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Abstract—A model for downlink wireless scheduling is stud-
ied, which takes into account both user-channel conditions and
retransmissions with packet combining hybrid [automatic repeat
request (ARQ)]. Quality-of-service (QoS) requirements for each
user are represented by a cost function, which is an increasing
function of queue length. The objective is to find a scheduling
rule that minimizes the average cost over time. We consider two
scenarios: 1) the cost functions are linear, and packets arrive to
the queues according to a Poisson process and 2) the cost functions
are increasing, convex, and there are no new arrivals (draining
problem). In each case, we transform the system model into a
different model that fits into a framework for stochastic scheduling
developed by Klimov. Applying Klimov’s results, we show that the
optimal schedulers for the transformed models in both scenarios
are specified by fixed priority rules. Applying the inverse trans-
formation in each case gives the optimal scheduling policy for the
original problem. The priorities can be explicitly computed, and
in the first scenario, are given by simple closed-form expressions.
For the draining problem, we show that the optimal policy never
interrupts the retransmissions of a packet. We also show that a
simple myopic scheduling policy, called the U’R rule, performs
very close to the optimal scheduling policy in specific cases. We
present numerical examples, which compare the performance of
the optimal scheduling rule with several heuristic rules.

Index Terms—Hybrid automatic repeat request (HARQ),
link adaptation, retransmissions, stochastic scheduling, utility
function.

I. INTRODUCTION

CHEDULING in wireless networks has received consid-

erable attention as a means for providing high-speed data
services to mobile users. A basic feature in wireless settings
is that the channel quality varies across the user population
due to differences in path loss, as well as fading effects.
Knowledge of each user’s channel quality can be exploited
when making scheduling decisions. A variety of such “chan-
nel aware” scheduling approaches have been studied recently
(e.g., [1]-[6]), and have been incorporated into recent wireless
standards.
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In this paper, we study scheduling in a wireless network,
taking into account packet retransmissions. Link-layer retrans-
missions are essential for providing reliability over error-prone
wireless links. Traditionally, this is accomplished via a standard
automatic-repeat-request (ARQ) protocol, where, if a packet
cannot be decoded, it is discarded and retransmitted again. Most
of the prior work on wireless scheduling either does not con-
sider retransmissions or considers this standard ARQ approach
(e.g., [7]). Here, we are interested in hybrid ARQ schemes [8],
where the receiver combines all the transmissions of a packet
to improve the likelihood of decoding success. A variety of
hybrid ARQ techniques have been proposed including diversity
combining [9], other “code combining” techniques [10], and
incremental redundancy, based on code puncturing [11]. Some
recent work in this area includes [12]-[15]. Techniques based
on hybrid ARQ are an integral part of many recent wireless
standards, such as the Global System for Mobile communica-
tions (GSM) Enhanced Data-rate for GSM Evolution (EDGE)
system [16]. For our purposes, the key characteristic of these
approaches is that each transmission attempt increases the prob-
ability of decoding success. The dependence of the probability
of decoding success on the number of transmission attempts
will vary among the users, depending on their channel condi-
tions. We develop scheduling rules that take this into account.

A goal of any wireless scheduling scheme is to balance the
users’ quality-of-service (QoS) requirements. Here we repre-
sent each user’s QoS requirements via a holding cost that is an
increasing function of the user’s queue length (or equivalently, a
“utility” function that is decreasing with the queue length). Our
goal is to schedule transmissions to minimize the overall cost.
Varying each user’s cost function enables the system to tradeoff
fairness for throughput, and provides a general framework
for scheduling heterogeneous traffic requests. Prior work on
scheduling, which assumes a linear or quadratic cost function
that depends on the packet delay, is presented in [17]-[20].
Arbitrary increasing delay cost functions have been studied
in [19]-[23]. For general cost functions, most authors have
focused on developing bounds or heuristic policies. However,
in [22] and [23], a generalized cp rule is shown to be optimal
for general convex-delay cost in the heavy traffic regime. Here,
we consider cost functions that depend on the queue length,
instead of the delay of the individual packet. From Little’s Law
[24], this cost function reflects the average delay of the user’s
packet with stationary traffic.

We assume a slow-fading environment, which highlights the
tradeoff between scheduling efficiency and fairness. This trade-
off can be controlled by the choice of cost function. We remark
that our analysis also applies to a fast-fading environment in
which the sequence of channel states for each user, indexed
by scheduling slots, is independent and identically distributed
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(i.i.d.), and scheduler decisions are based on the first-order dis-
tribution of channel states (of course, this channel model is only
reasonable when the channel appears ergodic over the time
scale of scheduling).

Given a set of user cost functions and Poisson packet arrivals,
determination of the optimal scheduler with hybrid ARQ can
be formulated as a Markov decision process (MDP) and solved
via dynamic programming. In general, the solution is com-
plicated and provides little guidance for designing a practical
scheduler. To gain insight, we, therefore, consider two special
scenarios of practical interest: 1) linear cost functions with
Poisson packet arrivals [linear Poisson arrival (LPA) scheduling
problem] and 2) general nonlinear increasing convex costs with
no new arrivals [draining convex (DC) scheduling problem]. In
both cases, our goal is to schedule transmissions to minimize
the average cost per packet. Linear cost functions can take
into account relative priorities by assigning different weights
to the different queues.! (If the weights are the same, then
the performance metric becomes total throughput.) Nonlinear
cost functions include linear cost functions with a cost that is
independent of the number of retransmissions as a special case,
and can capture different types of delay requirements such as
deadlines.

