Adaptive Techniques for

Multiuser CDMA

Receivers

Enhanced Signal Processing with Short Spreading Codes

e

3% pread-spectrum systems have a long history
. military and civilian wircless commmunica-
tons [1]. As originally conceived, chey did
not involve elaborate signal processing, nov
werc they envisioned as a way of arbitrating
c.!launcl resources among mutiple vsers, The merits of
spread-spectrum modulation for multiplexing voice users
{eode division multiple access—CDMA) are now widely
accepted for cellular applicatious [2]. Still, existing
CIDMA systems (like 15-95) include limited signal pro-
cessing and interference suppression, namely, the sin-
gle-user matched filter or RAKE receiver, which treats
interference from other users as noise, The statistical ay-
eraging of our-of-cell interference and exploiration of si-
lence periods in voice conversations made possible in the
CDMA environment provide unique benefits for ceilufar
applications compared with rival TDMA/FDMA op-
tons. For this reason, most proposals considered for
third-generation wireless networks invalve some flavor
of CDMA [3]. It is expected that the requirements im-
posed on third-generation systems in terms of capacity
and flexibility will necessitare advanced signal processing
solutions for interference suppression and joint decoding
of mulriple users,

Tt was observed in the mid-1980s that joint, optimal,
maxinunn-likelihood decoding of all vsers has signiticane
pertormance benefits compared with matched filter alver-
natives [4]. Unforcunately, the solution also invoives a
joint Viterbi processor with exponential complexity in
the number of users. The seminal work of [4] and the
promised gains of multivser detection (M) have initi-
ated muceh rescarch in the arca which conrinues unabated
to this day. A number of CDMA receivers have been pro-
posed that cover the whole spectrum of perfor-
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The use of relatively smali
spreading factors combined with
a proportionately smaller
number of users reduces
complexity and facilitates the use
of advanced signal processing.

mance/complexity from the simple matched filter to the
optimal Viterbi processor. Adaptive solutions, in particu-
Jar, have the porential of providing the antictpated MD
performance gains with a complexity rhat would be man-
ageable for third generation systems,

Our goal, in this article, is to provide an overview of
recent work in MD with an emphasis on adaptive meth-
ods. We start wich (suboptimal} lincar reccivers and dis-
cuss the dara-aided MMSE rcceiver, Blind
{nondata-aided) implementations are also reviewed fo-
gether with techniques that can mirigate possible
multipath effects and channel dispersion. In anticipation
of thase developments, appropriate diserete-time (chip
rate} CDMA models are reviewed, which incorporate
asynchronism anc channel dispersion,

For systems with large spreading factors, the conver-
gence and tracking properties of conventional adaptive
filrers may be inadequate due to the large nunber of coef-
ficients which must be estimated. In this context, re-
duced rank adaptive filtering s discussed. In this
approach, the number of paramerers is reduced by re-
stricting the receiver tap vector to belong to a careflly
chosen subspace. In this way the number of coeflicients
to be estimated is significantly reduced with minimal per-
formance loss.

It is welt known in the contexr of single-user channcl
equalization that decision feedbaclk (DF) adaprive
schemes can provide near-optimal perfarmance with lit-
tle added complexity, This is true also in the case of
multiuser systems; the difference here is that interference
does not only originate from past symbols, but also from
current symbols of other (interfering) users. Therefore,
tentative decisions for the interfering symbols are needed
to implement such interference cancellation schemes pro-
viding further justification for the use of linear receivers
{as a preprocessing step). Both adaptive sequenrial and
parallel decision-feedback strategies are possible as ex-
plained tater, These receivers are motivated by a brief dis-
cussion of fundamental limits on performance (capacity)
with error control coding,

The receiver design is affected by the type of spreading
sequences used. This article deals with shout spreading
codes which repeat every symbol period. Some systems
(like IS-958) employ lang codes (with period much longer
than the symbol period) which causes the interference to
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vary randomly from symbol to symbol |5]. Usually,
systems which empioy long codes alse employ large
spreading factors and a large number of users per CIDMA
channel, inan effort to randomize the interference further
and justify the use of the matched filter receiver, An aleer-
native approach is to combine short codes with the adap-
rive receivers discussed here, which exploit the struceure
of the interference. The use of relatively small spreading
factors combined with a proportionately smaller number
of users reduces complexity and facilitates the use of ad-
vanced signal processing. Of course smaller spreading
factors also imply smaller bandwidth expansion, so that
the number of users accommadated per Hertz is not re-
duced.

A lincarly modulated digital communicarions signal is
cyclostationary with period equal to the symbol period.
CDMA signals with short spreading sequences fall into
this category. For systems with long codes, the chip-sam-
pled interference is seationary, it the codes ave unkown, If
the interferers’ codes are knowi, then the inrerference can
be modeled as a time-varying, cyclostationary process. In
general, fong codes complicate the development of adap-
tive signal processing algorithms for multivser detection
[6]-[11] and will not be treated here.

