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Performance of Reduced-Rank Linear Interference
Suppression
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Abstract—The performance of reduced-rank linear filtering coefficients must be estimated. For example, a conventional im-
is studied for the suppression of multiple-access interference. A plementation of a time-domain adaptive filter which spans three
reduced-rank fllter_ resndes_ in a lower dimensional space, relative symbols for proposed third-generation wide-band DS-CDMA
to the full-rank filter, which enables faster convergence and .. .
tracking. We evaluate the large system output signal-to-interfer- ceIIu_Iar systems can havglover 300 cogfﬂcu.ants. Introducing
ence plus noise ratio (SINR) as a function of filter rank D for ~Multiple antennas for additional space-time interference sup-
the multistage Wiener filter (MSWF) presented by Goldstein and pression capability exacerbates this problem. Adapting such a
Reed. The large system limit is defined by letting the number of |arge number of filter coefficients is hampered by very slow
users K and the number of dimensions/V tend to infinity with —yaghonse to changing interference and channel conditions.

K /N fixed. For the case where all users are received with the In a reduced-rank filter, the received signal is projected onto
same power, the reduced-rank SINR converges to the full-rank ’ ) ' : X _J -
SINR as acontinued fraction An important conclusion from this & lower dimensional subspace, and the filter optimization then
analysis is that the rank D needed to achieve a desired output occurs within this subspace. This has the advantage of reducing
tShH\iRDdOGSSHQI SC;}"% Wtit? SyS#%m size. ’?llflmefiﬁm refSU“S showthe number of filter coefficients to be estimated. However, by
al = 8 is sufficient to achieve near-full-rank performance ; ; :
even under heavy load{ K/N = 1). We also evaIL?ate the large ﬁddr:ng ;hls iubspr#:e c((j)r;stralfntl,l_thekc;'\llerallllel\aSIfE r:nay b_e
system output SINR for other reduced-rank methods, namely, _Ig er than that achieve y_a ull-rank filter. Muc _O the pre
Principal Components and Cross-Spectral, which are based on an Vious work on reduced-rank interference suppression has been
eigendecomposition of the input covariance matrix, and Partial based on “Principal Components” in which the received vector
PGtesS%eading (P!?r)]- g%vtf}QSeed fget:‘?g:,“g‘ih?fgfh aStnyc:re?;r"gW“ is projected onto an estimate of the lower dimensional signal
— o WI IXed. Ou u W H H H
systems, the MSWF allows a dramatic reduction in rank relat?ve subslpace with largest energy (e.g.,'[8], [12]). This technique
to the other techniques considered. can improve convergence and tracking performance _When _the
number of degrees of freedom (e.g., CDMA processing gain)
is much larger than the signal subspace. This assumption,
however, does not hold in a heavily loaded commercial cellular
system.
|. INTRODUCTION Our main contribution is to characterize the performance of
EDUCED-rank filtering and estimation have been prot_he redu_ced-rank muItistageWien_erfiIter_(MSWF) pres_ented by
posed for numerous signal processing applications sugfldstein and Reed [13], [14]. This technique has the important
roperty that the filter rank (i.e., dimension of the projected sub-

as array processing, radar, model order reduction, and quant b hi than the di : f the sianal sub
tion (e.g., see [1]-[4] and references therein). A reduced-raﬁ&ace) can be much ess than the dimension of the signal sub-

estimator may require relatively little observed data to produé@aee ;’_V'th?m cofrrtlﬁromlf'lng pefr{i)rmancf?. 'Fu;thgrmore, tadap-
an accurate approximation of the optimal filter. In this paper, wiye estimation of the optimum filter coefficients does not re-

study the performance of reduced-rank linear filters for the suﬁ-“{e. ar;zlgetnde.c?mfp osition of the mput (slamptlr(]a) cot:/ anadnce
pression of multiple-access interference. atrix. Adaptive interference suppression algorithms based on

Reduced-rank linear filtering has recently been applied {Be MSWF are presented in [9].

interference suppression in direct-sequence (DS) code-diviOUr performance evaluation is motivated by the large system

. : lysis for DS-CDMA with random spreading sequences
sion multiple access (CDMA) systems [5]-[10]. AIthougH”lna . -

conventional adaptive filtering algorithms can be used thrOdlffeg ||1h[15]—[12]. Spfeuflc_;allbyl, : di be the number Og.
estimate the linear minimum mean-squared error (MMSE')SerS’ e the number of available dimensions (e.g., chips

detector, assuming short, or repeated spreading codes [11],.ptﬁ[aCOded s;gmboclﬂ n tCDMA’ d;rbnutmhber %f recelvg.r ante_nnas
performance may be inadequate when a large number of fil a narrow-band system), a € Ine subspace dimension.

e evaluate the signal-to-interference plus noise ratio (SINR)
at the output of the MSWF a&’, N — oo with K/N fixed.
Manuscript received January 10, 2000; revised January 9, 2001. This wér@r the case where all users are received with the same power,
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full-rank SINR) does not scale with the system size (¥€and In what follows we assume that user 1 is the desired user. The
). Our results show that for moderate to heavy loads, a raRMVISE receiver consists of the filter represented by the vector
D = 8 filter essentially achieves full-rank performance, and, which is chosen to minimize the mean-square error (MSE)
tshﬁ\g_NR for a rankD = 4 filter is within 1 dB of the full-rank M = E{|bi(3) — (|2} 3)

We also evaluate the large system performance of tiereE{-} denotes expectation, ahdenotes Hermitian trans-
reduced-rank MSWF given an arbitrary power distributiorpose. The MMSE solution is [11]
A byproduct of this analysis is a method for computing the 1
full-rank large system SINR which does not explicitly make c=R "5 (4)
use of the asymptotic eigenvalue distribution for the class @here theV x N covariance matrix
random matrices derived in [18], and used in [15]-[17].

Finally, we compare the large system performance of R = E[r(i)r'(i)] = SPS" + 0”1 (5)
the MSWF with the following reduced-rank techniques. 1)hereP — AA' and the (full-rank) MMSE is
Principal Components, 2) Cross-Spectral [19], [20], and 3)
Partial-Despreading [21]. (See also [6].) The Cross-Spectral M=1-3sR"s. (6)
method is based on an eigendecomposition of the input coy

. ; . o etthe NV x
variance matrix, but unlike Principal Components, selects tlg%erers be
basis vectors which minimize MSE. Partial Despreading (P
refers to a relatively simple reduced-rank technique in which Sr=1[8, ..., 8x] @)
the subspace is spanned by nonoverlapping segments of Jhg
matched filter. . . .

In contrast with the MSWF, the large system analysis of the 71(0) = S1Arbyx (1) +n(0) (8)
latter techniques let®, K, N — oo with bothK /N andD/K  whereA; is the diagonal matrix of interference amplitudes and
fixed. That is, to achieve a target SINR near the full-rank largs . ,,, denotes componentghroughm of the vectorz. The in-
system limit,D — oo asK, N — oco. For the case where all terference-plus-noise covariance matrix is
users are received with the same power, we obtain closed-form

(K — 1) matrix of spreading codes for the inter-

— Nt — T ot 2
expressions which accurately predict output SINR as a function Ry = Blri(O)r;(0)] = 514: 418, +o°L ©)
of K/N, D/K, and noise variance. The output SINR of the MMSE filter is

In the next two sections, we present the system model and the A
reduced-rank techniques considered. In Section 1V, we briefly B =PsR; s (10)

review large system analysis. Our main results are presenteqifere P, is the received power for user 1.
Section V, and numerical examples are presented in Section VI.