We show that both scheduling problems can be transformed
into special cases of a classic scheduling problem solved by
Klimov [25]. As a consequence, the optimal schedulers for the
transformed system in both scenarios are specified by fixed
priority rules. We can then map the priority rules back to
get the optimal scheduling policy for the original problem.
These priorities can be explicitly computed, and for the LPA
problem, are given by simple closed-form expressions. Casting
the DC problem into the Klimov framework requires a more
complicated transformation. Applying Klimov’s results gives
an iterative algorithm for computing the priority indices. We
show that the optimal policy never interrupts retransmissions of
a packet in order to transmit another packet. We also formulate
the DC problem as an MDP, and show that the priority increases
with queue length.

Finally, we consider a simple myopic scheduling policy
called the U’'R rule, which takes both the channel condition
and cost function into consideration [26]. We give scenarios
for which the U’R rule performs close to the optimal policy.
We also give a numerical comparison of the performance of the
optimal rule with other heuristic policies.

The rest of the paper is organized as follows. In Section II,
we describe the system model, and we briefly review the
Klimov scheduling model [25] in Section III. Solutions to the
LPA and DC problems are presented in Sections IV and V,
respectively. Section VI presents some numerical examples,
and the conclusion is presented in Section VII.

II. SYSTEM MODEL
We consider a set of /N mobile users served by a single base

station or access point. Our focus is on downlink traffic (from

'In our case, linear cost implies a weighted combination of queue length and
number of retransmissions for the head-of-line (HoL) packet.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 6, NOVEMBER 2005

z1(n)
Ay (n) #HOL ()
T(n) 5
Ax(n) )
zy(n)
AN (n) ,,,II\JIDL(”)

Fig. 1. System model.

the base station to the users). As shown in Fig. 1, packets for
each user arrive at the base station according to independent
random processes, and are accumulated in N queues until they
are served. The base station transmits to one user at a time in
slots of fixed durations. In each slot, a scheduler decides which
packet to transmit. We assume that the scheduler is restricted to
choosing an HoL packet from one of the queues.

When the receiver is unable to decode a transmission suc-
cessfully, the packet stays at the HoL, and is retransmitted until
it is decoded successfully. We ignore feedback delay, i.e., the
packet becomes immediately available for retransmission after
decoding failure [14]. This approximates the case when the
feedback delay is small compared to the transmission time of a
packet. Given that a packet for user ¢ has not been successfully
decoded in r; transmission attempts, let g;(r;) denote the
probability of decoding failure for the next transmission. This
depends on the specific hybrid ARQ scheme, and on user ¢’s
channel conditions. We assume that g;(+) is time invariant. This
is reasonable in a slow-fading environment, where each user’s
channel is constant over the time scale of interest. An empirical
method to estimate g;(-) in this case is presented in [12]. We
remark that a time-invariant g;(-) also applies to the fast-fading
situation in which the sequence of channel states over slots for
each user is i.i.d. In that case, g;(-) is averaged over the first-
order channel distribution.

We also assume that g;(-) is nonincreasing in the number
of transmission attempts r;, i.e., g;(r;) > g;(r}) for all r; < /.
This will be satisfied by any reasonable hybrid ARQ approach.
To simplify our analysis, we assume that there is a maximum
number of transmission attempts 7;*** for user 4, and that
gi(ri®@x) = 0, 1i.e., a packet is always successfully decoded after
78X 1 1 transmissions.” Note that the special case g;(r;) =
¢:(0) for all r; models standard ARQ.

Let A;(n) denote the arrivals for user ¢ during the nth
slot, which is independent of the arrivals for the other users.

Let S(n) = (ri°F(n),..., 7L (n);21(n),...,2n(n)) be the
state vector at the nth decision epoch (i.e., the start of the nth
time slot), where ri°L(n) € {0,1,..., 7%} is the number

of transmission attempts for the ith HoL packet, and z;(n) €
{0,1, ...} is the queue length for user i.

2Equivalently, after the last transmission attempt the packet is dropped; the
cost function can be modified to reflect a penalty for this occurrence.
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Given S(n), the scheduler must determine which HoL packet
should be transmitted in the nth slot. A scheduling policy 7 is
defined to be a mapping from each state vector to an index in
{0,1,...,N}.If 7(S(n)) = i, the scheduler transmits the HoL
packet of queue i; if 7(S(n)) = 0, the scheduler idles and no
packet is transmitted. Given a policy 7, the state S(n) evolves
according to

0, 7 (S(n)) = i and success
rHol(n 4 1) = { rHl(n) 41, «(S(n)) = i and failure
L), (S(n) £
(1)
and

xz(n) + Al(n) —1,

_ 7 (S(n)) = i and success
zi(n+1) = {xz(n) + Ai(n),

otherwise.