CDMA Signal Model

In CHMA systems all users transmit simuleancously in
the same frequency band., Therefore it K users are active,
the received, basebsand, continuous-time signal is a super-
posttion of all K signals

r{t)= i 7 (£ + () O

where #(¢) is addirive Gaussian noise and and each user’s
signal is

#. () :z Ab,[]p, (¢ T, =v,) 2)

a superposition of signature waveforms p, (#) spaced by
multiples of the symbol period T, aud lincarly modn-
lated by the information symbel sequence 4, {#] with am-
plitudes A,. In the case of asynchronous systems, cach
user may have a diffecene delay v,

It is desirable to utilize different signature waveforms
for ditferenr users (with sufficient excess bandwidth) to
facilirate signal separation at the receiver, Often each
user’s signarure is generated by modulating its low rate
symbol waveform with a high rate code waveform (sce
Fig. 1}, While the descriprion of Fig. 1 is conceptually
simple, it does not lend itself to the development of ap-
propriate discrete-time bascband maodels uscful in re-
cetver design. In an etfort to derive chip-rate models for
CDMA systems, we may write the spread-spectrum sig-
nmature as a succession of chip pulses b()
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modulated by the user code ¢, [[], k=0,...,N - I, where
N is the number of chips per bit (or processing gain)
and T, is the chip period. In the case of propagation in
a dispersive environment, the waveform At) repre-
sents the convolution of the chip pulse with che chan-
el response. If the reccived signal is sampled at a
fraction of the chip period (2 samples per chip), then
the system js described by the following multirate
convolution:

rlm]=r{ iZAb [ilp, {m —iNP]
o 55 4)
where
b nl=p, (t QZL“!]]J [# -]
THL 1= (5)

where &[#] is a similarly fractionally sampled version of

Lt —v, ). Fig, 2 gives a multirate interpretation of {4) and
{5). The spectral spreading operation may be considered as
ant upsampling of the informacion symbol sequence by N
followed by a tinite impulse response (FIR) filrer of length
N with impulse response equal  the spreading code.
Then, the chip-fractionally sampled channel model is given
by one maore multirate structure with upsampling factor 2,
The modet ol Fig, 2 is a most general d:.su]pnan of the ve-
ceived signal and makes no assumptions on the channel
spread or on the amount of possible intersymbol interfer-
ence {ISI}. In that vespecr, it is useful in describing CIYMA
systems with porentially small processing gain and large
chanmel spread fike the one considered for the UMTS
third-gencration wircless syscems | 12].

Vector madels of the received data (within a certain ob-
servation window) are more desirable and can be derived
from tig. 2 following standard muleirate tools (e,
palyphase decomposition [13, Cl, 4]}, For example, in the
case of synehronous users witl = 1 (one sample per chip),
and no interchip interference (ICI) the user's signarure has
length N, p, = £, [0, p, | N = 1] and is a scalar multi-
ple of the user code p, = 4,¢, = &4,],[0],....¢, [N -1]]"
Then, the recerved signal can be written i matrix form as

v||=Pb#]4 n|#| (0}

where P=[p,np ] and bis]=[8, &) .0, )]
ICT is preseut duc o a dispersive channel of ovder ¢, then
the vser signature has lengeh N 44 and is given by the
convolution of the code ¢, [i] with the channel response
b, [ Theretore, the veetor p, =7 (¢, }h, is given by the
channclvector b, mulriplied by the Toeplitz filecring ma-
trix constructed trom the code ¢,
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If the length of the vector p, s greater than N, then this
leads to ISL

'[he lengeh of the nbservation window depends on the
choice of system parameters. If g << N and ISL is negligi-
ble, then r[#] has length N. In the case of asynchronism
and/or severe ISI, hawever, a longer window should be
congidered rhat spans multiple symbols.

Minimum Mean Squared (MMSE)
Linear Receivers

Given the received vector of samples at the cutput of the
chip matched filter for symbol 7, a lincar muleiuser detee-
ror forms the (soft) estimate

blij=W " r[i] (7)

where Wis an N x K matrix. (Here we assume the filter
spans a single symbel interval.) We can select W to mini-
miize mean squared error (MSH), defined as

&=E{iIbi- bl |1 }- (8)

The solution is given by

- i 1py!
W=P(P P+a’l) )
where E(nfijn "' [{[)=c1.

The lincar MMSE receiver has the importane property
that asingle user can be detected without having to detect

Bit Wavatorm
u -~ sfy)
=, >< e/ =
Modulated
Signal
Chip Waveform

A 1. Spectral spreading: continuous-time model,

A 2. DS/SS signal in multipati: discrete-time model,
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all other uscrs. That is, the kch column of W, which is
used to detect user £, is given by

w,=R7'p, (10)

where R= E{t[{]r " [/]} is the input covariance matrix. In
other words, linear multiuser detection can be imple-
mented as a set of “single-user” interference suppressian
filters, and is therefore well suited for the DS-CIDMA for-
ward link (in addition to the reverse link).

