted as an average over each user’s

signature sequence equals the symbol period), linear MMSE recei\’gy?hbol sequence, since the signature sequence restricted to each

can be ir_nplement(_ed as adapti\_/e tapped-delay I_ines wit_h_relatively l% mbol interval appears random [4]. In contrast, in a system with
complexity. Such |mplementat|pns do not require explicit knowled ort signature sequences (in which case the cyclostationarity of the
,Of pargmeters such.as the S'Q“at”re sequences and delays ij Stference permits adaptive implementation of the MMSE detector),
interfering users, unlike ce_ntrallze_d multiuser detectors (_see [2?’] g\r/eraging over signature sequences has the interpretation of averaging
a survey of the latter). While previous performance studies of I'neg\r/er the set of active users. Our results on average near—far resistance

!\/IMSE detection were for specific choices of signatgre sequence ly to both kinds of systems, as longlaear modulation is used
in this correspondence, we attempt to characterize its performara s the results would not apply to the 1S-95 mobile to base link,

averaged over randomly chosen signature sequences and rand %h uses orthogonal modulation)
chosen delays. The detector considered in this correspondence is the, tion 11 summarizes the system model and the analysis for a fixed
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whereT is thesymbol intervalbi. . € {—1,1} is thenth symbol of pulse. For the interference, the preceding discrete-time model holds
the kth user,A;, is its amplitude . is its relative delay with respect approximatelyif ¢(¢) decays sufficiently rapidly witl¢| that a given

to the receiver, and(t) is its spreading waveforpngiven by chip makes a significant contribution to at most two adjacent chip
N1 spaced samples.
sp(t) = Z ar[jle(t = §T.). ) We consider the following cases. .
= Synchronous CDMA: For1 < k < K, the delaysr, = 0, so

1 0 _
. . ] ) thatv, - = 0 andv; = ay.
Herea,[j] € {~1,1} is the jth element of the signature sequence Asynchronous CDMA: The receiver is synchronized to the de-
for the kth user,y(t) is the chip waveform7.. is thechip interval  gjreq user, so that we still hawe = 0, andv; ' = 0 ande? = aj.
andN = T/T. is the processing' gainU'ndervthe rand_om signature yowever, the interferer delays., 2 < k < K, can take any value
sequence modet[j], 1 <k < K,0 < j < N—1, are independent i, the interval[0, T). For the averaged performance measures to be
random variables taking the valug¢d and—1 with equal probability. considered in this correspondence, these delays are assumed to be

The net received signal is given by independent random variables, uniformly distributed doef’).
K In each case, we obtain the following genegdquivalent syn-
r(t) = Z ™) (#) 4+ n(t) (3) chronous modefor the net received vector:
k=1 J
wheren(t) is additive white Gaussian noise (AWGN). Taking the n = bo[n]uo + Zbi["]"i +wn @)
first user to be thelesireduser, our objective is to demodulate its J=1
bit sequence{b: . }. wherebo[n] is thedesired bitthat we wish to demodulatey, is the

The receiver is assumed to know the symbol and chip timing Q&ctor modulating it, and, far < j < .7, b,[»] are interfering bits due
the desired usefrso that we may set; = 0. The received signal is to intersymbol interference and multiple-access interferengeare
passed through a chip matched filter and sampled at the chip rate. jn@srference vectors modulating these bits, andis white Gaussian
making a decision on theth symbol of the desired user, we considehoise with covarianceI. The correspondence between the generic
the N samples obtained in the observation interal’, (n + 1)T]  model (7) and the original model (1)—(6) is as follows. The desired

which form the received vector bit bo[r2] = b1,,., and the desired vectar, = A, v?. For synchronous
o= (F[pN], [0 N + 1], -, 1[0 N + 28 — 1)) CDMA, the number of interference vectoys= K — 1, with
, , , , uy= Ay, j=1
For a rectangular chip waveform, tiigh chip sample is obtained as : '
(1)1 For asynchronous CDMA, the number of interference vectbrs
ol = / r(t) dt. @) 2(K — 1), with
T,
Uz —1 = A1+1Uf+11