2

Here “success” and “failure” refer to the decoding outcome for
the given transmission. We restrict ourselves to the set of fea-
sible policies II, which contains all nonidling, nonpreemptive,
nonanticipative, and stationary policies.>

Each user i has cost function U;(z;(n), Ik (n)) associ-
ated with the start of the nth slot. This cost function is in-
creasing and convex in z;(n), i.e., for 1 > x9, U;(z1,y) >
Ui(‘r% y)’ and (aUl(x7 y)/am”w:fm > (aUl(xa y)/a‘r”l’:ﬂ:z
(assuming U;(x;(n), Ll (n)) is differentiable at z;(n) = x;
and z;(n) = x2). We assume that U;(0,0) = 0, i.e., there is no
holding cost for an empty queue. Different cost functions reflect
different QoS requirements or priorities for the users.

We consider two scenarios. In the LPA problem, to be
discussed in Section IV, packets arrive to the queues according
to independent Poisson processes with rates A\;, ¢ =1,..., N.
The cost function for user i is linear,* and is given by
Ui (wi(n),ri°%(n))

B { cio(zi(n) —1) + Ci,pHoL (n), x;(n) >0 3)

0, xz;(n) =0
where ¢; ,, is the holding-cost rate (cost per unit time per
packet) for a packet of user ¢ with r; transmission attempts.
For all ¢

0 S Cir; S Ci,r;v r; < 71; (4)

which means that the greater the number of transmission at-
tempts, the higher the holding cost. The LPA problem is to find
7 € II that minimizes the long-term average expected cost

— 1i 1 . al HoL
Jupa = lim —E |3 0> Ui (ai(n),ri ()| (5)

n=11i=1

3 A policy is nonpreemptive if the transmission of a packet is not interrupted
by an arrival, and is nonanticipative if it does not account for future decoding
results or arrivals.

“More precisely, this is an affine cost function, because of the additive
constant associated with the HoL packet.

2803

In the second scenario, discussed in Section V, we consider a
draining problem with no new arrivals (i.e., A;(n) = 0 for all ¢
and n). In this case, we allow the cost to be an arbitrary increas-
ing convex function of the queue length, and independent of the
number of transmission attempts, i.e., U;(z;(n), iV (n)) =
Ui(z;(n)). We refer to this as the DC problem. Given an initial
batch of packets (z1(1),...,zn(1)), the goal is to find 7 € II,
which minimizes the total expected draining cost, i.e.,

oo N
N (xi(n))] : (6)

n=1 =1

JDC = E7r

This can also be interpreted as a model for a system with
correlated batch arrivals [27], where the interarrival time is long
enough to finish each batch before the arrival of a new batch
(an example application is simultaneous downloads to multiple
users).

The need to track the number of transmission attempts of
every HoL packet complicates the scheduling. Our analysis is
based on the Klimov model [25], which is described next.

III. KLIMOV MODEL

The Klimov model [25] has a single nonpreemptive server,
which is allocated to the jobs in a network of K M/G/1
queues. Jobs arrive according to a Poisson process with rate
A, and are assigned to queue m with probability p,,, where
Zf(n:l pm = 1. The service time for a job at queue m (m = 1,
..., K) has distribution function B, (z), and finite mean b,),.
After service completion at queue m, a job enters queue j
(j=1,...,K) with probability p,,;, or leaves the system
with the probability 1 — ZJK:1 Pmj- The transition matrix P =
[Pmj, 1 < m,j < K] is such that every job eventually leaves
the system, i.e., lim,, .o, P™ = 0. The arrival rate is assumed to
not exceed the processing capacity of the system, i.e., Ap(I —
P)~'b <1, where p = (p1,...,px) and b = (by,...,bg)" >

The objective is to find a feasible scheduling policy 7 that
minimizes a linear combination of the time-averaged number
of jobs at each queue,

1
JKM = lim fEﬂ-

T—00 T

T K
/ > mam(t)dt (7

0 m=1

where x,,(t) is the number of jobs in queue m at time ¢ and
¢m > 01is a (linear) holding-cost rate for queue m.

The optimal scheduling policy is a fixed-priority rule [25].
This means that a time-invariant priority index can be calculated
for each queue, which is independent of the arrival process and
queue lengths. At each decision epoch, the server serves a job
from the nonempty queue with the highest priority.

The optimal priority indices can be calculated via an it-
erative algorithm [25], which starts from the set of queues
Q={1,2,..., K} and selects the lowest priority queue at each
iteration. Given a subset of queues M C (2, the priority for

queue m € M is determined by C,(qiv 1) /T,(nM )’ where C'7(nM ) s

3(a)’ denotes the transpose of .
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the equivalent holding-cost rate, and TT(,LM) is the average total

service time (not including waiting time) for a job in queue
m (i.e., until it exits from M). Since the service times are
independent, for each m € M

T =3 g T + by ®)
jeM

The optimal priority indices are computed by the following

Klimov algorithm:
1) Initialization: Mg = €, C’r(,in) =¢,, for all m € Mg,
k=K;

2) Find a queue oy, with lowest priority, i.e.,

(M)
ap = argmin { ——— 9
mgelwk TT(,LM’“ )
with ties broken arbitrarily.
3) Mgy = My — {ax}

4) If Mp_1 = ¢ (null set), then stop. Otherwise, for each
m € Mj_1, compute

M M
C’(]Wk—l) _ T(Mk) C( k) C((Xk k) (10)
m m T(Mk) T(E{i\/fk)

Decrement &k and go to step 2.