Some important properties of fincar MMSE detection
are:
A The filter for each user can be implemented as an adap-
tive digital IR filter, analogons to an adaptive equalizer
for a single-user channel.
4 When implemented as an adaptive fileer, the lincar
MMSE detectar suppresses tezal interference, independ-
ent of origin, It thercfore suppresses (strong) otber-cell in-
terference, in additfion to intra-cell interference,
A When implemented as an adaptive filter, the MMSE re-
ceiver requires little side information. Specifically, cither
a training scquence is needed at the start of each transmis-
sion or the receiver must know the desired usce’s spread-
ing code, channel, and associated timing. Amplitudes,
phases, and spreading codes of interferers are not re-
quired for adaptation.
A In principle, the filcer can suppress N - Linterferess for
synchronous CDMA. For asynchronouns CDMA, a digi-
tal filter that spans a single symbol intcrval can suppress
I_(N -1)/ 2_] interferers. By increasing che observation
window, the filter can suppress up to N —1 users [14],
[15]; however, adapration becomes more difficnlr.
A The (coherent) MMSL solution auromatically com-
bines all multipath within the window spanned by the fil-
ter.
4 The performance of the linear MMSE receiver de-
grades gracefully with the number of {equal power) users
(c.g., sce [16]), although for very Iarge loads K/ N >>1
{K'= number of strong users, N= processing gain), the
performance of the MMSTE receiver is close to that of the
matched filter,

Blind Minimum Output Energy Methods

MMSE solutions are typically implemented wirh the aid
of training scquences. Even in the absence of training
dara, howcver, (10) indicates that the solurion is

implementable if the signature and timing of the user of

interese is known, In particular, the covariance matrix
needed in (10) can be estimated from the data, while (in
the absence of ICT) the user’s signature coincides with
the spreading code and may be readily available. Tlis
problem is analogous to beamforming preblems appear-
ing in array processing, in which the divection of arrival
and signaturc of the user of interest arc known {c.g.,
[17]). Adaptive implementation of such receiver filcers
which explicitly rake into account the signature of the
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user of inrerest can be developed using constrained opti-
mization approaches [18].

In the context of CIIMA and in the absence of
dispersive channels, an MMSH receiver can be obtained
by minimizing the output cnergy E{ |4 [4]|* } {let user 1
be the user of interest without loss of generality) [ 19]. To
avoid the trivial solution w, =0, the response of the re-
ceiver to the user of Interest is constrained to one
w p, =1 'This constrained optimization problem has
been studied extensively in the context of array process-
ing and the solution is termed minimum variance
distortionless beamformer (e.g., [ 17]}. Alternatively, the
adaptive filter can be decomposed as w, =p, +x, where
x, is adapred bur is always furced to be orthogonal to the
signature p; [19]. Extensions to longer observation in-
tervals and separate treatment of the in-phase and quadra-
ture signals were presented in [20], Similar approaches in
array processing come under generalized sidelobe
cancellers, The solution can be shown to be a scalar multi-
ple of the MMSE salution and the minimum output en-
ergy (MOLY is

MOH(PJ=*H*1.,1——-
prR7p, (11)
Unfortunately, it was obscrved in [19], and in prior array
processing literature, that those constrained optimization
approaches are very sensitive ro possible signature mis-
match created by multipath cffects or timing errors, M'the
actural user signature differs from the one assumed in the
derivation af the receiver, significant signal cancellation
can occur resulting in poor performance. In [21] and
[22], the prablem is mitigated by constraining the solu-
tion to the signal subspace, to reduce signal cancellation,
An adaptive implementation based on subspace tracking
was shown to improve performance ar the expense of
mote computational complexity.

The method of [19] was later extended by adding
more constraints [23]. In particular, a solotion for the
dispersive channel case was attempted in [24] and later in
[25], by forcing the receiver response to delayed copies of
the signal of interest to zero, Given the structure of the
user’s signature in multipath p, =7 (¢, )h,, the receiver
vector is constrained to satisty w " 7(c,)=[0,...,1,....0].
With these additional constraints, minimum variance
techniques arc applicable, but have inferior performance
since they treat part of the useful signal as interference.

"This obstacle was overcome by constrained optimiza-
tion solutions which combine ail multipath components
of the signal of interest and jointly minimize the interfer-
ctiee, while maximizing the signal component at the re-
ceiver’s output [26], [27]. The idea is again borrowed
from array processing, known by the term Capon
beamformer 28], |17]. If the user signature is
parameterized by some unknown parameters, then the
Capon solution selects those parameter values which
maximize the minimum output energy. In array process-
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A reduced-rank filter first
projects the received signal onto
a lower-dimensional subspace
before processing. This type of
dimension reduction can
improve tracking and
convergence in time-varying
environments,

ing those parameters typically refer to divections of ar-
rival, while in CDMA to channgl tap vafues, Based on
(11}, the Capon receiver selecys b such that

h, SANGIMAX e
h

W' T" (e ' T(c,)h (12)

The rational for this minimax optimization sctup relates
to an cffort ro maximize the signal component in the out-
put after the interference has becen suppressed. Hquation
(12} represents a Rayleigh quotient and hence the solu-
tion corresponds o the principal eigenvector of the ma-
teix 7" (¢ YR T(c ). Finally, given h,, the recciver
veetor can be obtained as a nwltiple of the MMSE solu-
tion R™ T{c h,.