Proofs and derivations are given in Section VII. Ill. REDUCED-RANK LINEAR FILTERING

A reduced-rank filter reduces the number of coefficients to
be estimated by projecting the received vector onto a lower di-
Letr(i) be the(/V x 1) received vector corresponding to thenmensional subspace [22, Sec. 8.4], [2]. SpecificallyMgt be
ith transmitted symbol. For example, the elements(@f may the N x D matrix with column vectors forming a basis for a
be samples at the output of a chip-matched filter (for CDMAD-dimensional subspace, wheke < N. The vector of com-

Il. SYSTEM MODEL

or across an antenna array. We assume that bining coefficients for théth received vector corresponding to
this subspace is given by
(i) = SA4b(z) + n(i) @ » ; gt
(i) = (MpMp) "M pr(i). (11)
where

In what follows, a “tilde” denotes a (reduced-rank}dimen-
sional vector, oD x D covariance matrix.
The sequence of vecto{s(:)} is the input to a tapped-delay
is the N x K matrix of signature sequences whé¥eis the line filter, re!oresenteq by tr(eD>_< 1)-vectore. The. ﬂlterg?tpm
. : ! : corresponding to théh transmitted symbol is(:) = é'7(i),
number of dimensions (e.g., processing gain or number of apn- LS - 7
. . . and the objective is to seleétto minimize the reduced-rank
tennas) and( is the number of users, ar is the signature

sequence for usdr. The amplitude matrix MSE

A:dlag(\/ P17 ceey PK)
The solution is

where P, is the power for usek, b(¢) is the (K x 1)-vector 1

of symbols across users at tifieandn(i) is the noise vector, c=R 3 (13)
which has covariance matrix*I. We assume that the symbolWhere

variance is one for all users, and that all vectors are complex B

valued. R=M\Mp) " (M,RMp) (M Mp)~'  (14)

32[81, ...,8[(] (2)

Mp = E{|bi (i) — &'F(0) ). (12)
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do(i) = by () o(i)
ro(i) = r(i)—c—| d, (i)
=

Wy
Fig. 1. Multistage Wiener filter (MSWF).
and dn(i) =€l rn_1(4) (22)
& =(MLMp)*Mis,. (15) B, =1I-c¢,c} (23)
= _nt

Defining R; in the obvious way, the output SINR is given by T = Bprno1. (24)

Bp = P1.§IR;1.§1 _ PISIMD(MTDRIMD)_IMTDSL (16) Decrement. = D, ..., 1 (Backward Recursion

— BT (De (4 12
In what follows, we present the reduced-rank filters of in- wy = E[d;, 1 (D)en (0)]/ Elen(D)]] (25)
terest. We remark that other reduced-rank methods have been en1(1) =dn1(1) — wyen(4) (26)

proposed in [5], [10], [23], [24], [4], [25]. (The auxiliary vector
method proposed in [10] generates the sabheimensional
subspace as the MSWF.) A simulation study of adaptive ver-

sions of the eigendecomposition and PD interference suppresl) Atstagen the filter generates the desired (time) sequence

whereep (i) = dp(i).
The MSWF has the following properties.

sion methods described here is presented in [6]. {d.(i)} and the “observation” sequende,(i)}. The
_ _ . MSWF for estimating the former from the latter has the
A. Multistage Wiener Filter (MSWF) same structure at each stage. The full-rank MMSE filter

A block diagram showing four stages of the MSWF is shown ~ can, therefore, be represented as an MSWF witages,
in Fig. 1. The stages are associated with the sequence of nested Wheree, is replaced by the MMSE filter for estimating

filters ei, ..., ep, whereD is the order of the filter. Lef3,, dn—1(2) from r,_1 (4).
denote alocking matrixi.e., 2) Itis shown in [14] that
Bl e, =0. 17 I—cic)R,_1c;
(n e = LG 1 @7)

Referring to Fig. 1, letl,,,(¢) denote the output of the filtes,,, (I — eic))Ri_1¢i]]
andr,,(¢) denote the output of the blocking mati,, both at where
time <. Then the filter for them + 1)th stage is determined by i i

. Ry = —eipiej )R(I - eiael ) (28)

Gt = Eld;, 7] (18) .

_ fori=0,1,2, ..., D—1,wheree; = 8; andRy; = R.
where + denotes complex conjugate. For = 0, we have The following induction argument establishes thais
do (i) = b1(¢) (the desired input symbolf, () = r(¢), ande, orthogonal toe; for all 5 # i. First, it is easily verified
is the matched filtes;. Here we assume that each blocking from (27) thate, is orthogonal ta;. Assume, then, that
matrix Bn,, is N x N, so that each Vectm;,,, iISN x 1. Asin c is orthogonal tmrn for 17 m S 'L,l 75 m. We can rewrite
[14], it will be convenient to normalize the filtexs, ..., ¢p (28) and (27) as
so that||e,|| = 1. ; ;

The filter output is obtained by linearly combining the outputs (- - \r(r- - i 29
of the filtersey, ..., ep via the weightsw:, ..., wp_1. This R = lz_; e lz_; e (29)
is accomplished stage-by-stage. Referring to Fig. 1, let and B B

Crn,(i) = dn)(z) — Wm+1 Crn,—l—l(i) (19) i 1—1
. 4 4
for 1 < m < D andep(i) = dp(i). Thenw,,,, is selected to Cit1l = Fit1 <I - Z clcl) R <I - Z clcl) G
minimize Ef|e, |?]. =1 =1

The rankD MSWEF is given by the following set of recur- o - 7
sions. =rips | - lz_; ac | Re;

Initialization: _

do(d) = by (4),  ro(i) = r(4). (20) =HKit+1 <I - Z c;c}) Ric; (30)
=1

Forn =1, ..., D (Forward Recursio . L
" ’ D p where «,41 is @ normalization constant, and the last

¢, =E[d,_1rn 1O/ E[d,_17rn-1]l (21) equality holds sincR® = R; + Pys;s! ande; = s, is
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orthogonal toe;. It can then be verified from (30) thatdegrade quite rapidly @3 decreases below, since there is no

¢;11 Is orthogonal toey, ..., ¢;, or, equivalently, that guarantee thatthe associated subspace will retain most of the de-
¢ is orthogonal tee,, for I, m < i+ 1,1 # m, which sired signal energy. This is especially troublesome in a near—far
establishes the induction step. The relations (29) and (3enario, since for smalD, the subspace which contains most

will be useful in what follows. of the energy will likely correspond to the interference, and not
From Fig. 1 it is easily seen that the matrix of basithe desired signal. We remark that in a heavily loaded cellular
vectors for the MSWF is given by system, the dimension of the signal subspace may be near, or
Pl even exceed the number of dimensions available, in which case
Mp = |e, Bies BuBoes --- H B.cp PC does not of.fermuch.of an advantage relative to conventional
et full-rank adaptive techniques.

) An alternative to PC is to choose a setlofeigenvectors for
the projection matrix which minimizes the MSE. Specifically,
where the last equality is due to the fact that &ie are we can rewrite the MSE (6) in terms of reduced-rank variables
orthogonal. (This implies that the blocking matrices ims
Fig. 1 can be replaced by the identity matrix without af- PR
fecting the variabled,, (i) ande, (i),n =0, ..., D.) An M=1—[A7"5]" (34)

alternate set of nonorthogonal basis vectors is given in ﬂ?ﬂe subspace that minimizes the MSE has basis vectors which

ne_xt se9t|on. _ _ _ _ are the eigenvectors & associated with th® largest values of
3) ltis easily shown that eaat, is contained in the signal 81, |2/ Ak, wheres; ; is thekth component 081, and is given
subspace, hende stages are needed to formthe full-ranlpy o' s, , wherew, is the kth column of V. (Note the inverse

=le1 e -+ ¢ep] (31

filter. weighting of A, in contrast with PC.)
4) 1t is shown in [14] that This technique, called “Cross-Spectral” (CS) reduced-rank
filtering, was proposed in [19] and [20]. This technique can per-
B[ (1) dntm(i)] = € Rentm =0 (32) formwellforD < K since ittakes into account the energy in the

for |m| > 1and0 < n, n+m < D — 1. It follows that ;ubspace contributed by thg desired user. Unlike PC,.the prOJeF-
MiRMp is tridiagonal tion subspace for CS requires knowledge of the desired user’s
b ) spreading code, . A disadvantage of eigendecomposition tech-

5) The blocking matrixB,,, is not unique. (In [14]B,. IS pjques in general is the complexity associated with estimation
assumed to be gV — (m — 1)] x (IV — m) matrix, S0 of the signal subspace.

thate,, is [N — (n — 1)] x 1.) Although any rankV — m
matrix that satisfies (18) achieves the same performanCe Partial Despreading (PD)

(M.MSE)’ this choice can affect the perforrr_]ance fora SP€~ 1 this method, proposed for DS-CDMA in [21], the received

cific Fiata record. In partlc.ularz a poor choice of bloCk'n%ignal ispartially despreadover consecutive segments af

matrix can lead to numerical instability. chips, wherem is a parameter. The partially despread vector
6) Computation of the MMSE filter coefficients does not rehas dimensio = [N/m], and is the input to thé&-tap filter.