In this way, the queues are ordered in descending priorities,
a1 > ag > -+ > ag, where (ag,as,...,ak) is a permuta-
tion of queue indices (1,2,...,K). The optimal policy
always assigns the server to the nonempty queue oy with the
smallest index k. Moreover, this scheduler minimizes the total
holding cost for each busy period of the system, starting from
any initial state [28].

When discussing the DC problem, we consider a variation of
the Klimov model, which we call the draining Klimov model.
In this case, the goal is to find a policy, which minimizes the
total expected holding cost for a batch of packets initially in the
system with no new arrivals. The priority rule specified by the
Klimov algorithm is also optimal for the draining model, since
the scheduler minimizes the total holding cost of each busy
period. In other words, the draining problem can be viewed as
a special busy period with no further arrivals.

IV. LPA SCHEDULING PROBLEM

In this section, we reformulate the LPA scheduling problem
as a special case of Klimov’s problem, which we refer to as
the LPAK scheduling problem. We will show that the optimal
scheduling policy for the LPAK problem is also optimal for the
LPA problem.

A. LPAK Scheduling Problem

The LPAK problem is a relaxation of LPA with respect to the
service discipline. In LPA, there is one queue for each user i,
and the HoL packet in a queue has priority over all the other
packets in the queue. The LPAK problem is illustrated in Fig. 2
for two users with r*** = 2 and r3"®* = 1. There are r}*** 4 1
queues for each user 4, and each queue is labeled by (i,r;)
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Fig. 2. LPAK-system model.

for r; = 0,...,r"®, where r; is the number of transmission

attempts for all packets in the queue. There are a total of
K =N (r™> 1) queues. For the example in Fig. 2,
K =3+ 2 =2>5. At each decision epoch, the server decides
which of the K HoL packets to serve. Because of the additional
queues in the LPAK problem, the HoL packet corresponding to
a particular user (in the original LPA problem) does not neces-
sarily have priority over the user’s other packets. This relaxation
makes LPAK a standard Klimov problem. Subsequently, we
will show that the optimal scheduling rule for LPAK still gives
priority to the user’s HoL packet.

The arrival process is Poisson with rate A = Zi\]:l A;, and
each packet is assigned to queue (i, 0) with probability p; o =
Ai/ . The service time for each queue (i,7;) is deterministic
with b; ,, =1 time slot. The transition probabilities among
queues are determined by the probability of decoding fail-
ure. That is, after a packet from queue (i,7;), r; < rj*®*
has been served, it enters queue (i,7; + 1) with probability
P(i,rs),(ir+1) = 9i(7i), corresponding to a decoding failure, or
leaves the system with probability 1 — g;(r;), corresponding to
a decoding success. After a packet from queue (7, r***) has
been served, it leaves the system with probability 1. Thus

max

r; <71 (i,r; + 1)

otherw1se.

_ Jai(ri), ; (i) =
Pir) Girs) = {07 ’
1D

Forany set M C Q= {1,...,K}and (3,r;) € M, the aver-

age total service time is

() _ ()
Tivd = 2 PG Tim
GrpeM

(12)

The holding-cost rate of queue (¢, 7;) is ¢; »,, and the number
of packets in queue (¢, r;) at the nth decision epoch is z; ,, (n).
The goal is to find a policy 7 € II, which minimizes the time-
averaged expected cost

JLPAK = lim E (13)

T—00 T

§ § C’L’fxl’(

1 (i,r;)eQ
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B. Optimal Policies for LPAK and LPA Scheduling Problems

For the LPAK scheduling problem, the optimal priority in-
dices can be calculated iteratively using the Klimov algorithm
in Section II. Consider this algorithm with the following rule
used to break any ties that occur in (9): when a tie occurs, set
oy, to be the queue (7, 7;) such that for all other queues (j, 7;)
in the tie, j > 4,0r j = ¢, and r; > 1.

Lemma 1: Let My, k=1,2,..., K, be the sets generated
by applying the Klimov algorithm to the LPAK problem with
the preceding tie-breaking rule. For each k = 1, ..., K and for
all (i,r;) € My, the following properties hold:

1) (4, )eMk,forallr > 7.
2) T Mk) =1 =+ Zl i g T gz(l) TZ(S?
3) T(M” < 7MY forall > r;,

4) ), = argming; ;e (o /T, 7).