Those Capon blind methads exhibir superior perfor-
mance which under some circumstances is close to that
of the trained MMSE receiver [26(. Buthermore, at high
SNK h | can be shown to converge to the true channe)
parameters b . Figure 3 illustrates these claims for a sys-
temn with ten vsers, spreading factor N =31

Reduced-Rank Approximations

Given an adequate number of data samples, the algorithms
presented in the preceding section sitmultancously sup-
press multiple aceess ingerference and perform mulripath
combining. Tracking and convergence may be problems,
however, for some wireless systems in which a large num-
ber of filter coeflicients must be estimared. For cxample, a
conventional implementation of a time-domain adaptive
filter which spans three symbols for proposed third-genei-
ation wideband CDMA cellular systems can have aver 300
coefficients. Introducing multiple antennas for additionat
space-time interterence suppression capability exacerbatces
this problem, Adapting such a large nunber of fileer coefhi-
cients implics very slow response to changing interference
and channel conditons,

A reduced-rank filter first projects the received signal
onto a lower-dimensional subspace before processing.
This type of dimension reduction can improve tracking
and convergence in time-varying cnvironments. Re-
duced-rank linear filtering has been studied primarily for
array processing and radar applications (e.g., see [17],
[341); however, recently it has been proposed for inter-
terence suppression in direct-sequence (DS)-CDMA sys-
tems [35]-[38), [21).

In what follows for simplicity we assume a synchro-
nous CDMA channel without multipath. The gencraliza-
tion to asynchronous CDMA s straightforward, where
the filter may span multiple symbaols. Although there has
been some work in applying reduced-rank techniques to
frequency-selective channels [21], this is currently an ac-
tive arca of research.

Let M, be the N x ) matrix with column vectors
which are an orthonormal basis for a I-dimensional

and a severe neac-far efffect. T'wao variations
of the Capon method are compared with the o5

Cutput SINA versus input SNA (Asynchroncus Case)

trained MMSY: detecror and show close sig-
nal-to-interference-plus-neisc-ratio {SINR)
performance (for details sce [26]). On the
other hand, if the MOE method is applied
with na regard for the multipath induced
sipnature distortion, a subsiantial SINR
penalty is incurred.
Adaptiveimplementations are proposed in
[29] through two coupled least mean square
(LMS) recursions, jointly updating w, and
h, . Blind solurions with performance which
is identical to thar of the trained MMSY re-
ceiver i a dispersive environment are possi-
ble as was demonstrated in [30) and [31].

Qutprrt SINR (dB)

Those techniques make explicit use of BT R

subspace  information from the

T B O DR S T

autocorrelation matrix and do not lend them- -15
scives to time-recursive implemenrations, Re-
lated developments also inchude 327, [9],

5 10 15 20 25 30
Input SR {dB)

and [33].
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subspace, where D < N, The projected received vector
corresponding to symbal # is then given by
—rs oo
flil=M,r[s]. (13)
The sequence of projected received vectors {F[7]} is
the inpur to a tapped-delay line filter, represcnted by the
Drvecror %[¢) for symbol s "Lhe filter output correspond-
ing to the ith transmitted symbol is #[£] =W ¥ [i]F[z], and
the objective is to select W to minimize the reduced-rank

MSE

My = E{lb [1-%7 ¥ . (14)
The solution is

w=R"'7 (15)
where

R-M}RM, (16)
T ~Mle,. an

In what follows we describe a few different re-
duced-rank techniques which have been considered.
Otler related reduced-rank methods have been praposed
in [35] and [38]-[40].

Methods Based on Eigen-Decomposition

The reduced-rank techrique which has probably received
the most attention is “principal components (PC),”
whiclz is based an the following eigen-decompaosition of
the covariance matrix

R=VAVY {(18)
where V is the orthonormal matrix of eigenvectors of R
and A is the diagonal matrix of eigenvalues. Given this de-
composition, the received vector r is then projected onto
the D-dimensional subspace which contains the most en-
ergy. Suppesce thar the eigenvalues are ordered as
Apzh, 22X, . Far given subspace dimension 2, the
projection mateix for PCis then the first D columns of V.

For K< N, the eigenvalues & .., A . are associated
with the signal subspace, and the remaining cigenvalues
are associated with the noise subspace, ie., A, =6 for
K <m < N. Consequently, by selecting D = K, PC retains
full-rank MMSE performance {c.g., see [21] and [41]).
However, the performance can degrade quite rapidly for
D<K, since there is no guarantee that the associated
subspace will retain most of the desired signal encrgy,
This is especially troublesome ina near-far scenario, since
for small 12, the subspace which conrains most of the en-
crgy will likely correspond to the interterence, and not the
desired signal. We remark that in a heavily loaded cellular
system, the dimension of the signal subspace may be near,
or even exceed the number of dimensions available, in
which case PC does not offer much of an advantage rela-
tive to conventional full-rank adaptive techniques,

An alecernative to PC is to choose a set of D
eigenvectors for the projection matrix which minimizes
the MSE. Specifically, assuming that the variance of the
dara symbols is one, we can write the full-rank MSE in
terins of projected variables as '

- 14|12
M=1-ja7g [ 19)
The subspace that minimizes the MSE has basis vecrors
which are the eigenvectors of R associated with the D
largesevalues ofv, "¢ /A, [*, where v, is the kth column
of V. (Notc the inverse weighting of |, |* in cantras
with PC.)