We now express,, in terms of the parameters of the asynchronous
CDMA model (1)—(3). Without loss of generality, let € [0,T), and U = A 10041, l=1,---,J/2.
write it as7, = (ny + 64)T,, whereny is an integer betweef and
N —1,andé, € [0,1). Leta;, denote a vector of lengtl consisting
of the N elements of the spreading sequence of e user. Let
T, denote the acyclic left-shift operator, afft: denote the acyclic )
right-shift operator, both operating on vectors of lengthThus fora A The Linear MMSE Detector

For much of our analysis, it is convenient to work with the generic
model (7), hiding the underlying structure of the signal vec{ars}.

vectorz = (20, --,2n-1)", we haveT & = (x1,- -, 2n—1,0)" For the model (7), letting, ) denote the standard inner product in
andTrz = (0,20, -, wn—2)T. Let TP, T%, denoten applications Euclidean space, a linear receiver produces a bit estimate
of these operators, resulting in left and right shiftsrhyespectively. - o

For each asynchronous user, two consecutive bit intervals overlap boln] = sgn ({e.74)). ®)

with a given observation interval of lengifi Furthermore, since the The jinear MMSE receiver is a correlatetthat minimizes the MSE
system is chip-asynchronous, two adjacent chips contribute to egeh(c,r,) — by[n])*} between the decision statistic and the desired
chip sample. The contribution of theth user to the received vector it 1, [n]. This receiver also maximizes the signal to interference (plus
r, € RY for the nth observation is, therefore, given by noise) ratio (SINR) among all linear receivers.
TSJC) = bk‘n—lAkU;l + bk,nf’lk’vg (5)
B. Near—Far Resistance and the Zero-Forcing Receiver

where The asymptotic efficiencj22] of a multiuser detector measures the

vl = (1= 60T "kay + 6T " ay exponential rate2 of convergence of its error probability to zero as the

0 _ N g+l noise variancer* — 0, relative to the rate in a single-user setting.
vk = (1= 00)TR'ax + 6 TR ax. ©) The worst case asymptotic efficiency over all possible interference

. . . amplitudes is the near—far resistance [6], [7]. Setdenote the sub-
Remark 2.1: For gen_er_al chip pulses, pos_5|bly of_duratlon Iargegpace spanned by the interference veciars - -, u 7. Let 73{%, (ug)

thanT. (e.g., the bandlimited square root raised cosine pulse usedyqte the projection af, orthogonal to the interference subspace. If
the 1S-95 standard), the received signal WOUId*be passed througfy@ projection is nonzero, then a linear correlator chosen along this

chip matched filter with impulse responsgy: = " (—t). ASSUMING  girection is a zero-forcing, or decorrelating, detector [6], [7], [11].

that the net chip response= ¢+ wir is Nyquist at the chip rate, and 1 \ya5 shown in [11] that, if the zero-forcing receiver exists (i.e.,

that the receiver is synchronized to the desired user, the discrete-time (ug) # 0), then the MMSE detector tends to the zero-forcing
response for the desired user would be the same as for the rectan '

ctor whew? — 0. Thus the asymptotic efficiency of the MMSE

LMMSE interference suppression can also be used to incorporate tim@gtector is equal to that of the zero-forcing detector. Moreover, the
recovery into the receiver [8]-[10], [18]. asymptotic efficiency of the zero-forcing detector is independent of
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interference amplitudes, and therefore equals its near—far resistamterfering users. Averaging over the latter, we obtain upper and lower
The near—far resistance and asymptotic efficiency of the MMSE ahdunds on the expectation &f, which yields the bounds on expected
zero-forcing detectors are both given by near—far resistance stated in the following theorem.

- ||P3, (wo)||* g Theorem 1: The expected near—far resistance fymchronous
T lwel? ©)  cpma satisfies
K—1
The near—far resistance therefore equals the fraction of the energy of 1K " B <1- L Z n s (n) 12)

the desired signal vector that remains after projecting orthogonal to I I
the interference subspace.

n=1

where the functionfx —, is computed via the following recursion:

)flcfl('rn - 1)-
1<m<k (13)

gm—1

21\/

om

C. Performance in Terms of Signal Crosscorrelations fr(m) = 27]",671(;77/) + <1 _

The performance of the MMSE and zero-forcing detectors are 2%
determined by the crosscorrelations between the signal vegigis
Denote theJ x 1 vector of normalized crosscorrelations between thgith initial condition
desired signal vector and the interference vectorg;asvith entries