Property 1) shows that each set M}, is a “threshold set,”
i.e., for each user ¢, there is a threshold r, such that (i,7}) €
Mj, if and only if r; > rf. Property 2) shows that Tl(?l) only
depends on g;(r"}) for 7 > r;, and therefore, only depends on
the presence of queues (i,7}), r; > r;, in the set M}. Thus,
Tz(f’”) T(Q) for every k and every (i,r;) € My, ie., the
service times are fixed for each iteration. Property 3) states that
the service times Ti(ﬂ *) are nonincreasing in r;. This follows
directly from 2). Property 4) states that the optimal priority
order can be calculated directly without any iterations. From
2), the equivalent holding cost in (10) can be written as

(M) @ s~ C&"
k «
i Cirg — Ay Z T(Ml) . (14)
I=k+1

From this, we have that

(M) K (M)

i Gy Co,

7 (M) T(Q) Z (M) as)

9,75 I=k+1 Tal

and 4) follows. A detailed proof is omitted.
Theorem 1: For the LPAK scheduling problem, the optimal
scheduling policy is a fixed priority rule in which the priorities,

a1, Qo,. .., ax, satisfy
Cay Carg Cax
> 2> > . (16)
Q) = () < =
T~ 1 T
This follows from the main theorem in [25] and Lemma 1.
To derive the optimal LPA scheduler, let R = (rilol

rilol denote the vector of retransmission attempts

for HoL packets across the N queues. Let T; ,no. be the ex-
pected total service time for user ’s HoL packet (not including
any waiting time) until it exits the system, which is given by

HoL)

pmax__q

THoL—1+Z ng

j= ,r.HoLl ,r,HoL

A7)

Corollary 1: For the LPA scheduling problem, the optimal
scheduling rule is to transmit the HoL packet with the highest

priority index Cj pHoL /Ti7T‘IL_-IoL among all nonempty queues.
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Fig. 3. Optimal scheduling policy as a function of the transmission attempts
for two users in the LPA problem. A dot (circle) means it is optimal to transmit
the HoL packet for user 1 (user 2).

Furthermore, the optimal policy is a monotonic threshold policy
on the number of transmission attempts, i.e., if it is optimal

to transmit user ¢ when R = (rilob ... pHoL - plol) ‘then
it is optimal to transmit user i when rI°l is replaced by
/HoL > HoL
T T

Proof. See the Appendix. |

The optimal LPA scheduling rule depends on the set of
holding-cost rates c; ., the number of transmission attempts
rHoL " and the probability of decoding success g;(-) (i.e., the
channel condition) across all users. A higher cost rate, more
transmission attempts, or a better channel results in a higher
priority. Notice that scheduling decisions do not explicitly
depend on the arrival processes or queue lengths, although the
latter affect the holding costs.

Computing the priority indices via the Klimov algorithm
generally requires K iterations with computational complexity
of O(K?). For the LPA problem, due to the special structure
of the transition matrix and the deterministic service times, we
obtain simple closed-form formulas for the priority indices with
associated complexity O(K ). This may be suitable for online
scheduling with time-varying channel conditions.

We illustrate the optimal scheduling policy with some nu-
merical examples. Consider a system with N = 2 users, and
probability of decoding failure

gi(ri) = {gi

for i = 1, 2. That is, the initial probability of decoding failure
is ;, and is reduced by half with each retransmission until r; =
rax_This type of exponentially decreasing g;(r;) is motivated
by numerical results in [12].

Fig. 3 shows the optimal scheduling policy as a function of
the number of transmission attempts for each user. The parame-
ters are (11, r***) = (0.02,5), (92, r5*) = (0.1,5),¢1,, =1

2087, 0 <y < e

max

(18)

Ty =T;
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0.99 1.03
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Fig. 4. Optimal priority orders versus holding-cost rate of user 2 in the LPAK
problem.

(for all 1), and cp -, = 1.01 (for all r3). In this case, user 1 has
the better channel, but has a slightly lower holding cost than
user 2. As stated in Corollary 1, the optimal scheduling policy is
a monotonic threshold policy on rH°L(j = 1, 2); the threshold
is shown by the solid line in Fig. 3. Comparing this with the
dash-dotted line ri°l = pllol = when r is small (r < 3),
user 1 has priority because of the better channel (smaller 75 ,.).
However, when r is large (r > 3), user 2 has priority. The
reason is that g;(r) is very small, which makes T; , very close
to 1 for both users. Thus, the difference between the cost rates
¢i,r 1s the main factor in determining the priority order.

Fig. 4 shows the optimal priority orders versus the holding-
cost rate of user 2. In this case, both users have the same channel
conditions (71, r"**) = (92, r5®*) = (0.05,2). There are six
types of packets in the system, (i,7;), ¢ =1,2, r; =0,1,2,
and their priorities are ordered from 1 (highest) to 6 (lowest).
The holding-cost rates for user 1 are ¢ o = 0.98, ¢1,1 = 1, and
c1,2 = 1.02. The holding-cost rates for user 2 are c3 g = c2,1 =

C2.2 2 ca, which varies from 0.91 to 1.11. Fig. 4 shows that
the packet priorities increase with r;. This reflects the fact that
the HoL packet has priority over the other user’s packets. At
co = 0.91, user 1 has priority over user 2. Hence, a new packet
arrival for user 1 has priority over a retransmission from user
2. Of course, as ¢, increases, the priorities for user 2 increase
from lowest (4,5,6) to highest (1,2,3).