This technique, called “cross-speceral (CS)” re-
duced-rank filtering, was proposed in [42]. This tech-
nique can perform well for 13 <K since it takes into
account the energy in the subspace contributed by the de-
sired user. Unlike PC, the projection subspace for C8 re-
guires knowledge of the desired user’s spreading code ¢
Of course, a dissdvantage of eigen-decomposition tech-
niques in genetal is the complexity associated with csti-
mation of the signal subspace.

Partial Despreading

In this methed, praposed in [43], the received
DS-CDMA signal is partially despread over consecntive
segments of m chips, where #2 is a parameter, The par-
tially despread vector has dimension D= N /# | and is
the input o the D-rap filter. Consequently, m =1 corre-

il = by

e 2 EO{Q_

toll) =) _ 7o o)

A 4. Multistage Wiener filter.
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The MMSE DFD has the attractive
property that the feedforward
filter suppresses other-cell
interference, while the feedback
filter cancels intra-cel!
interference.

sponds to the full-rank MMSE filter, and # =N corre-
sponds to the matched filter, The columns of M, in this
casc are nonaverlapping segments of ¢, where each seg-
ment is of length . This allows the selection of perfor
mance between that of the matched and full-rank MMSE
filters by simply adjusting the numbes of adaptive filter
coelficients.

Multistage Wiener Filter

The multistage Wicner fileer (MSWE) was introduced in
[44]. Figure 4 shows a block diagram of a four-stage
MS&WI1i. The stages are associated with the sequence of
nested filters w .. w,,, where D is the order of the fil-
ter, The matrices B .., B, shown in the figure are
blocking matrices, i.c.,

Bl'w, =0. (20)

Referring to big. 4, ket d, |#] denote the output of the
filter w, and v, [#]denote the ourpurofthe blocking ma-
trix B ,,. Then the sz + st multistage fileer is determined
by correlating the outputs of the preceding stage
= E[d L r ].

w i

w (21
Yor m =0, we have d_[#|=4, [#] (the desired input sym-
bol), r, [#|=r[#], and w| is the matched filter w |, The fil-
ter output is obeained by lincarly combining the outputs
of the filters w ..., w , via the weights & ...z, . The
MSWE has the following propertics:

& At cachstage # the filrer generates a “desired” sequence
{4, 4]} and an “observation™ sequence {r, [f]}. At any
stage a1, if w , is replaced by the MMSE filter tor estimat-
ingd _ [{]fromr,_ T¢], then the resulting filter (with the
optimal combining weights}) is the firll-rank MMSE filter,
Each filter w, can thercfore be viewed as the “matched
filrer™ for the asseciared estimation problem. The MSWI
is constructed iteratively by tepeating the same strueture,
consisting of the matched filter and blocking maurix, at
cach stage. Continuing this procedure for N irerations
gives the full-rank MMSE filrer, Terminating after D iter-
ations gives a rank D filier.

4 Computation of the MMSE {ilter cocffivients does not
tequire an estimate of the signal subspace, as do the cigen-
decomposition techniques. Successive filters are deter-
mined by “residual correlatioms™ of signals in the preced-

-l
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ing stage. Adaptive algorithms based on this technique
were presented in [45],

A [t is shown in [44] that the transformed marrix K,
given by (16) is tri-diggonal. That is, it has notzero cle-
ments only along the main diagonal and the adjacent di-
agonals.

A The blocking matrix B, is not unique. Although any
rank N - matrix that satisfies (20) achicves the same
performance (MMSE), this chaice can affect the perfor-
mance for a specific data record. In particular, a poor
choice of blocking matrix can lead to numerical insta-
bility,

Tt can be shown that the D-dimensional subspace gen-
erated by the rank-D MSWF is the same as the subspace
spanned by ¢, Re,,R%¢ - RP7 ¢, [46]. These vee-
tors are not orthogonal, whereas it can be shown that the
basis vectors generared by the MEWY are orthogonal.

A large system analysis of reduced-rank filwers, includ-
ing the MSWE, for synchronous DS-CDMA with ran-
domly assigned spreading codes is given in [46]. Large
system analysis of 138-CDMA with random spreading
codes was introduced in [47]-[49]. The large system
limit is defined by letcting the number of users K and pro-
cessing gain N eend to infinity with fixed load £/ N. By
uging results from the mathematics literature on the dis-
tribution of cigenvalucs of large randam matrices [50],
[B1], it is possible to compute the large system limitof the
output SINR for the full-rank MMSE fitter [49]. It has
been observed that this limit accurately predicts dhe per-
formance with moderare K and N {¢.g., N =32).

In {46, itis shown that the MSWF has the important
properry that che rank D needed to achieve a target per-
tormance [e.g., outpur SINR does not scale with the sys-
tem size (K and N}]. It is found thar D =38 achicves
essentially full-rank performance over a wide range of
loads K/ N, T'his is in contrast to the other reduced-rank
methods discussed, which require that D inerease in pro-
portonwith K and N roachieve the target performance.

0.257 |

Error Rate
=
—-
[

Number of Dimensions D

A 5. Error rate versus number of dimensions for reduced-rank
adaptive algorithms after training with 200 symbals,
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is achicved with only eighe scages (di-
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mensions), which iz much smaller
than the minimizing order for the
other reduced-rank techniques. Hur-
ther- more, chis minimum ervor rate
for the MSW1! algorithm is substan-
. tially lower than the creor rate for the
matched filter recciver, and is not
very far from rthe full-rank MMSE cr-
ror rate. Addittonal simulations with
only 100 training samoles show that
the minimum crror rate for the
- MSWI algorithm is again achieved
with 12 =8, which is consistent with
the large systetn analysis in [46 | men-
tioned carlier.