quire an estimate of the signal subspace, as do the eigegmsequently;. = 1 corresponds to the full-rank MMSE filter,

decomposition techniques to be described. Successivefihdm = N corresponds to the matched filter. The columns of

ters are determined by “residual correlations” of signalf ;, in this case are nonoverlapping segments,othe signa-

in the preceding stage. Adaptive algorithms based on thige for user 1, where each segment is of length

technique are presented in [9]. Specifically, if N/m = D, thejth column ofM p, is

B. Eigendecomposition Methods [Mp]; =008 1(; 1yms1:jm0 0] (35)

The reduced-rank technigue which has probably received thbere1 < j < D, prime (') denotes transpose, and there are
most attention is “Principal Components” (PC), which is basdd — 1)m zeros on the left anD — j)m zeros on the right. This
on the following eigendecomposition of the covariance matrixs a simple reduced-rank technique that allows the selection of
MSE performance between the matched and full-rank MMSE
R=VAV! (33) filters by adjusting the number of adaptive filter coefficients.

whereV is the orthonormal matrix of eigenvectors®findA is
the diagonal matrix of eigenvalues. Suppose that the eigenvalues
are ordered a3; > Ay > --- > Ay. For a given subspace Our main results, presented in the next section, are motivated
dimensionD, the projection matrix for PCi84, = V. p,the by the large system results for synchronous CDMA with
first D columns ofV. random signature sequences presented in [15]-[17]. Specifi-
For K < N, the eigenvalues, ..., A are associated with cally, we evaluate the large system limit of the output SINR
the signal subspace, and the remaining eigenvalues are asdocithe reduced-rank filters described in the preceding section
ated with the noise subspace, i.B,, = % for K < m < N. when the signatures are chosen randomly. This limit is defined
Consequently, by selecting > K, PC retains full-rank MMSE by letting the number of dimensiodé and number of users’
performance (e.g., see [8], [26]). However, the performance c&md to infinity with K/N = « held constant.

IV. LARGE SYSTEM ANALYSIS
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The large system results presented in [15]-[17], as well &milary, we will denote the solution to (38) for an arbitrary
some of the results presented here, make use of the limitipgwer distribution as
eigenvalue distribution of a class of random matrices. Cgt 3% — B P o2 FY. 42
be an infinite matrix of independent and identically distributed f el Br, 0%, FOL _ ( )
(i.i.d.) complex-valued random variables with variancendr; ~ Finally, we remark that the analogous large system limit for the
be a sequence of real-valued random variables (correspondit@fched filter is

to user powers). Le§ be anN x K matrix, whose(s, j)th BMF — ! ' (43)
entry is Cfi,. Let P be aK x K diagonal matrix with diagonal o2+ afS PdF(P)

entriesPy, ..., Px.As K — oo, we assume that the empirical

distribution function of these entries converges almost surely in V. MAIN RESULTS

distribution to a deterministic limif"(-). . , -
Let Gn(A) denote the empirical distribution function of the In this section, we present t_he large system !'m'ts Of. output

eigenvalues of the Hermitian matiPS". It is shown in [18] SINR for the re_zduped-rank f|_|ters _present_ed in Sec“‘"? .”I'

that asV, K — oo, andfor% — o> 0, Gy converges almost Proofs and derivations are given in Section VII. For finite

surely to a deterministic limits. Letm (=) denote the Stieltjes K gndN, the output SI_NR is a random variable due to the
transform of the limit distributiorc assignment of random signature sequences. For the MSWF and

PD, we are able to show, in analogy with the full-rank MMSE

ma(z) = / ! dG(\) (36) receiver, that the output SINR converges to a deterministic limit
A=z asK = aN — co. We conjecture that this is also true for the
for € CT = {z € C: 3(z) > 0}. Itis shown in [18] that PC and CS methods.
ma(z) = e (37) A. Multistage Wiener Filter (MSWF)
—z+af Trrma(z) We first state the large system SINR for the MSWF assuming

for all z € CT. In what follows, we will denote the range af that all users are received with the same power.

for which G()) is nonzero aga(«), b(a)]. Theorem 1:As K = aN — oo, the output SINR of the
For an arbitrary distributiod, closed-form expressions forrank D MSWF converges in probability to the limi <, which
G, a(«), andb(«) do not exist. However, a closed-form expressatisfies

sion forG'is given in [27] for the case whei€(z) =1,z > P, gus _ P or D> 0 )
andF(z) =0,z < P (i.e., all users are received with the same PHLT 2 P z

power). This will be used in Section VIl to derive some of our 1+65

results. where P is the received power for each usgg’® = 0, and

The preceding result was used in [17] to derive the largd’ > = P/(o? + P) is the large system limit of the output
system limit of the output SINR for the linear MMSE filter in aSINR for the matched filter.
synchronous CDMA system. Specifically, [Bt Qenote there-  The proof is given in Section VII-A.
ceived power of usek, and /> denote the received power of & - according to this theorem, for finit® the output SINR of the

random user, which has the limit distributid?( /). Let user 1 ps\wWrE can be expressed asantinued fractionFor example,
be the user of interest. Itis shown in [17] thatids= o N — oo,

the (random) output SINR of the linear MMSE receiver for user pMS = QLP (45)
1 converges in probability to the deterministic limit 0" tagy T
g = P (38) As D increases, this continued fraction converges to the

full-rank MMSE given by (40). Two important consequences

o2+ af; I(P, Py, 3°°)dF(P) .
of this result are as follows.

where
1) The dimensioD needed to achieve a target SINR within

I(P, P, p>~) = _ AP (39) some smalk of the full-rank SINR does not scale with

P+ P> the system sizeK and V). This is in contrast with the
is the “effective interference” associated with an interferer re-  Other techniques considered, for which the large system
ceived with powerP. output SINR is determined by the ratip/N.
For the case where all users are received with the same power?) As D increasesB = converges rapidly to the full-rank
(38) becomes MMSE. Specifically, consider the case without back-
P ground noiseg? = 0. It can be shown that
p = P (40) . a1 for o < 1
o o . gMS -»_{ D, fora=1 (46
which yields a closed-form solution fgi* [17]. It will be con- Pp nz::l “ D “ (46)

—a
l—a ?

venient to denote this solution as for o > 1.

B~ = By <a, %) . (41)
ag

In particular, 3% increases exponentially with for
«a < 1 and linearly withD for o« = 1. If « > 1, then the
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gap betweems}* and the full-rank performangg™ = which is given by the following lemma, whet& is the asymp-
ﬁ decreases exponentially. Numerical results to be prtic eigenvalue distribution of IPS}.

sented in the next section indicate that for signal-to—noiseLemma 1:As K = aN — 0o, 7, converges in probabilit
ratios (SNRs) P/o?) and loads K /N) of interest, the 1o the limit ' o »Tn y
full-rank MMSE performance is essentially achieved with

D =s8. 72(a, 0%) = / A+ o)™ dG(N) (57)

We now consider the MSWF with an arbitrary power distrinrgvided that this moment is finite.
bution. In this case, we do not have a closed-form result for tﬁe Proof: From (49) we have

large system SINR, although we can compute it numerically. In N

gnalpgy with the uniform power case, we also haveahgrox- = Z()‘k + 02)n|311‘vk;1|2 (58)
imation —
/35451 ~ — P}, 7 (47) Wwherewy, 1 is thekth eigenvector oR;, and the sum can be re-
ot +al Py PAS dF(P) stricted towy, 7 in the signal subspace since othervdbey, ; =

whereMs = 0, 8M5 is the asymptotic SINR of the matched? Itis shownin[17] thats]w,. ;|? is O(1/N), and the Lemma
filter given by (43), and”(P) is an arbitrary power distribution, follows from the same argument used to prove [17, Lemma 4.3].