V. DC SCHEDULING PROBLEM

For the DC problem, the cost function can be nonlinear,
which precludes a direct association with the Klimov model.
We circumvent this difficulty by again transforming the prob-
lem into a related Klimov problem with more queues. We refer
to the latter problem as the DC Klimov (DCK) scheduling
problem. Applying the Klimov algorithm, we show that it is
not optimal to interrupt the retransmission of a packet. We then
formulate the DC problem with two users as an MDP, and show
that the optimal scheduling rule is a monotonic threshold policy
on the queue lengths.
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A. DCK Scheduling Problem

We construct a mapping between the DC and DCK models.
Let A; be the number of user i’s packets initially in the
system in the DC model. Each queue in the DC model is
replaced by K; = (r"®* + 1)A; queues in the DCK model.
Assume, for the DC model, that at time n, user ¢’s queue length
is x;(n) > 0, with holding cost U;(z;(n)), and the number
of transmission attempts of the HoL packet is 7°%(n). In
the DCK model, this corresponds to there being one packet
in the queue (i,r1°%(n), z;(n)) with linear holding-cost rate
Ci rHoL (n) 2, (n) = U;(z;(n)), and no packets in any of the other
K; — 1 queues corresponding to user .

Let Q) denote the set of all K = Zf\il K; queues in the
DCK model. The service time for each queue (4,7, x;) € Q
is still deterministic with b;,, », = 1. Suppose that user
1’s HoL packet is transmitted during slot n (DC model).
Then, in the DCK model, the corresponding packet in
queue (i, 7L (n), 2;(n)) either: 1) enters queue (4, 7L (n) +
1,7;(n)) with probability g;(r°"(n)) (decoding fails); 2)
enters queue (7,0, z;(n) — 1) with probability 1 — g;(ri°%(n))
(decoding succeeds and x;(n) > 1), or 3) leaves the system
(r; = Tmax ). The transition probabilities in the DCK model are
therefore given by

P(iyri,as),(Gorj,a;)

gi(ri), ri < (irgag) = (i ri + 1 @)
= 1_91'(7‘7;)’ T > 17 (jarj7$]):(z707xz_1)
0, otherwise.

19)

For any set M C Q and queue (i,7;,2;) € M, the average
total service time is

(M)

LTiT

Z p(i,ri,mi),(j,rjzj)Tj(’%?rj + 1. (20)

(4irj,zi)eM

The DCK scheduling problem is to find a scheduling policy
7 € II that minimizes the total expected holding cost for drain-
ing all the packets, i.e.,

JDCK =FE, Z Z 1i,7‘7:,$7', (n)Ul(‘ri) 2D
n=1 (i,r;,z;)€Q
where
‘ |1, (¢,7;, ;) is nonempty in slot n
Lirsa,(n) = { 0, (i,7r;,x;)is empty in slot n. (22)

The DCK problem is therefore a special case of Klimov’s
scheduling problem. Hence, we can apply the Klimov algorithm
to calculate the optimal priorities, which in turn solves the DC
problem.

Unlike the LPA problem, for the DC problem, the priorities
cannot be computed in closed form. However, we can charac-
terize some basic properties of the optimal policy.
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B. Properties of the Optimal Scheduler

As in Section IV-B, consider the Klimov algorithm with the
following rule to break any tie that occurs in (9): set oy =
(4,73, x;) so that for all other queues (j, 7}, x;) in the tie, j > 1.

Lemma 2: Let My, k=1,..., K, be the sets generated by
applying the Klimov algorithm to the DCK problem with the
preceding tie-breaking rule. For each k, for all (¢,7;, z;) € My,
and for all v, > r;, the following properties hold:

1) (iﬂ”;ami) € Mk:a

2) Ti(ﬁ{k;g- < z(iwqu’
3) o) > M)

Property 1) shows that each set M}, is a “threshold set,” i.e.,
for each user ¢ and queue length x;, there is a threshold r;,
such that (¢, r}, z;) € My, if and only if 7 > r}. Although there
is no direct relationship between TMe) and TS

TR iray 35 in the
LPAK problem, 2) states that 7,

(M)

1,74,

is still nonincreasing in r;.
Property 3) states that the equivalent holding-cost rate CZ(JY’“SZ
is nondecreasing in r;. This follows from the monotonicity and
convexity of U (+). A detailed proof is omitted.

Theorem 2: The optimal DCK scheduler assigns queue
(i, 7}, x;) higher priority than queue (¢, r;,x;) for all ¢, «;, and
> Ty

Proof: Suppose queue (4, 7;, ;) has a higher priority than
that for queue (4,7}, z;), where r} > r;. Then there exists a k
such that (¢,7;,x;) € My, but (4,7}, z;) ¢ My, which contra-
dicts property 1) of Lemma 2. ]

Corollary 2: Once the optimal DC scheduler starts to trans-
mit a packet to user ¢, it continues to transmit the packet until it
is successfully decoded.

Proof: Assume that at time n, the DC scheduler transmits
a new packet to user ¢ with queue length x;(n). In the DCK
problem, this corresponds to queue (i,0,z;(n)) having the
highest priority among all nonempty queues. If decoding fails,
the packet leaves (4,0, x;(n)) and enters (4,1, 2;(n)) at time
(n + 1). According to Theorem 2, (4,1, z;(n)) has higher pri-
ority than (4,0, x;(n)). Since the priorities of all other packets
in the DCK problem remain unchanged, (7, 1, z;(n)) must have
the highest priority at time (n + 1). Iterating this argument, user
¢ has the highest priority until the corresponding DCK “packet”
enters (i,0,z;(n) — 1) (or if z;(n) = 1, the packet leaves the
system). This corresponds to transmitting the HoL packet for
user ¢ until it is successfully decoded. ]

Note that Corollary 2 is not true for the LPA problem, as
shown in Fig. 4. The key difference here is that there are no
arrivals that can change the priority orders among the users dur-
ing a retransmission. Another difference is that the DC optimal
scheduler depends on the queue lengths in a complicated way,
which depends on the specific choice of cost function.