]

Adaptive Nonlinear

Load K/N

b Multiuser Detection

A 8 Spectral efficiency versus foad for multiuser receivers in synchronous COMA with

E,/N,=10d8,

Performance Comparison

Here we indicate how the different reduced-rank tech-
niques in the preceding section perform when used with a
finite-length waining sequence, Details on the adaptive
algorithms are given in [36] and [45]. Essentially, statis-
tical expectations which occur in the MMSE representa-
rions are replaced by sample averages, so that when
D =N, all algorithms reduce to a full-rank least squares
algorithm,

Figure 5 shows error rate versus number of dimen-
sions for reduced-rank adaptive algorithms after training
with 200 symbols. In this ploc N =128, K =42, and the
recetved powers are log-nenmal with standard deviation 6
dB, which models received power variations with loose
power control, The background SNR is 10 dB3, The bir
crror rate P, is computed by assuming that the residual in-
tecterence plus noise at the output of the filter is Gaussian.
Results are averaged over random spreading codes, de-
lays, and powers. Curves are shown for the following al-
gorithms: adaptive MSWE, cross-speceral (CS), and the
matched fileer (M), In addition three curves are shown
for partial despreading with ditferent adaptive estimation
metheods for the combining coctficients: stochastic gradi-
cnr {SG-PD), least squares (LS-1D), and MMSIE
{MMSE-PD). The principal components algorithm per-
forms weorse than the cross-specteal method and the cor-
responding results are omitted from this plot.

Figure & shows thar the "id'lpthL reduced-rank rech-
niques generally achieve optumrm performance when
D < N. Namely, when 13 is large, insufficient training
data is available to obtain accurate cstimates of the filrer
coefficients, whereas for small D, che filrer has insuffi-
cient degrees of freedom with which to suppress interfer-
ence. The minimum error rate for the MSWE algorichm
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For the reverse link of a cellular net-
work, the objective is to demaodulate
all users in the corresponding cell in
the presence of other-cell interference, noise, and chatinel
and receiver impairments, In this section, we disenss non-
lincar decision-feedback receivers for the reverse link
which combine multiuser detection of intra-cell users
with interference suppression of other-cell wsers, These
techniques ave not appropriace for the forward link of a
cellular system, since the objective there is to demodulate
asinglz user in the presence of interference due to simulta-
neous transmissions to other users (both inside and out-
side the cell of interest), noise, and other irapairments,

("ons(.quc,ntly for the forward link, the interference sup-

pression rechniques previously discussed are appropriaie,
rather than multivser detection,

Spectral Efficiency (Bits/Chip)

0o 2 4 6 8 10 12 14 1§
Eb/NO (dB)

A 7. Spectraf efficiency versus £, / N, for multiuser receivers in
synchronous COMA with load K /W -1,
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Fundamental Limits
To understand the potential benefits of nonlinear
multiuser detection for the reverse link, we fitst present
some fundamental limits on the performance associated
with lincar and nonlincar receivers. The large-system
Shannon capacity for synchronous COMA with random
spreading, additive white Gauvssian noisc, and optimal
{maximum-likelihood) detection was evaluated in [47]
and [48]. The sm capacity, or capacity summed over all
users, is compured, assuming single-user coders and de-
coders. The “channe!™ in this analysis consists of the com-
bined synchronous CDMA channel and receiver filter
which produces soft outputs. The soft outputs are passed
1o the single-user decoders. As explained, large-system
analysis lets K and N rend to infinity with tixed K/ N.
Lincar receivers arc also consideted in (48], and the ex-
tension to multivser decision-feedback receivers has been
presented in [52]-[54].

Figures 6 and 7 show spectral efficiency versus load
K/ N and speetral efficiency versus £, / N, for the
matched filter, the linear MMSE fileer, and the MMSE
DFD to be described. n the former plot, £, / N, =10
dB, and inthe latter plot, K / N = L. These plots were gen-
erated using the results in [48], (53], and {54]. Spectral
efficiency refers o the gata! mumber of bits per chip,
summed over all users, which can be reliably transmitted.
Also shown is the analogous curve corresponding to or-
thogonal multiple aceess, The latrer corresponds w the
single-user bound since there is no MAL An important
property of the MMSE decision-feedback detector
(131D}, to be described, is that it achicves the same sum
capacity as the oprmal multiuser receiver |52].

These results indicate that:

A The lincar MMSE detector is nearly optimal for a wide
range of loads (& N < 70%).

A Ac very high loads, and with sufficient K, / N, the
MMSY: decision-feedback receiver ofters a

niques enable a significant powcr savings relative to lincar
techniques.