This approximation is accurate for many cases we have considwhen all users have the same podzando = 0, the limit
ered; however, in Appendix A we show that it is not exact.  can be evaluated explicitly as [27]
To compute the output SINR for the MSWF with an arbitrary 1

power distribution, we first give an alternate representation gf(, ) :pnzi <”> <”_1> okt n=1,2,....
the subspace spanned by the basis vectors, or coluntsof ol VAN

Let Sp denote theD-dimensional subspace associated with the (59)
rank D MSWF, which is spanned by the set of basis vectorls 00 ¢ 0 b that
given by (31), and leR; denote the interference-plus-noise co- 2 COMPUEY: (e, o) for o > 0, we observe tha

variance matr.lx given by (9). | % _ n/()\ + o)L dG(N) = nye2 (60)
T.h.e.orem 2.\,3:1:resubs:p?§i,3 Is spanned by the VeCtorSWhich leads to a recursive method for computing the sequence
Yoo --» ¥p—1 Yn LA {42°}. For a nonuniform power distribution, the large system
The proof is given in Section VII-B. limit v>° can be computed directly from (57). In Appendix A,
The matrix of basis vectors for the MSWF can, therefore, lvge give two other methods for computing, one of which does
written as not make explicit use of the asymptotic eigenvalue distribution
MD = [81 R[Sl R?Sl s RIDilsl]. (48) G.

. ) We can now state the large system SINR for the rdénk
It is straightforward to show thak; can be replaced bi£ = MSWF where the limiting power distribution i&(-). The su-

E[r(i)rf(i)] in Theorem 2. Approximations of the full-rank perscript~o indicates the large system limit of the associated
MMSE filter in terms of powers of the covariance matrix havgayiaple(s).

also been considered in [28] and [29].

Let Theorem 3: As K = aN — oo, the output SINR of the rank
i i D MSWEF converges in probability to
Y :Slyrn = isI 81 (49) /31\45 — P ( oo )T(Foo )—1 oo (61)
’Yl:mI[’Yl’Vl+1---’7m]' (50) p = 41\Yo:p-1 1:D) 7Y0:D-1-

Proof: This follows directly from Lemma 1 and the fact
thatp, given by (56), is a continuous and bounded function of

Yy -+ Y2D-1-

Fl l4+m — [’71 m VI41: +m+l 0 Yidm: l+27n]- (51)
Note thafl;. ; 4., is an(m+1)x (m+1) matrix. From (13)—(15),

the reduced-rank MSWF is
L i 1t As for the uniform power case, the dimensi@h needed
¢p =(MpMp)(MpRMp)™ M8 (52) 1 achieve a target SINR within some small constaf the
=To.p1(T1.p +P170:D,173:D71)—170:D,1 (53) full-rank SINR does not scale wit and V. Because this
1 representation for the output SINR is not as transparent as

- m(roinlrlle)%:Dfl (54)  that for the uniform power case, it is difficult to see how fast
Bp/ P, the SINR given by (61) converges to the full-rank valuelas
_ 1 - (55) increases. Numerical examples are presented in Section VI,
1+ 6p and indicate that, as for the uniform power case, full-rank

70:D-1 performance is achieved fdp < 10.

For largeD, Theorem 3 gives an alternative method to (38)
(56) for computing the full-rank MMSE. This method does not re-
quire knowledge of the asymptotic eigenvalue distribution if the
is the output SINR from (16). To compute the large system limgsecond method for computing the momef#§°} presented in
we, therefore, need to compute the large system limi,of Appendix B is used.

where

Bp = PwS:D_l T hv0: D1
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Finally, we remark that for a uniform power distribution, the +Vala)bla)
SINR shown in Theorem 3 must be the same as the continued . [a(a) + b(a)]e — 2a(a)b(a) =
fraction representation in Theorem 1. Finding a direct proof of Tjaresin (@) — ala)] T3
this equivalence appears to be an open problem. +(1-a)l{a<1}
B. Eigendecomposition Methods =1-4. (66)

We now state our results for the PC and CS reduced-ralfikvp in (63) converges to a deterministic large system limit,
methods presented in Section III-B. In what follows, the larg@en this limit must be;"“(«, §). The large system limit for
system limit is defined a®, K, N — oo whereK/N = « output SINR is then
andD/N = 6. In particular,D now increases proportionally PC(q, §)
with K and N. As stated earlier, we conjecture that the SINR pre = T
converges to a deterministic large system limit. The technical 1 —oPa, 6)
difficulty in proving this is characterization of the large system Numerical examples are presented in the next section, and
limit of |v} 8;|% wherew,, is thenth eigenvector of the covari- show that, as expected, whér= «, the PC algorithm achieves
ance matrix®® corresponding to the particular ordering given ifiull-rank performance. A8 decreases below, the performance
Section IlI-B. Note, in particular, that,, ands; are correlated. degrades substantially.

In order to proceed, we assume that the conjecture is true, andlthough we do not have an analogous result for an arbitrary
evaluate the corresponding large system limit. The numerigawer distribution, we observe that fér> «, the PC algo-
results in Section VI show that the large system results are neaitim again achieves full-rank performance, since the eigenvec-
identical to the corresponding simulation results. For PC, viers chosen for the projection include the signal subspacé. As
are only able to evaluate the large system limit for the uniforafiecreases below, in a near—far situation the performance can
(equal) power case. In what follows; is the limit distribution be substantially worse than that with equal received powers. For

(67)

for the eigenvalues d8S' (see Section VII-C). example, assume that there are two groups of users where users
For both the PC and CS methods, the output SINR for a raitkeach group have the same power, but users in the first group
D filter can be written as transmit with much more power than users in the second group.
Bp = Up 62) (The groups may correspond to different services, such as voice
1—wvp and data.) In this situation, the eigenvalues corresponding to the
where signal subspace can also be roughly divided into two sets corre-
D iog2 sponding to the two user groups. If the desired user belongs to
vp =P Z [}, 7 (63) the second group, then its energy is mostly contained in the sub-

1 An +07 space spanned by eigenvectors associated with the small eigen-

values. Consequently, PC will choose a subspace which con-

and where, andv;, are thenth eigenvalue and agenvector,tams little energy from the desired user, resulting in poor per-

respectively, of the covariance matd We first consider PC

; ' formance.
forwhich Ay 2 Ay 2 -+~ > Ay. We showin Section VII-Cthat - og method, described in Section 1lI-B, performs better
~lim  E(vp) than the PC method fér < « since it accounts for the projection
PoINZ of the desired user spreading sequence onto the selected sub-
e 1 ey space. The output SINR is again given by (62) and (63) where
=v (a, 6) = . / i o2 dG(A) the ordering of eigenvalues and eigenvectors corresponds to de-
¢ creasing values db] s;|>/(\. + o2). Let
a(a) + b{a) + 20 "
=——\/c—a Nb(e) = ] + Ira ¢, = VE v)81 (68)
[ 2¢ — a(a) — b(a )} " Vs + 02
5 —arcsin —_————— so that
ba) — a(a)
2] 2 1 &
——J a) + o2][b(e) + 02] UD:EZW?. (69)
B (c=0?)a(@) +b(e)] — 2a(a)b() +20%¢ n
- |= —arcsin . . .
L (c+02)[b(e) —a(w)] As K = aN — oo, numerical results indicate that the sequence

(64) {&.} converges to a deterministic distributi@f(¢). Assuming
this is true, it follows that a®{ = a/N — oo andD=6N — o

where s ©
2 2 vp — v, §) = 2 / €2dH(E)  (70)
afa) = (1 - \/1/a) P ba)= (1 + \/1/a) P (65) ;
. , wherec satisfiesH (c) = 1 — 3.
andc is defined by In what follows, we assume thak(-) is zero-mean Gaussian.
B ala) + b(w) Justification for this assumption stems from the analysis in [30],
G(e) =/le— a(@)]b(a) - o] + 5 where it is shown that ... ; is a randomly chosen eigenvector

2¢ — o) — bley) w} of the interference-plus-noise covariance matrix, thk;r}sl is

’ [arcsm W + 9 zero-mean Gaussian. (Inthat casg r ands; are independent.)
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SIR vs. Rank: Uniform Power, N=32 for simulation, SNR=10dB
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Fig. 2. Output SINR versus rank for the MSWF with different loads.
It is shown in Section VII-C that/Fvle has variance[\,,]. If vp converges to a deterministic large system limit, then

(Note that),, converges to a deterministic large system limit must converge ta“S(«, §) in which case3p converges in

for fixed n/K.) Consequently, at high SNRsX < \,, forn < probability to the corresponding limit

D), E[|¢.]?] =~ 1, independent of.. Further justification for os v°S(a, 6)

this assumption is the close agreement between the large system p = m (75)

analytical and simulation results shown in the next section. The numerical results shown in the next section are generated
With the Gaussian assumption féf() according to these assumptions.