C. Markov Decision Formulation

In this section, we formulate the DC problem as an MDP. To
simplify the discussion, we consider only two users. The system
state space is S = {(r1,r2,z1,22)[0 <r; <rP>* 0 <g; <
A;,i € {1,2}}. The action space is V = {vg, v1, v2 }, where v
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represents idling (if there is no packet in the system), and v;
represents transmitting the HoL. packet of user 4,7 = 1, 2.

The scheduling problem can be formulated as a stochastic
shortest path problem over an infinite time horizon [29]. Let
J(r1,7m9, 21, 22) denote the optimal cost-to-go starting from
state (11, 2, 21, Z2). This must satisfy Bellman’s equation [29],
which gives the following conditions:

1) if £1 = zo = 0, then J(0,0,0,0) = 0;

2) If x1 > 0 and 5 = 0O, then

J(r1,0,21,0) = Uy (z1)+ [1 — ¢1(r1)] J(0,0,27 — 1,0)
+g1(r1)J (min(ry + 1,77%),0, 21, 0)
3) If x1 = 0 and x5 > 0, then
J(0,72,0,22) = Us(z2) + [1 — g2(r2)]J(0,0,0, 22 — 1)
+9g2(r2)J (0, min(ry + 1, r5®), 0, x2).
4) If z1 > 0 and x5 > 0, then
J(r1,re, 21, T2)
= Uy(z1) + Uz(z2)
+ min {[1—g1(r1)]J (0,72, 21— 1, 22)
+ g1(r1)J (min(ry+1, 7)), 79, 21, 22) |
[1—g2(r2)] J(r1,0, 21,22 —1)
+g2(ra)J (r1, min (re+1,75'%%) , 21, x2)}.

Note that it is never possible for z; = 0 and r; > 0.
Lemma 3: The optimal cost-to-go has the following property

[1 - 92(7"2)] J(r1707x17x2 - 1)
+ g2(r2)J (r1, min (ro + 1,75 [z, x9)

—[1=g1(r1)] J(0,72, 21 — 1, 22)

max

—g1(r1)J (min (r1 + 1,77°%) ,re, 21, 22)

and is nondecreasing in x; and x, respectively, for 1 > 0 and
xo > 0.

This can be proved using induction combined with value
iteration [29]. We omit the details.

Theorem 3: The optimal DC scheduling policy is a
monotonic threshold policy with respect to the queue lengths,
i.e., if it is optimal to transmit to user ¢ in state (r1, 79, T1, Z2),
then it is optimal to transmit to user ¢ in state (11, 2, 2}, 25 ) for
xy >y and @ = x;(j # 0).

This follows from Lemma 3. We omit the detailed proof.

Fig. 5 shows the optimal policy for two users, calculated
via value iteration [29], and illustrates the monotonicity prop-
erty in Theorem 3. Both users have the same cost functions
Ui(z) = Uz(z) = o1, and the initial queue lengths are A; =
A = 10. The channel parameters are (1, r7**) = (0.04, 3)
and (12, 75®*) = (0.1, 3). Since user 1 has a better channel than
user 2, in most cases, user 1 has higher priority than user 2.

Although here we only consider a two-user system, we have
observed that the property stated in Theorem 3 applies to the
M (> 2)-user systems simulated in our numerical studies.
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Fig. 5. Optimal scheduling policy as a function of the queue lengths for two

users in the DC problem. A dot (circle) means it is optimal to transmit the HoL
packet for user 1 (user 2).

VI. NUMERICAL RESULTS

In this section, we compare the optimal LPA and DC schedul-
ing policies with three simple policies, which select the HoL
packet of user ¢* as follows.

) UR rule: i}, = argmaxi<;<n Uj (x;(n))[1—
gi(ri(n))], where U’(-) is the derivative of the cost
function.® This rule takes into account both the user’s
marginal cost and the expected transmission rate, which
depends on g;(-) [26].

2) Max U’ rule: iy, = argmaxi<;<n U}(z;(n)). This
rule takes into account only the user’s marginal cost, and
ignores channel conditions and number of transmissions
attempts. This could model a situation where the sched-
uler has no channel information available.

3) Max R rule: iy, p = argmaxi<;<y(1 — g;(ri(n)).
This rule maximizes the expected transmission rate with-
out regard to relative costs.

Fig. 6 shows total average cost for the preceding policies,
applied to the LPA problem, as a function of user 2’s cost

rate cp ., 2 co (for each ry). Here, the cost rate for user 1 is
¢1,r, = 1 for each r1. The channel parameters are (11, ri"®*) =
(0.01, 3) and (12, 75'®*) = (0.4, 3), so that user 1 has a better
channel than user 2.