MMSE Multiuser Decision-Feedback Detection
Multiuser decision-feedback for DS-CDMA was first
proposed in [55] and [56] and was motivated by caclicr
worlk on multichanuel {mult-input/multi-output) dect-
sion-feedback equalizers [571-|59]. "L'o simplity the pre-
sentation, for now we assume synchronous CDMA with
an ideal (AWGN) channel, and defer the extension to
asynchronous CDMA with multpath uncil later in this
section. Figure 8 shows a block diagram of a multiuser
DYD for synchronous CDMA, The input to the decision
device at time £ is
yli]=H"e[] - B bl (22)
where rfi]isthe N x 1 received vector of chip matched-fil-
ter outputs corresponding to symbol 4, and bl#] is the
K x 1 vecror of decisions at the output of the decision de-
vice, The feedforward marrix F is Nx K, and the
teedback marrix Bis K x K and is typically constrained to
have zeros along the diagonal to avoid cancelling the de-
sired symbols,

Dicterminationof the matrices Eand B depends o the
congtraints and cost criterion. Namely, a lower diagonal
matrix B corresponds to successive decision-feedback,
whereas a (ull B, excepr for the diagonal, corresponds to
parallel decision-feedbacl, In the former case {Succes-
stve-, or §-DED), the users are demodulated suceessively,
ideally in order of decreasing power, In this way for cach
uscr, only interference from stronger users is cancelled,
L'or the parallel-decision feedback detecror (P-121°13); all
decisions are fed back simultaneously so that the tnitial
tentative estimates b st be obtained without caneella-

significant performance improvement rela-
tive to the linear MMSI: receiver,

) ———+ .

A The capacity of DS-CIDMA with the

MMSE-DIEDY (equivalenty, maximum-like-
lihood detection] is close to the capacity of
an orthogonal multipte access scheme,

A 'The speetral efficiency of the matched fil-
ter reaches an asymptotic limit as
E, | N, — e, whereas the specteal efficien-

Feedrorward- Estimate
Filter -+ Symbols 3{9
~ F
Faadback
Fitet
B

cies of the lincar and MMSE-DFD
multinser detectors increase without bound.,

A 8, Multiuser decision-feedback detector for synchronots COMA.

We conclude that for low to moderate
loads and power constraints (4, / N,J,
linecar MMSE detection can achieve most

Hfiy—

Lineaf
MMSE
Flier

Error Estimate "
Whitenlng or Symbols - b{i}
Interpolation
hid Flter L

of the available gain due to mulduser de-
tecrion. Given suficient power (£, / N},
however, significantly higher specreal effi-
ciencies are achievable with nonlinear
techniques. Conversely, at very high spec-

tral efficiencies and loads, noalinear tech-
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A 9 Multiuser decision-feedback detector with error whitening or interpolation fifter,
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Significant progress has been
made during the past decade in
overcoming obstacles which
have prevented the introduction
of multiuser detection in
commercial CDMA systems.

tion (e.g., from alinear MMSE receiver). OF course, this
procedure can be iterated.

Subject to the preceding constraints on B, the matrices
F and B can be sclecred to minimize the MSE

M=E{|b-y*} (23)

where b[7] is the vector of transmitted symbols ar time 2,
Performing this minimization, assuming perfect feed-
back (b=b), gives the filter structure shown in Fig, 9.
Namely, the feedforward filter has the form F=W_ L,
where W, is the lincar MMSE filter, and L depends on
the constraints on B, Namcly, for the 5-DFD, Lis an er-
ror whitening filter (sce [60], [61, Sec, 7.5]}, whereas for
the P-DFD, the columns of L can be interpreted as error
interpolation filters [62].

With perfect feedback it is casily shown that the
MMSE feedback filter perfectly cancels interference from
the associated users. Consequently, the feedforward fileer
for user 4 turns out to be the lincar MMSE filter for that
user with the “cancelled™ nsers remaved, This implies that
tor an isolated cell, F for the MMSE P-DI) consists ofa
bank of matched filters, and B is the cross-carrelation ma-
wix. In other words, the MMSE P-DVID for an isolated
cell reduces to the convendanal interference canceller
proposed and analyzed in [63], [60], and [64]. We also
renark that other cost criteria give a structure anatogous
to thar shown in Fig. 9. For example, the feedforward fil-
ter for the zero-forcing, or decorrelating DFI consists of
the zero-forcing linear filter (decorrelator) foilowed by an
crror whitening or errer interpolation filker. Finally,
other related DED structures have been considered in
[65]-[67].

To summarize, the MMSL DFD has the attractive
property that the feedforward filter suppresses other-cell
interference, while the feedback filter cancels intra-cell in-
terference, Furthermore, it does not require remodulation
for interference cancellation. The main drawback of the
DFIDY is error propagation, which can signiticantly com-
pramise performance at high error rates,

Adaptive Decision-Feedback Detection

In analogy with linear interference suppression, with
short (repeated) spreading codes, the MMSE filters Fand
B can be cstimated given ouly a training sequence.

S8 IEEE 5IGNAL PROCESSING MAGAZINE

Knowledge of spreading codes is not required. Adaptive
least squares and stochastic gradient algorithins for ac-
complishing this have been presented in [687-[70]. Bx-
amples of convergence curves, taken from [70], arc
shown in Fig. 10. The fitrers are trained with the number
of bits shown. The bit error raze (RER) is then measured
over an additional 150 bits, and the results are averaged
aver many runs. Afthough the DFDs require more sam-
pics to train than the lincar receiver, the asymptotic bic er-
ror rate is lower. These results take into account crror
propagation and assume three-path Rayleigh fading. In
the absence of ervor propagation, the asymptotic perfor-
mance tor the P-DED is the single-user bound.