e 1
vS(a, §) = 2/ R ——

— /Cdr (71) ¢, partial Despreading (PD)
N

The output SINR for PD can be expressed in terms of the

wherec satisfies full-rank MMSE expression;; andBy given by (41) and (42).
- —a” 6 The large system limit is obtained by despreading ddep 1
— 1/v/2 /20 =1 = ge sy y p g |24
Qlefoe) /c/(,£ [V 2me “ 2 chips, where{ is held constant, so th&/D = M = 1/6.
and Theorem 4: Assume that the elements Sfare i.i.d., zero-
) o mean, and are selected from either a binary or Gaussian distri-
¢ :/ z” dH(x) (72) pution. ASK = aN — oo andD = N/M — oo, the output
- SINR of the PD MMSE filter converges in probability to the
which is the large system limit aE[|¢,,|2] wheren is chosen limit
randomly according to a uniform distribution between one and B, M) = Bp(Ma, MP;, Mo? F(:))  (76)
K. In Section VII-D, it is shown that whereM = 1/6.
) _ B 23 AT
%= 15 5= (73)  The proof is given in Section VII-E.
- If § =0 (M — o), theng"P is the large system limit for
where/jj is the full-rank SINR. When all users have the samg ., . -+ hed-filter output SINR given by (43). The large system
power limit of the output SINR for the MMSE PD filter with a uniform

2_ 1 2 _ 5\ power distribution is
oi=5 = (\/a(a) To?—/ba) o ) (74)

P
andQ(c/oe) = 1 — 6§/2. BP(a, 6) = MBy [Moc, M—OQ} . (77)
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SIR vs. Rank: Uniform Power, N=32 for simulation,0=0.5
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Fig. 3. Output SINR versus rank for the MSWF with different SNRs.
VI. NUMERICAL RESULTS power, SNR= 10 dB, andx = 1/2. For all four methods con-

sidered, the large system analysis accurately predicts the simu-

In this section, we present numerical results, which i”l.l$ati0n results, which are shown fo¥ = 32. As discussed pre-
trate the performance of the reduced-rank techniques consjgusly, the large system SINR for the MSWFBs— o is the
ered. Simulation results for a CDMA system with finféand  fyll-rank SINR for anyD/N > 0. (Large system results for the
random binary signature sequences are included for comparigpg\wEg corresponding to finit® are not shown.) Consequently,
with the large system limit. The latter results are averaged o\fiere is a large gap between the curve for the MSWF and the
random binary signature sequences and the received power gifves for the other methods for smal/~N. The CS and PC
tribution. reduced-rank filters can achieve the full-rank performance only

Fig. 2 shows plots of output SINR versus rafikfor the whenD > K. ForD < K, these results show that the CS filter
MSWEF with different loadsy, assuming the background SNR iserforms much better than the PC filter.
1/0? = 10 dB and that all users are received with equal power. The PD filter can achieve the full-rank performance only
Also included are simulation results correspondingvte= 32.  whenD = N, since for anyD < N, the selected subspace
Fig. 3 shows the analogous results for different SNRs and fixg, does not generally contain the MMSE solution. For small
load o = 1/2. These results show that the large system limip/ K, the PD filter performs close to the matched filter, which
accurately predicts the simulated values. In all cases shown, i@&ignificantly better than the eigendecomposition methods.
MSWEF achieves essentially full-rank performance bk 10.  This is because for the latter methods, the desired signal energy
Furthermore, the SINR fab = 4 is within 1 dB of the full-rank s spread over many eigenvectors, so that for siatklatively
SINR, and the SINR foD) = 2 is approximately midway be- little desired signal energy is retained in the selected subspace.
tween the SINRs for the matched-filter and full-rank MMSE re- Performance results for nonuniform power distributions
ceivers. are shown in Figs. 6-8. Two distributions are considered:

Fig. 4 shows simulated output SINR for the MSWF as a funéeg-normal, and discrete with two powers. In the former case,
tion of normalized rankD /N for N = 32, 64, and128. This the desired user has powBr = 1, and the log-variance of the
illustrates the convergence to the large system limit, which lisg-normal distribution is 6 dB. In the latter cage(?) /P(V) =
the full-rank performance for all values &f/N (shown as the 10 dB, whereP(’ is the power associated with users in group
solid line in the figure). 4 = 1,2, and the fraction of high-power users (2. The

Fig. 5 shows output SINR versus normalized rdkK for desired user is assumed to be in group one with an SNR of 10
the reduced-rank filters considered assuming uniform (equdB. The first case applies to the reverse link of an isolated cell
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SINR vs. Rank/N: Uniform Power, SNR=10dB,0=0.5
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Fig. 4. Output SINR versus normalized rabk/ N for the MSWF with different spreading gains.

where power control is used to compensate for shadowing. Thelhe rank one MSWF is the matched filwr= s;, which has
second case corresponds to two service categories, such as alaiaut
and voice, with perfect power control. dy = ¢l (bysy +Siby+n) =S+ 1 + N, (78)
Fig. 6 compares the large system output SINR of the MSWFE . . .
. . - . whereSy, I;, andN; denote the corresponding desired signal,
computed via the approximation (47) with the exact SINR Conl]ﬁterference and noise terms. The SINR at the output &
puted from (61). Figs. 7 and 8 show output SINR versus normal- ' ' P
ized rank for the different reduced-rank filters considered. Sim- B E[|5117] — P
ulation results are shown fdv¥ = 32 (andN = 512 in Fig. 6). P = E[[N: ]+ E[[11]?] s Sy

In these figuresqr = 0.5. Figs. 7 and 8 show that all methOdSwhereK — oo denotes the large system linfi /N = «),

perform approximately the same as for the uniform power ca%ltg| A .
. L & expectation is with respect to the transmitted symbols and
except for PC, which performs significantly worse for< K. : L
P P g y < noise, and the limit follows from the fact thef |> — aP.

Let ¢~ be a vector which is orthogonal tg. The output of
VII. PROOFS ANDDERIVATIONS et is

(79)

A. Theorem 1: MSWF with Uniform Power di = (e)r = ()86 + (¢1)'n (80)

The proof is based on an induction argument in which théand it is easily shown that
full-rank MSWEF is partitioned into two component filters. The
first filter consists of the first — 1 stages and the second filter E[(d})*S1] =0 (81)
consists of stagesthrough K (i.e., the full-rank filter which E[(dH) N =0 (82)
estimates!;_; fromr;_;). We first consider the cage= 2 and IRV T

prove that: i) the theorem is valid fdp = i = 2; ii) the large El(dr)" hl=e(S15per = e Rey. (83)
SyStem SINR associated with the second Component filter is m now expresdf as the sum Of a desired Signa| Component’
full-rank large system SINR>°; and iii) the large system SINR interference, and noise

associated with the filtag, (with appropriately defined desired

signal and interference components) is equal to the large system di =S+ 1"+ Ny~ (84)
SINR for the matched filter. For the induction step, we make ”We define the desired signal as

analogous assumptions i)—iii) for somehere2 < ¢ < K, and

prove that i)—iii) hold fori + 1. St =al (85)
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SINR vs. Rank: logvar=0dB, N=32 for simulation, SNR=10dB,0=1/2
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Fig. 5. Output SINR versus normalized rafl/ i for reduced-rank filters with equal received powers.

wherea minimizesE[|d{ — al;|?]. That is, Choosingws to maximize the SINR, or equivalently, minimize
the output energy[|d|?] gives
Sl B E[(d%)*ll] I _ cchl I (86) p gﬁ“ | ]gl ) -
> VAR R (VAR o = Eldr)di] _ El(dy) L] 92)
| . . ©T E[dt]] (cf) Ret
is the MMSE estimate of;- given I, so that by the orthogo-
nality principle Rt 93
1L 1 1L T (¢f)iRef (23)
E[(ST)y" (T + Nl =0. B7)  and
ARV
Given these definitions of the signal, interference, and noise, we E[d]?] = E[|d:?] - |E[(dy)"du]?
associate an (output) SINR with the filtet, which is given by E[|di-[?]
1)2 112 ol Rel|?
o EISTEL _ EISHEL g i Rey — %
B[+ N7l Efldy ] = E[|5T 7] (1) Rey
3J_
le{ Rey-|? — & Rey — B[]
_ EIL 7] (89) 1Rer = E[I4] ]1+/3L
|cIRcf‘|2
(CIL)TRC;Ll ~ E[LP =P +o? +E[|Il| ]1 +/3J_
where the expectation is again with respect to the transmitted — ) 1
symbols and noise. From (88) and (89) we have that Kooo Pto” + O‘Pl (B (94)
g E[SHP] . 1 |elRef]? (90) Combining (91)—(94) gives
1+p+  E[diPP]  ElLP] (ef ) Ret P (95)
8. = 95
Now consider the filtee = ¢; + woei-, which has output o? + E[|11|2]1+@L
d = d; + wedi-. Since the output contains the desired signal
51, the SINR associated wiihis and letting/’ = aN' — oo gives
P
P 320 = (96)
;. — 1 Pe —
= Bap-p D o+ aP i
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MSWF SINR vs. Rank: 2 User groups, SNR=10dB, a=1/2
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Fig. 6. Output SINR versu® for the MSWF with two groups of high- and low-power users. The large system approximation (47) is compared with the exact
large system SINR computed from (61).