In Fig. 6, the U’'R rule performs nearly the same as the
optimal rule. When cs is small (close to c¢1), scheduling de-
cisions are determined primarily by the difference in channel
conditions. In this region, the Max R rule is nearly optimal, and
the Max U’ rule performs significantly worse (up to 20% higher
cost). When ¢y is large, scheduling decisions are determined
primarily by the difference in holding-cost rates. In this region,

®For the LPA problem, where U; () is given by (3), we set U/ (*) = ¢; ,moL;

this represents the decrement of cost by successfully transmitting and decolding
the HoL packet.
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Fig. 7. Comparison of the optimal and heuristic scheduling policies in the DC
problem (solid line: k2 = 1.08, dash-dotted line: ko = 1.15).

the Max U’ rule is nearly optimal, while the Max R rule
performs significantly worse (up to 15% higher cost).

To understand why the U’R rule performs well, consider
standard ARQ, which is a special case of our problem with

gi(r;) = ¢;(0) for all r; and r** = oo. In this case
€y, pHoL €y, pHoL Gy, pHoL
T‘ HoL o max _ 1| J - oi . 0 l
T 1+ Z;;THOL 1 40 2120 (9:(0))
* [=rHoL

= Ci,r?oL(l —Gi (O)) = Ci,r?"L (1 — g (’I"ZHOL)) -
(23)

Hence, according to Corollary 1, the optimal rule is exactly the
U’ R rule. For hybrid ARQ, this is no longer true in general, but
Fig. 6 shows that the difference in performance is negligible.
Fig. 7 compares the optimal DC scheduling policy with the
preceding heuristic policies. In this case, we plot the cost per
packet versus channel parameter 75. The cost functions are
Ui(z;) = x*, where k1 = 1.05 and ko € {1.08,1.15}. The
channel parameters are (71, r**) = (0.01,2) and r5** = 4,
i.e., user 1 has a better channel, but incurs less cost than user 2.
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The initial queue lengths are A; = A5 = 40. Results are shown
for both values of kq.

Fig. 7 shows that the U’'R rule performs quite close to the
optimal policy. The relative performance of the other policies
depend on the users’ cost functions. When the cost functions
are relatively close (e.g., k1 = 1.05 and k5 = 1.08), scheduling
decisions are determined primarily by the probability of decod-
ing success. In this region, the Max R rule is nearly optimal
(within 5%) and the Max U’ rule performs significantly worse
(up to 10% higher cost). On the other hand, when x; = 1.05
and ko = 1.15, scheduling decisions are determined primarily
by the difference between the cost functions. In this case, the
Max U’ rule is nearly optimal, and the Max R rule performs
significantly worse (up to 18% higher cost).

VII. CONCLUSION

We have considered channel-aware scheduling for wireless
downlink data transmission with hybrid automatic repeat re-
quest (ARQ). An optimal scheduler minimizes the total average
cost, where the cost function assigned to each user depends on
the queue length and the number of transmission times for the
HoL packet. We characterized the optimal scheduling policies
in two situations by transforming these problems so that they fit
into the Klimov framework. Namely, with linear cost functions
and Poisson arrival processes, the optimal scheduling policy
for the transformed problem is a fixed-priority policy. The
priority indices can be computed in closed form, and increase
with the number of unsuccessful transmissions. A different
transformation is used for the draining problem with general
increasing convex-cost functions. The optimal scheduling rule
for the transformed problem is again a fixed-priority policy,
but the priorities must be computed via Klimov’s iterative
algorithm. In that case, the priorities increase with queue length,
and each packet is transmitted continuously until it leaves the
system.

We also compared the optimal scheduler with a simpler
myopic scheduling policy, the U’R rule, and showed that it is
optimal without packet combining (standard ARQ). Through
simulation, we found that the U’R rule performs very close to
the optimal scheduler.

Our results assume that the scheduler knows the probability
of a successful transmission. This is reasonable in slow-fading
environments, where the channel is predictable over successive
retransmissions, and in fast-fading environments where the
channel statistics are stationary during and across transmis-
sions. Further work is needed to extend these types of results
to more general models of time-varying channels.

APPENDIX
PROOF OF COROLLARY 1

In LPAK, for queues (i,r;) and (i,7}) with r; <7}, by
property 3) of Lemma 1 and (4), ¢; ., / T}, Q) <cim /T ) From
Theorem 1, a packet in (i,7}) has prlorlty over a packet in
(i,7;),1.e., the priority of a packet is increasing with the number
of transmission attempts. Thus, there can be at most one packet
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with r; > 0 for each user ¢, and this packet has priority over
all the user’s other packets. This packet corresponds to the HoL
packet in the LPA problem. Therefore, the optimal scheduling
rule for LPAK is also optimal for LPA.

From Theorem 1, the queue with the highest ratio ¢; ., /

Z’I"l

has the highest priority. By definition, T; pHoL = T( })IoL, and so

the HoL packet with the largest value of Cj,pHoL /T;. T pHoL aMong
all the nonempty queues has the highest pr10r1ty
Let A(rfol) = pior [T ppon. I rHol s replaced by

p/HoL > pHoL “then A( ;HOL) > A(rjol), whereas A(rfeh)
stays the same for all j # i. Hence, A(r{°V) > A(r}i°l) for
all j # i, i.e., 4 has priority.
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