=1 fi(0)=0. (14)
pr(j)=—<u°”u’> . =L _
[0 [[] ;1] Theorem 2: The expected near—far resistance &mynchronous
Denote thel x .J matrix of normalized crosscorrelations between th€DMA satisfies
interference vectors bR, with (7, j)th entry given by 2K — 1 | HEZY
- - 2B <o LY ) @5)
R[(l._}):&, 7~]:1*J ’ n=1
a5 where gx_ is given by the recursion
It can be shown [11] that the near—far resistance of the MMSE and gm gm
zero-forcing (ZF) detectors is given by ge(m) = S ge—1(m) + 1555 ge—1(m —1)
_ T pt am—1
n=1-prRip: (10) + <1_W)gk,l(m—2), 2<m <2k (16)

WhereR'j“ is a generalized inverse [2] &,, i.e., any matrix satisfying
R;R'R; = R;. Although the generalized inverd®) is unique if and
only if R, is nonsingular, it can be shown that the near—far resistance g1(2)=1, ¢g1(1)=¢1(0)=0. a7)
is uniquely specified regardless of the rankRyf. Nonsingularity of

R; is equivalent to the linear independence of the set of interferenae Numerical Results

vectors.

with initial condition

We plot the preceding bounds for a system with processing gain
N = 31. Fig. 1 shows the upper and lower bounds on the expected
Ill. RESULTS near—far resistance for synchronous and asynchronous CDMA as a
We assume that the signature sequenaes: -, ax are indepen- function of the number of user&’. In each case, the bounds are
dent and identically distributed (i.i.d.) random vectors, each chos#@t, so that we can infer the following rule of thumb from the lower
uniformly from {—1,+1}". The relative amplitudest; are assumed bounds: for near—far resistant performaiéz{s } > 0) using theN -
to be fixed, and the relative delays for asynchronous CDMA af@P MMSE detector or its zero-forcing version, the system design
assumed to be uniformly distributed over a bit interval. Using thighould satisfyk’—1 < IV for synchronous CDMA, and’—1 < N/2
random signature sequence model, averaging the expressions forffgh@synchronous CDMA. This rule refers to the number of interferers
performance measures given in the previous section leads to YWaich arestrongrelative to the desired signal.
results given in this section. Proofs are postponed to the succeeding
section. Our results on the expected near—far resistance for the MMSE IV. DERIVATION OF THE BOUNDS

and ZF detectors are stated in Lemma 1, and Theorems 1 angonsider the generic model (7), and assume first that the interfer-

near—far resistance with probability one for asynchronous CDM@A (), the near—far resistance is given by

and for synchronous CDMA with odd’, and with probability close
to one for synchronous CDMA with evelN. In the latter case,
the probability of nonzero nearfar resistance, (i.e., of the desiragcording to the random signature sequence model, the interference
signature sequence being orthogonal to all other signature sequenggglorsu, , - - -, u; are statistically independent of the desired vector
goes to zero exponentially fast witN. %o = a,, for both synchronous and asynchronous CDMA. Lemma

Lemma 1: The conditional expectation of the near—far resistancé,iS obtained by averaging oves, conditioned on the interference

conditioning on the interference subspae(i.e., on the interfering Vectorsui.---.uy. Since
signature sequences and delays) and averaging over the desired

n=1-p1R;"pi.

N—-1

signature sequenae, is given by pi(j) = VN w| Z ai[mlu;m], 1<j<J
- I m=0
E|Si] =1—-d;/N (1) we obtain that
whered; denotes the dimension of;. . ) 1 e
E{pr(j)pr(k)|Sr} = N [ Tfee]] Z wy[m]ug[m]
J

m=0

The dimensiond; is a random variable taking values fromto [ e ]
J, depending on the random signature sequences and delays of the =(1/N)R;(j, k) (18)
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Fig. 1. Bounds on average near—far resistance for MMSE and zero-forcing detectors for asynchronoug €DMAL).

where we have used the fact th&fa,[m]ai[n]} = é..n, and that by the firstk interfering users, i.e$y is spanned by, -+, a1,
a; is independent of;. We can now conclude that and let Dy, denote its dimension, so th& = Sx_: andd; =
g Dy 1. Inthe following, we construct a sequence of random variables
E{p?RII/)ﬂS]} _ Z E{pj(k)pf(j)|SI}Rj1(j,k) F. such that for each < k < K — 1, F, is stochastically smaller

[19] than Dy,. Since E{Fx_1} < E{Dx_.} = E{d;}, this yields

7 the desired upper bound afi{#}.