Now suppose that we choosg = ¢,, so that3>> = 335, and it is shown in Appendix D that
To prove the theorem fab = 2, we must show that the large

system SINR associated with = ¢, is |di > = eJRe; k= P+ aP + 0. (104)
oo MS P Combining (88) with (103) and (104) gives (97), and substi-
B =p"" = —5— o7 o .
aP + o2 tuting into (96) gives
which is the large system SINR for the matched filter. We, there- VS P
fore, let B = ———p— (105)
0“4+ « W
e =¢ = k2 Py (Rey) (98)

N : Before proceeding to the induction step, we need to make an
= r2Pe [(818])en] (99) additional observation. Suppose that we chogse= ¢;. g,
which consists of stages two throuffhof the MSWF. Referring

Ll —ar Lo . L
wherePz (y) =y — ||| “(z"y)x is the orthogonal projection to Fig. 1, thisfilter has input, (¢) and outputv,e; (¢). Lete,, .

of y ontox, andk. is the normalization constant. Now from (99)denote stages: through X of the MSWF (inputr (i) and
m—1

[P (Rer)||? = (Rey) [P (Rer)] (100) outputew,, e, (4)). From Fig. 1 and (26) we can write
= [ SIS%)CI]TPj; [(S[S})Cl] (101) Cn:K = wrn(crn - crn—l—l:[&') (106)
=cl(8:81)%e; — (c]81STe,)? where we have used the fact tH3{'_, B,.c, = ¢,. We can,
therefore, express;. i as a linear combination of the MSWF
Koo (0?+a)P? — (aP)? = aP?.  (102) fiters Cor ...\ e,
(See Appendix B, which discusses the computation of the large K
system limit of the moments!(S;5%)*¢c,.) From (86) and Crii =3 Wi2: k)G (107)
(102) we have i=2
L |chcl|2 ) ||PCJI(RCI)||2 ) where thew;,2. i)’s, ¢ = 2, ..., K, are the corresponding
|ST1" = W [L|" = WLH combining coefficients, and depend on the filter indiges K.

Since theg;’s are orthogonale, . i is orthogonal tae;, as re-
Koo P (103) quired.
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SINR vs. Rank: logvar=6dB, N=32 for simulation, SNR=10dB,a=1/2
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Fig. 7. Output SINR versus normalized rabl/ K for reduced-rank filters with a log-normal received power distribution.

From the discussion in Section 16z . i is the MMSE filter part” of the full-rank MSWF below stage Note thate; 11 . i iS
for estimating/; from#y, the output of the blocking filteB; in  the MMSE filter for estimatingl; from ;.
Fig. 1. Sincek stages are needed to obtain the full-rank MMSE Let
filter, the output SINR o&; . i is the full-rank SINR3>°, which d; :cj'r =S, +1I,+N, (111)

li 40 t sati
rom (10) must satsty df =(¢t)'r =S+ -+ Nt (112)
P T T T T T

Be.=p0"= 40_2 o 1_:;00 . (108) d;.r :cz: = d; + wi-l-ldf_ (113)

) ) . whereN; =¢/n, N} =(¢-)in, the desired signa; is the pro-
Comparing (108) with (96) witle; = c;.x shows that the jeciion ofd; ontoZ;_;, andS;* is the projection ofi- onto;
output SINR ofe;. x mustbess. g — A° asK = aN — oc. El(dy ]
This completes the first step of the proof. St = a,1;, a; = [(17)27]

For the induction step we partition the MSWF into the first EL:[?]
i — 1 stages, consisting afy, ..., ¢i_1, and the rest of the The variables needed for the induction step are illustrated in
filter, consisting ofe;. . By assumption, the large systenfig. 9.
outpyt SINR ofci.:K is /3;?1( = 3°°. We also need to define Lemma 2:
the filtere; . ., which consists of stagéshrough. of a rankL

(114)

Ly % _
MSWEF. Clearly,e;. 1 is a linear combination of;, ..., e, E[(di7)*Ni] =0 (115)
L E[(d;i")*S;] =0 (116)
C.[ = Z wl;(i: L)cl (109) E (dﬂ_)*L] :cTRcJ_ (117)
=i ' N

Proof: First,
E[(dH)" Nj] = Elc/nrie}] = E(c[nnie))

=o’E[(¢i) ;] = 0.
To show (116), we write
wherec;- is orthogonal tee;, which appears in the MSWF. In Ly* Ly+
‘ . ' . El(d: )" S| =a;_1 F ClZ I
what follows, we will choose;- = ¢;;1.r. Thatiis, forL = [(di)" 9] = aia El(d}) 1]
i+ 1, C% =Ci+1 and for. = K, C% =Ci+1: K is the “bottom = aiflE[(diL)*(difl - S,_1— Nifl).

whereL < K, andwy,;.r1),! =4, ..., L, are the combining
coefficients. We decomposg. 7, as

C.r,. =¢ + w7‘,+1cf' (110)
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SINR vs. Rank: 2 User groups, N=32 for simulation, SNR=10dB, c=1/2

10 T T T T T T T T T JL
......... ————V_V““V_““g‘——_ﬂ—_—“m“‘“
‘ SV ; o : x
I} S Lo Mo Lo P L LT R TR DL DPRRE T E..;,;—..;.i;“_..,.._
v 5 0 o B
: g. e T T
6 o S_i---T |
OF @ o T Lo R .
- D
*
O SO SO SO RO USRNSSR SRRV SR
o : *
pd : :
%) : *
3 :
..5._10_ .................. g -
O X X X
x * PC: Simulated
: : : : : O CS: Simulated
A5k P ,,,,,,,,,, .......... ,,,,,,,,,, ........ CS Large System ........ —
L% : : : : O PD: Simulated :
: : : : : — - PD: Large System
v MSWEF: Simulated
o0l B R TEERE-FEERR T R il MSW}F Large System ........... a
_o5 ! ! ! ! i ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rank of filters / K

Fig. 8. Output SINR versus normalized rabl K for reduced-rank filters with two groups of high- and low-power users.

Finally,

Bl(di)* L) = E[(d)"(di — Si — Ni)]
= E[(di")*d;] = €[ Ref-
which completes the proof of Lemma 2.
We now compute the large system limit of

E[Si|*]
Elldi: ?] = ETISi?]

in terms of the output SINR fag-, which is

Wit
Bi:L=

Fig. 9. lllustration of variables used in the proof of Theorem 1.

gl = E[|S-7]
Now " E[d P - E[ISE
E[(dF) Ni_)=o%¢_¢- =0 (118) lef ?TZ'}Z
E1;
and = |cTRcJ'|2

(cf-)TRcf- -2 .i2

E[(d})*d;_i]=¢_,Re} =0 119 ENT: 7]
v 7—1 )

and which satisfies

B ENSHPl 1 |dlRet?