It the receiver has knowledge of spreading codes of the
intea-cell users, as would be expected at the base station,
then the DED filters can be computed directly using this
information. This approach is combined with channel es-
timation in | 71| to estimate 8-DEFD filrees in the presence
of multipath, An advantage of this approach, relative to
the training-based approach, is that fewer data may be
needed to obtain aceurate estimates of the DD filers, A
disadvantage is that other-cell interference is treated as
background noisc and is theretore not suppressed. In
general, we observe thar any of the adaptive techniques
discussed earlier for the linear receiver can also be applied
to a DED, where any necessary side information must be
provided for a/f vsers to be demodulated.

Asynchronous COMA with Multipath

A requirement of the IDELY is that the observation win-
dow and sampling times must be the samc for all demod-
ulated users. This is in contrast with linear receivers in
which the timing can be adjusted separarely for each uscr.
§till, asynchronous CDMA can be accommodated by ex-
panding the window of abservation to include multiple
received symbols. Of course, the received vector corve-
sponding to cach desired uscr must be contained within
this interval. If the received signals are chip-asynchron-
ous, then the different timing offsets across users be-
comes an issue. However, in principle, rhis can be solved
with fractional chip sampling combined with some excess
bandwidth (i.e., see |72] and [73]).

In analogy with the lincar MMSE receiver, the MMSE
DED filters for asynchronous CDOMA arc IIR, cven inthe
absence of multipath. Consequently, we must represent
the filters as Bzyand B(z), each of which has a matrix im-
pulsc response, For the general case with multiparh, the
MMSE solution for B(z) and RB{z) can be inforred from
the results in [59]. Namely, the matrix transfer functions
are determined by a spectral factorization of the cquiva-
lent multi-input/multi-output channel response,

For adaptive estimation it is convenient to approxi-
mate B(z) and B(z) as FIR f{ilters. In the absence of
multpath, near MMSE performance is generally atrain-
ableifthe filters span three symbol intervals. This remains
truc when multipath is present, provided that the delay
spread is small relative to the symbol interval, Of course,
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if the muitipathss spans multiplesymbols, then
more memory is requived in the DFD to
equalize the multi-channel mtusymhol in-
terference. The Jatter situation may avisc for
high dara rate services, which usc a relarively
small processing gain.

A simple approach to estimating the FTR
DD filrers adaprively is described in {70, If
the filters span three symbel intervals, then
the reccived vector T[4] is formed by stacking
e[i-1],x[d], and r[i+1]. The sequence of
stacked vectors {¥]#]} is then the input ta an
embedded DFD, whu:h has the INX K
feedforward matrix F. The ourput of Fis
stacked in a similar way, and is used ro com-
pute the 3K x K feedback matrix B. Of
course, increasing the dimension of the fil-

BER

w——= Lingar LS
&--—a | § 8-DFD {Strongost Usar)

*——= | § S-OFD (Waakest Usar) |
e—=o |5 P DFD

ters in this way means that many more coefti- 0

cients must be estimated.

A [ - BRI U | sl 'I'I:. 1 S -
&0 100 180 200 260 300 350 400 450 500

Number of Training Bits

A 10, Bit error rate versus number of training iterations for adaptive multiuser

Coded Performance

The results in Figs, 6 and 7 apply to a coded
system and assumes an S-DYD witl succes-
sive decoding | 52]. There is relatively little work so far on
the performance of MMSL! DFDs with actual codes, al-
though some results are presented in [62], [ 707, Those
results indicate that the S-DIFD can offer a substantial
gain in performance relative o a lincar receiver provided
that the users vary substanrially in power. For example, in
third-generation systems, received power is proportional
to rafc, This causes a significant power imbalance which
an 8-DED can exploit,

Conclusions

Significant progress has been made during the past de-
cade in overcoming obstacles which have prevented so far
the introduction of multiuser detection in commercial
CIMA systems, The use of short codes, in patticular, en-
ables adaptive solutions that requive little side informa-
tion. We have indicated how these solutions can he
extended te exploic multipath diversity even without
rraining or explicit channel estimares. Convergence and
tracking seill remain issues in the presence of bursty incer-
ference and maoderare to fast fade rates. Reduced-rank
methods may be usetul in these sicuations, and cthis obser-
vation is stimulating work along these lines. Vinally, we
have disenssed multiuser decision-feedback techpiques,
which can also be made adaptive with shorr codes and can
offer signiticant benefits relative to lincar receivers.

Of cowse, significant challenges still remain, and
multivser detection continues to be an active area of re-
search. The topics discussed in this article represent a sub-
set of topics within multiuser detection which are
currently being scudied by many investigatars. In particu-
lar, we have not discussed many pracrical issues with re-
ceiver designand M1, Additional issucs, sucl as the role
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DFPs. The processing gain N =8, there are four asynchronous users, and
E./N,=6dB. The channel for each user consists of three Rayleigh fading
paths (power profile [0 dB, -2 dB, -4 dB]).

M1 can play in the support of inregrated services with
difterent information rate and quality of service require-
ments, arc just emerging,
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