=(1/N) Z Ri(k,j)RT'(j. k) Let e, = Dy — Dy_1 be th?‘ increase in dimension due to the
= kth interferer, so thaDy = -7, ¢; for 1 < &k < K -1, and

— (1/N) trace (R;*Ry) = J/N. €1 = Dy = 1 with probability one. FoR < k < K —1

J.k=1

Thus if R; is invertible, we haveF {1|S;} = 1 — J/N. € = {? gf;el €5k
In general, R; need not be invertible. However, denoting the ’ '

dimension of the interference spageby d,, we can find/, linearly  pefine the conditional probability

independent interference vectors which sgan We observe that

no other interference vectors need be considered for computing the pk(0|d) = Pleg, = 0|Dg—1 = d].

near—far resistance, since the latter depends only on (the component

of ug = a, orthogonal t0)S7. The preceding derivation is thereforeln the following, we find an upper bourg@0|d) on p.(0]d) which

applicable if.J is replaced byl;, which yields the desired expressionis independent of:. We use this bound to construct iteratively a

(11). sequence of random variablé as follows. LetF; = D; = 1 with
Removing the conditioning ori7 in (11), we obtain probability one. Fork > 2, assuming tha¥,_, has been obtained,
define the distribution off}, by
B{n}=1- E{d;}/N. (19)
P Fy_q with probability p(0|Fi—_1)
A lower bound onE{#} follows immediately upon noting that the ¥\ Fio1 + 1 with probability [1 — p(0]Fy—1)].

number of interference vectors, is an upper bound od;, so that

E{n} >1—J/N. SinceJ = K — 1 for synchronous CDMA, and This construction translates to the following recursion £in for
J = 2(K — 1) for asynchronous CDMA, the lower bounds on thd fx(n),1 < n < k}, the probability mass function dfy:
expected value of the near—far resistance in (12) and (15) are now

immediate. The derivation of the upper bounds involves finding lower f+(m) = D(0[m) fu—i (m) + [1 = p(Olm = D] fe—1(m — 1),

bounds onE{d,} using stochastic domination arguments. 1<m<k (20)
A. Upper Bound or£'{n} for Synchronous CDMA with initial condition

Since the near—far resistance depends on the directions and not the A =1, £(0)=0. (21)
magnitudes of the signal vectors, we may set the relative amplitudes
A; = 1. We therefore have that the interference veciors=a;y, We now show thatF} is stochastically dominated by, for

1<j<J=K -1, are simply random signature sequences choseachk. This is true fork=1, and we assume it is true upke-1. We
uniformly from {—1,+1}". Let §; denote the subspace generatechust now show that for any monotone nondecreasing fungtjome
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have E{f(Dx)} > E{f(Fy)}. LetU(d) denote a Bernoulli random independent interference vectors. Thus weGet= D = 2 with

variable which takes valué with probability 5(0|d). Then probability one. Fork > 2, let
_ Gr_1, with probability g(0|Gr—1)
E{f(D.)\ = E{#(D:_ (D k—1, p y 7(0|Gr—1
ER }f( st + (D))} o _ ) Giy+2 with probability ¢(21Gi—1)
2 EI{(D’C* +U(Dr-1))} 7Y G + 1, with probability
=E{f(Dr-1)} (22) [1 = 7(0|Gr-1) — ¢(2[Gr-1)]-
where we definef(d) = E{f(d + U(d))}. The functionf inherits The corresponding recursion (i) for {gi(n).1 < n < 2*}, the
the monotonicity off, because probability mass function of7;. is as follows:
d+U(d) <d+1<d+1+U(d+1) gi(m) =q(O0m)gi—s (m) + [1 = g(O0lm — 1) = g(2|m — 1)] -
ge—1{m — 1)+ ¢(2lm — 2)gr—1(m —2), 2<m <2k
with probability one. Using the inductive hypothesis - (24)
E{f(Di—1)} 2 E{f(Fi1)} with initial condition
=F{f(Fr—1 +U(F— )
W+ )] 0@ =1 @1)=gn(0 =0 (25)
=E{f(F:)}. (23)
N _ _ The proof thatG;. is stochastically smaller tha®;. for each# is
Combining (22) and (23) gives the desired result that omitted, since it is similar to the analogous proof for synchronous
) ) CDMA. The desired upper bound on the average near—far resistance
E{f(Di)} 2 E{f(Fi)}- given by the right-hand side of (15) is now given by
The upper bound(0|d) is given by the following proposition, 2
which is proved in Appendix A. E{n} <1-E{G;}/N=1=(1/N)> ngs(n).