K3

1+ 5 EldHP?] ElLP] () Rei

Selectingw;+1 to minimize E[|d; . 1 |?] in (113) gives

follows from (32) and the fact that" is a linear combination of
Cit1, ---, €. Consequently,
E[(d})*Si] = — ai 1 E[(d]")"Si 1]
= —ai—10i2E[(d) " 1;»)]
[(d;

= —ai_10,_oE[(d")*(di—a — Si_o — N;_) wipt = — E[(d)*di] _ _ E[(dH)* 1]
=a;i_10;—2 E[(dF)* Si_o] E[d*]?] (¢})" Re}-
=constant E[(d;")*51] ¢iRe}

[
=constant E[¢| Re}] = 0. T (¢h)iRet

1941

(120)

(121)

(122)

(123)

(124)

(125)
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and Clearly, ¢, ..., ep span the same spa¢®,. The theorem is
E d% *d:]|? obviously true forD = 1 sincee; = ¢; = s;. Since
R e v T T
i ¢ = (I —cie))Rre, = Rysy — (8] Rys1)s; (134)
2y le|Rei le1é] = [e1 Rier]As where
:E[|dz| ]— W 1621 — 1 JC1 2
2 2 2 2 3+ A = 1 _(SIRISI)
— . . . v 2 —
= B(Si + BILF + 0 = EILFT o o 1
1 is nonsingular, so the theorem is true for= 2.
— 12 2 12 ’
=EllSiF ]+ o7 + El|LI] 14 B+ (126) ™ Assume that the theorem is true fBr= i, and that
where (123) has been used. Combining (121)—(126) gives [er & - &|=[8 Ri8 --- R§_131 |A; (135)
12
Bi.r = % (127) where A; is a nonsingular upper triangularx ¢ matrix with
o2+ W diagonal elements equal to one. From (30)

For 3+ = Bi41. i, corresponding te;- = ¢;41 . i, we have i1
352 = 3°° (by assumption), so that (127) and (40) imply that ¢; = <I - ch}) Rié;
=1

E[|S;)? N P
/32‘:]( = [|SZ| ] K—oo . (128)

We can rewrite (128) as where

1 1 a E=[L] 1 S Re . &l Re G pa T
2 _ | = _ d u=[¢Ré_, eRé ., - ¢ Re 1] .
7 [Eoonsn?] P} L+ 5> E¥[SiP] 1+ 5%, .« e e e

(129) Denoting thejth column ofA, asAEj), we have

Where_ the supgrscripb‘é" denotes the large system limit of the & =Ri[si Rrs, - Ri[—lsl ]Agi)
associated variable. 5 )
) —[s1 Rps1 --- Ry “s1]Ai1u
Lemma 3: ¢;, E[|S;|*], and E[|I;|?] are independent aof? ‘ "
V1. =[81 Rrsy - 81 ]Agi )
The proof is given in Appendix C. where
Aso? — o0, Biy1.x — 0andB> — 0, so that (129) can A
only be true if £>°[|S;|?] = P. Consequently, from (128) as o —A;_1u 0
K =aN — o A= 0 +[A(i>}
E[SiP] =P, ELPl—oP,  B¥ic— B 0 Z

(130) Hence,A4; . is also a nonsingular upper triangular matrix with

and the SINR associated with the outputpis diagonal elements equal to one, which establishes the theorem.

I i 1 R
fiti = 02+ E=[|L]2] ~ o2+ aP (131) C. Principal Components
fori = 1, ..., K, where convergence in probability follows We assume all users are received with powetFrom (63)
from the fact that the variables are continuous and boundgé have
functions of the moments| Rys,, k =1, ..., 2D — 1. 5
From (127)—(130), we can write E(vp) = P Z E v, 81]2 (136)
- P P — "\ X +0?
Bi1 = — 7 (132) "=

where the expectation is with respect to the random signature
wherefs; is given by (131). Similarly, (127) can be used agaimatrix S. Since the elements & are i.i.d., we can replace

to express3®, . ; in terms of 372, ., which is given by (132) by s;, so that

and (131). Iterating in this manner gives the theorem.

whsi 2\ _ 1 (s lhsil?
B. Theorem 2: Basis for the MSWF E N, 1ol :EE 2.3,

In what follows, it will be convenient to replace the normal-
ized MSWFfiltersey, . . ., ep, given by (30), by the unnormal- 1 vaSSTfun
ized filters¢;, which satisfy

€t = <I—Zéléj> Ryé;, t=1,...,D—1. (133) — 1 E< An ) (137)
=1
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Combining (136) and (137) gives D. Cross-Spectral Method

pD \ Here we compute the variance §f defined by (68), where

= n n is chosen randomly. We have
E(vp) K§:1E<)\n+rf2> y
n= K i 2

j A of = it
— 7 A +O’2
=— EFl———— ). 138 =t 7

N 2 <An +02> (%9) :

B =s/R's;

As K = aN — oo, the distribution of{\,,} converges to a

deterministic limitG(-) with associated density [27, Theorem K—oo

where3 is the asymptotic SINR for the full-rank MMSE filter.

(144)

g(x) = { —WW’ for a(a) < z < bla) Alternatively, from (137) and (138) we have that

0, otherwise A

(139) rJ§=E<A " 2)

wherea(a) andb(«) are given by (65), and far < « < 1 there nto
is an additional mass point at= 0 1 ey
=— —— dG(X) (145)
P « N A+ a2

Pr{}, =0} =1—c. (140) a(a)

Combining (138) with the asymptotic eigenvalue distributio‘r’wvhICh for G(-) given by (139) can be evaluated as (74).

gives E. Theorem 4: Partial Despreading (PD)
_ 1 Y@y The projection matrix is
lim  Elvp]= —/ 5 AG()\)
i We Ao st 0 - 0
_ /"“””W[x—a(a)—o2l[b<a>+o2—x1 " 0 s, - 0
- cto? 271'.’L' MD - . . . . (146)
(141) : : B :
N 0 0 s 81D
wherec satisfies
. wheres; ¢ = [$1,qu—1)+1 -+ S1,am] IS asegment of;
G(e) = VIz —a(a)][b(a) — 2] dz + (1 — a)l{a < 1} containingM chips, and the columns & , contain nonover-
ae) 2nx lapping segments. In analogy with (14) and (15) we define
=1-6. (142) R=M),RM)
The preceding integrals can be evaluated in closed form =§1P1§;+P1§1§I N (147)

giving (64) and (66). The conjecture that, converges to a

deterministic limit depends on showing that the large systewhereS; = v NM,8;is D x K with (d, k) element
limit of the variance of the random variali, |? is zero where

6, = wls,. We remark that, and6; are uncorrelated for St = \/Ns]i’d.?k,d (148)
n #1,ie., .
P; = P;/N whereP; is the diagonal matrix of the powers of

K the interferersp, = P /D

vaLskszfvl = 'vLSSTw =0 (143)

b1 8 = \/EMES;L = \/5[(31 181,1) - (leSLD)]T (149)
so that and

K K N =diag[6? 53] (150)

FE vlis ‘sT"v = Evls ‘ST"v
kz_;l Rk l] kz_;l el is the noise covariance matrix whesg¢ = o2||s; 1||2. With

these definitions, the output SINR, = I?’l.élf‘?;l.él, and we
can apply the large system results for the full-rank MMSE filter
=0. presented in Section IV.

We consider the following two cases.
In the case of an arbitrary power distributidfy (137) no

longer holds, since the projection of the desired user’s signall) The elements 016' are ii.d. binary random variables
onto the eigenvectors depends Brand P . It, therefore, ap- chosen from{— -, =} with equal probabilities.
pears to be difficult to compute the corresponding large system2) The elements of are i.i.d. Gaussian random variables
limit for arbitrary . with zero mean and varianq{a.
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For case 1N = "g Ip.p,ands; = [% “e %]T. Itis cases, the large system analysis accurately predicts performance
easy to verify that the elements 8 are i.i.d. random variables for moderately sized systems. Numerical results show that for
with zero mean and variandg’D. Now the covariance matrix V€'Y smallD/ K, the techniques based on eigendecomposition
has the same form as for a full-rank MMSE filter with interferePerform relatively poorly. The CS filter requird2/ K > 0.3 to
powers given byP; /N, desired user poweP; /D, noise vari- perform better than the matched filter, abd K > 0.33 to per-
ances?/D, and system load = K/D = Ma. According to form better than PD. PC performs well only whéiy K > 1.