n=1

Proposition 1: LetS be a subspace ®" of dimensiond, and let

a be a random vector independent$fvhich is uniformly distributed
over {—1,+1}". Then

It remains to compute the boundsand ¢q. Writing the relative
delay  for a given asynchronous user @s+ 6)7., recall that the
assumption that is a random variable which is uniformly distributed

od over [0, 7] implies thatn is a random variable that takes on each
Pla € 5] <p(0ld) = 5 integer value in the intervdD, N — 1] with probability 1/N, and

thaté is a real-valued random variable which is uniformly distributed
. . o
Clearly, the hypotheses of the proposition are satisfiet! 8ya. | over the interval0, 1). The two interference vectors, say andv !,

andS = S;_,. Proposition 1 thus gives the desired upper bound f&_ue to such a user are !'andom variables depending on its random
p&(0|d). Using E{F, } as a lower bound foi;, we obtain (12)—(14) 5|gna§ure sequenae and its random delay paramete_rsand 8, as
from (19)~(21). The numerical results in Section Il demonstrate thdgScribed in Section II. We can now state the following proposition.

the bounds onE{n} are tight. Proposition 2: Let S be a subspace &®" of dimensiond. For

A corollary of Proposition 1 is an upper bound on the probability® angy—! as described above, corresponding to a random signature
that the near—far resistance is zero, i.e., the probability that the desigg@uence and delay independentSofwe have

signal vector lies in the interference space o4
97 oK -1 P’ € §,v™ ' € 8] <q(0]d) = -~
}s )

P[UZO]SE{ 2d+1

P’ ¢ S.v ' @8] >q(2ld) =1 - S

—1

B. Upper Bound orE{n} for Asynchronous CDMA Taking § = 81, v = v},,, andv

As before, letS. denote the subspace generated by the first bounds ong;(0|d) and gz (2|d).
interfering users, leD; denote its dimension, and let = Dj — . . . .
Dy—1. Analogous to the procedure used for synchronous CDMA, we Fo.r the proof of Proposition 2, we flrst. show that it suffices to
find a sequence of random variabiés such thatGy, is stochastically consider chip-synchronous CDM#& = 0) in order to bound the
smaller thanDy, and substituteE { G, } for E{d;} in (19). probabilities of interest. We then find the required bounds conditioned

As in Section IV-A, set the relative amplitudes of all users to on@" the integer part of the delay, using techniques similar to those
Recall that each asynchronous user genetatebnearly independent used to prove Proposition 1, and find that the bounds are independent

interference vectors. The subspaie is therefore generated by the®f 7 The details are given in Appendix B.
collection of vectors{v; *,v¢,2 < I < k + 1}, and A corollary is an upper bound on the probability that the near—far

resistance is zero

= v, , gives the desired

0, v}, €8¢ 1andv]) , €8 9ds 92(K 1)
€ =9 2, v;_:_l ¢ Sk—i andvi, & Si_y P["I:U]ﬁE{QT}_ TN
1, else.
Fori = 0,1,2, let ¢.(i|]d) be the probability thak(k) = i, V. CONCLUSIONS
conditioned onDj;_; = d. We find an upper bound(0|d) for Averaging over random signature sequences enables us to char-

¢x(0|d), and a lower bound(2|d) for ¢z (2|d). Using these bounds, acterize the average near—far resistance of the MMSE detector as a
we construct the random variablés, as follows. Under our delay function of the processing gain and the number of users alone. An
model, with probability one, the relative delay of each interferingnportant insight gained is that the number of simultaneous users
user is nonzero, so that each such user gives rise to two linedtpt can be sustained without power control grows linearly with the
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processing gainV when either MMSE or zero-forcing detection isthe vectors corresponding to the user are given by
used, where the rate of growth depends on the required value of - Nen Nenet1

average near—far resistance. Of course, our results depend on our v =(1-0T, "a+ 8T, a

modeling assumptions, namely, a stationary user population and the v’ =(1-68)Tha + 6T} a. (28)
absence of channel variations.

Since this manuscript was submitted, several results on perf X ) o)
mance analysis for CDMA with random spreading have appeardd®?MA. The latter is easier to analyze because, for given™ " and
Simulation results regarding the variations in SINR and near—f4r &€ linearly independent (since they are orthogonal) as well as
resistance for the model considered in this correspondence appeaf@iistically independent (since the chirg} are independent random

in [5]. If the signature sequences consist of independent and idel){@_riables). The following lemma enables us to restrict attention to

cally distributed Gaussian random variables (rather than symmetfich @ system.

Bernoulli random variables as assumed hel’e), thenlitabution of Lemma 2: Fix the Signature sequenee and the integer part of
the near—far resistance (rather than just the expectation, as considgigddelayn. Then

here) can be evaluated explicitly [15] for a synchronous CDMA i) v=! € § for a set ofs € [0, 1] of nonzero measure if and only
system. In [20], the asymptotic SINR of the MMSE and zero- TV "a € S§andT¥ " a € 8.

forcing detectors asV — oo with K/N fixed is characterized i) +% € § for a set ofs € [0, 1] of nonzero measure if and only
for a synchronous CDMA system under the general assumption if Tha € § and T 'a € S.

of signature sequences with independent and identically distributed
elements (with zero mean and finite variance). Finally, in [24], t:fhe
information-theoretic capacity of synchronous CDMA with rando
spreading is evaluated using different detectors (including the MM
detector) at the front end.

\e now show that we can restrict attention to chip-synchronous

Proof: We prove i), since the proof of ii) is entirely analogous.
“if” part of the statement is clear from (28). For the reverse
ér[xznplication, suppose that there is more than one valug safch that

=5 . - . .
v~ € 8. Using two distinct values of in (28) then gives two
linearly independent simultaneous equations, each T/ﬁ[h’"a and
T)~""'a as unknowns on the right-hand side, and vectorsSin

APPENDIX A on the left-hand side. Solving these equations, we obtain that both
PrROOF OF PROPOSITION 1 TV-"g and TN ""1a lie in S
L L -
Form anN x d matrix X with columnsa,,---, 2., where these

As a straightforward corollary of the lemma, we obtain, condition-

vectors form a basis for the givefrdimensional subspace, where, .
ing on n and averaging ovef, that

d< N. The row rank of this matrix equals its column rank

Choosed independent rows. For notational convenience, reorder theP[,vfl ¢S, v° ¢ Sn] > P[Tf”"a ¢S Thad S| (29)
coordinates of the; so that these rows are numbered frorirough 1 T N Nen—1 nal

d—1,and letw; = (2:[0], -, e:[d — 1)”, wherel < i < d. The L €8¢ g8 2P[T; " "ag5Tr ag5l. (30)
d-dlmensmnal ve_ctorsui forn;I the columns of al x d mat_rlx W T1he inequality (29) is used for > 1, while (30) is used for = 0
obtained by deleting the lasf — d rows of U. By construction, the (sinceTY "a = 0 for n = 0).

row rank, and hence the column rank, W equalsd, so that the
vectorsw; are linearly independent. Letting/ denote the number of
vectors in{—1,+1}" in S, the probability that a randomly selected Plv™' € §,v° € S|n] < P[T} "a € §,Ta € S|

vector in{—1,4+1}" lies in S is M/2". An upper bound onVf is — PITY "a € S]P[T"a € S] (31)

derived as follows. . Plv ! € 5,4° € Sln] < PITY " 'a € 8, T%a € §]
Since thez; are linearly independent, we have v L L
=P[T; " 'acS|P[Ty " ac 8] (32)

Similarly, we obtain

d
M= card {()‘1""‘)“1): Z)"""ime{_l*'i'l}’l:o""’N_l}' where, as before, (31) is used for> 1, and (32) forn = 0. The
=t (26) second equality in each of (31) and (32) follows from the statistical
independence of the two vectors due to a chip-synchronous interferer.
Since#; andw, agree in their first/ coordinates, an upper bound Now, T} ~"a andT%a span the same subspace as

for M is given by =T, "a+Tha

[~

.