(38) and (42), we have The MSWF performs significantly better than the other tech-
niques considered for smald/ K, and furthermore, does not
P = Bp[Ma, MPy, Mo?, F(-)]. (151) require explicit tracking of the signal subspace.
Our results pertain to optimal (MMSE) filters. Adaptive al-
As M — oo, 0ré — 0, we have gorithms based on the MSWF are presented in [9], [31], and
b . MP, are observed to converge significantly faster than a full-rank
g = A}linoo Least Squares algorithm. An analysis of the convergence of
Mo? + Ma/% dF(P) these adaptive reduced-rank filters with random data is pre-

sented in [32]. Investigation of tracking performance in the pres-

! (152) ence of time- and frequency-selective fading is being pursued.

o2+ afPAF(P)

Hence, for a fixedD < oo, asé — 0, the large system SINR APPENDIX A

for the PD filter converges to the matched-filter SINR. EQUATION (47) Is NOT ExACT

_For case 2, asV, M — oo with N/M = D, we have  Here we show that (47) does not hold with equality for ar-
N — (0?/D)Ipyp ands; — [\/L5 . %]T, and the ele- bitrary F'. Consider a rank-two MSWF. According to (61), the

ments ofS; are i.i.d. Gaussian random variables with zero me&INR can be computed as

and variancel/D. The output SINR is again given by (151) s 1
whereM — oo, which is the same as the matched-filter SINR P = — == (153)
(152) S50 B kNS OB
For finite M, we must assume that the energy of each seg- A, . i
ment of s, 4 is the same, so thaV = %IDXD ands, — where v, (o, ) = 8] R}s;. Combining the expressions for

1 (o, 0),mn =1, 2, 3, in Appendix B with (60) gives

[—=--- \/%]T. To prove that the elementsSy, given by (148), Tn

VD, . : .
are i.i.d. Gaussian, we first note that' cond'|t|oneds@7rg, ele- V2 (a, o) =7 (a, 0) + 0
ment(d, k) of §; (87,4, 1)) is Gaussian with zero mean and ) .
variance%. That is, the conditional probability density func- ¥5 (v, 0) =757 (@, 0) + 200" E(P) + o
tion (pdf) f(S7.c4,1)|81,4) is independent of; 4, so that 1(ar, 7) = (a, 0) + 3aB(P?)o? + 3a2[E(P))2a?
~ ~ 4 6
f(Stia, 1)) = (810, 1181, 4)- +3ab(P)o” + 07

The asymptotic SINR of the two-stage MSWF is therefore a
nction ofo?, a andE[P"],n = 1, 2, 3, whereas (47) cannot

e expressed in terms of a finite number moment® ébr an
arbitrary power distribution. Nevertheless, the numerical results
in Section VI show that (47) gives a reasonable approximation

to (61) for the case examined.
We have characterized the performance of the reduced-rank

MSWF when used for multiple-access interference suppression. APPENDIX B

For the uniform power case the large system, SINR is easily COMPUTATION OF 7°(«x, 0)

computed as a continued fraction, and converges rapidly to the . ,
full-rank SINR as the rank increases. Numerical results show ' 1€7€ We give n(v%oaltern?te met?ods to (57) for computing the
that this large system analysis accurately predicts average grge system limity,*(cr, o) fpr o= 0 wherer, is defined
formance for moderately sized systems. We do not have a sip-(49)- In what follows we will abbreviate,,(c, 0) asy,.(«).

ilar type of simple expression for an arbitrary power distributior),2" the first method, we define thetransform

mean and variancg, and are, therefore, i.i.d., so that (151) als

Hence, the elements &F; are uncorrelated Gaussian with zercg-|
applies to this case.

VIIl. CONCLUSION

although the performance can be computed numerically. An im- i
portant conclusion, based on this analysis, is that the rank of the ®(z) = Z Ymz "
MSWF needed to achieve a target SINR in the neighborhood of m=0
the full-rank SINR does not scale with system size. Numerical o0
results show thaD = 8 is sufficient to achieve near full-rank —s! <Z (z_lRI)"') 81
performance for all cases considered. m=0
The large system SINRs of PC, CS, and PD reduced-rank —si(I— 2R

techniques have also been evaluated. Whether or not the ex-
pression for the CS technique is exact is an open question. In all = zsI(zI — SIPIS})_lsl (154)
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where the preceding sum converges [for!\,..(R;)| < 1, so that

where,.x(Rr) is the maximum eigenvalue &; . We observe - 5 y ) 53
thatz—1®(—z) with = = o2 is the output SINR of the full-rank V3 (@) = aE[P°] + 3« E[PT]E[P] + o”E°[P].  (167)
linear MMSE filter with signature sequence mat§x and re-
ceived power matrixP;. Taking the large system limit gives
[17]

This approach can be used to compute higher moments as
follows. First, note that;° is the large system limit of

O%(2) = —2Bpla, 1, -2, F()] = —2ma(z)  (155) tracel(Ry + Psicy18x41)"]:

whereB; is defined by (42) andh (=) is defined by (36) and SiNCesi+18}., is idempotent, we can express as the sum
satisfies (37). For uniform power we have from (37) and (40)°f terms of the form

2107 (z) = L (156)  trace [P"_qR}” (841854 )R (srcr18)c 4 1) -
T I (n)

Moo — 1 R ’i" Yo
which is thez-transform of the sequence defined by (59) with By (srcnisic) By }

P =1land~® = 1.

The second method for computing® is based on relating
Yo With K + % users toy, with K users. Specifically, let -(3K+13}+1)---R}"“*ISKH
(K, N) = s R}8; and

_ pn—qgt N1 41 + 1o
=P85 Ry (8r+185 1 )R]

= Py e T Y
(K+1,N) =8| (B + Psiy18,, )8, (157) e o
Tn ,N)=4] 118y .
_ _ s _ whereg = >~." | n; < nandthe factrace(AB) = trace(BA)
whereP is the power assigned to uskr+ 1. We can write has been used for matricelsand B. Enumerating the terms in

the expansion and averaging ovémgivesdy°° /do as a func-
(K +1, N) = 1 (K, N)+ Psi (s 118}, )81 (158) P ging ovegivesy, © d

tion of °, ..., v22; and the moments of'. Since these are
and taking expectation with respect4g ., ; gives polynomials in«, the expression can be integrated to gjye.
P
Eeo Im(K +1, N)} =n(K, N)+ N (159) APPENDIX C

PROOF OFLEMMA 3
Taking the large system limit, and noting tHatV becomesi

gives From (30)
10+ doe) — 77() = P (160) . (1 5 T) (8,51 + 0T
or I%O
DE _p, (161) = <I - chc;> S18jei
da 1=0

Sincev1(0) = 0, we havey{®(«) = Pe. If P is chosen from
a distribution, therE'p[v{°(«)] = E(P)a; however, sincey;
converges tey® in probability, we have

sincecjcl forl #i.1f ¢, I < i, is independent of2, thene; ;1
is independent of2. Sincec; = s; is independent of2, by
inductiong; is independent of? V.
A2 () = E(P)a. (162)  Toprove thai[|S;|*] andEf|Z;|*] are independent of?, we
note thatsS; is the projection ofi; ontol;_;, and
Similarly, we can computes® andvs®, which are used in the

proof of Theorem 1. We have E[|S:]?] = |‘3ZR‘#|2
CUTENL_ 1?2
Bup 8l (Ry + Porcassl,, ] il
P P2 Now
=73(K, N)+2—=~ (K, N)+ — (163)
N N ¢ Ret = ¢l (8781 + s18] + 02 D)ef = ¢ (818t
which gives
J and
,ygo oo 2
= —9p + P~ 164
do = 2P () A84)  BULP) = B4 - EIS - EINP)
Solving and averaging ovér gives :cZT(SIS} +518] + 02D)e; — E[|S;|Y] - o2
757 (a) = [aB(P)]? + aB(P?). (165) =c(818)e; — B[|Si|*]

Finally, following this approach fors(K + 1, N) gives for i > 1. Hence, if E[|I,_1|?] is independent ob2, then
dng° - b e s EJ|S;|?] and E[|1;|?] are independent af?. SinceE[|1;]?] =
do =8P ABPIT P (166) P, the Lemma follows by induction.
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APPENDIX D [12]
DERIVATION OF (104)
Sincecle; = 0, we have [13]
¢ Rey = 5(818%)er + o (168) (14
and from (99)
[15]
ch(518))e2 = my (P (S 18))ea) (S18))(P(S18Der])

where~,, = sl(SIST) s1. (We abuse notation somewhat by "

=388 )er—me] (S18D(818T)er —mal]

= r3[v3—2v1v2+(m)°] (169)

reusing they,, originally defined in (49).) Also,

Combining (168)—(170) with the computation of the Iarge[

K5 = || (170)

Per(Rey)|? =72 =i

system limitsy°(«, 0) in Appendix B gives (104).
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