N—n n
=T, "a—-Tha

d d
My = Ciil'd{()\ls"':)\d): D Nl =) Nwill] € {=1,+1}, and
=1 =1

1Y

l:(),---,cl—l} (27) so that

N—n 7, ~ ~
since, compared to (26), fewer constraints are used to define the PIT,"a¢ §Tha¢S]="Plags,a¢Ss]
set on the right-hand side of (27). Using the linear independence =1-Pla€Soracs]
of the w;, distinct (A1, ---, A4) give rise to distinct vectors, so that >1—-PlaeS]—PlacS] (33
M, is bounded by the number of distinct vectors {ir-1,+1}".
Thus M < M, < 2% which yields the desired upper boundwhere a union bound has been used for the last inequality. Note,

= — 9d /9N however, that sum vectar and difference vectat are each random
P(0|d) 2 /—’ * . o N

spreading sequences ift-1,1}" independent of the subspace
(though not independent of each other). Proposition 1 for synchronous

APPENDIX B ; ;
PROGF OF PROPOSITION 2 CDMA can now be applied to obtain
o ~ ; N od . 24
Conditioning on the delay parameters_.and 6, and the signature Pla ¢S] < — Plag S < —.
sequence of the asynchronous user of interest, recall from (6) that 2N 2N
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Plugging into (33), we obtain that, for > 1

d+1
2 [1]

PIT) "a¢ 8 Thag 8 >1-—

which is independent of. Substituting in (29) and (30) and averaging
the left-hand side over. gives the desired lower bound on the (21
probability that the dimension of the interference subspace mcreasgﬁ
by two
2d+1
N =
It remains to obtain an upper bound on the probability that thdS]
dimension increase is zero, starting with (31) and (32). Given
TY "a € §(-1,n) andT%a € S(0,n), where [6]

P ™' ¢80 ¢8]>1- = q(2|d). (34) M

S(—1,n) ={z € R": 2] € {~1,4+1},0<1<n —1and ]
Zl=0,n <1< N -1}

, ; 8

500,n) ={zeR": 2[]=0,0<1<n—1, and 8]

[l €{-1,+1},n <I< N —1}

are orthogonal subsets @t". Let M(—1,n) and M(0,n) be the [
number of vectors i§(—1,n) andS(0,n), respectively, which lie

in S. We then have

[10]
Nen _M(—l,n)
P[Tha ¢ 8= 10" ”). (35)
[12]
Upper bounds onM(—1,n) and M(O./ n) therefore yield upper
bounds on the preceding probabilities. [13]

As in the proof of Proposition 1, consider thé x d matrix X
with d basis vectors fof as columns. Lej; < js» < -+« < jq denote
d independent rows. Assume thét of these row basis vectors occur[14]
among the first rows, andd, among the lastV — n rows, so that

0<di <n, 0<d2 <N —mn, di+ds =d. [15]
Reasoning as in the proof of Proposition 1, we have
d
M(—=1,n) < card {()\1, e Ag): ;/\imi[j[] € {-1,+1}, [16]
d
1<i<dyandy Nilsi] =0, [17]
=1
di+1<1<di +d :d} <2™  (36) [18]
and [19]
d
M(0,n) < card {()q st Ad)e Z)x,;x,;[jl] =0 [20]
i=1
d
1<1<diand Y Nalji] € {—1,+1}, 21]
=1
d1+1§l§d1+d2:d}§2"2. B7) 22
i [23]
Using (31), (32), and (35), we have
Noen 241+42 21 24
PITY "a€S.Thae S| < * = oo 3 24
Noting that the right-hand side of (38) is independentnofwe
substitute into (31) and (32) and average oveo obtain the desired [25]
upper bound
; [26]

Pl eS8 €8 < Z—V — 7(0l4).
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