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Optimization of Signal Sets for Partial-Response 
Channels-Part I: Numerical Techniques 
Michael L. Honig, Member, IEEE, Kenneth Steiglitz, Fellow, IEEE, and Stephen A. Norman 

Abstract -Given a linear, time-invariant, discrete-time chan- 
nel, the problem of constructing N input signals of finite length 
K that maximize minimum 1, distance between pairs of outputs 
is considered. Two constraints on the input signals a re  consid- 
e r e d  a power constraint on each of the N inputs (hard con- 
straint) and  an  average power constraint over the entire set of 
inputs (soft constraint). The hard constraint problem is equiva- 
lent to packing N points in a n  ellipsoid in min ( K ,  N - 1) 
dimensions to maximize the minimum Euclidean distance be- 
tween pairs of points. Gradient-based numerical algorithms and 
a constructive technique based on dense lattices a re  used to find 
locally optimal solutions to the preceding signal design prob- 
lems. Numerical results, consisting of minimum distance vs. 
input length for different information rates, a re  given for the 
son constraint problem. The channels considered a re  the iden- 
tity channel, the 1 - D channel, and  the 1 - D 2  channel. Signal 
constellations found via gradient search a re  superior to the 
multidimensional lattice constructions when the number of 
points per dimension is small (i.e., when the information rate is 
1 b i t / T  or  less, 1/T being the symbol rate). The average 
spectra of optimized signal sets is examined. I t  is shown that 
transmitted energy is concentrated into frequency bands where 
the channel attenuation is relatively small. The measure of this 
frequency band increases with information rate. I t  is observed 
that the average spectrum of a signal set is primarily deter- 
mined by the shape, or boundary, of the signal constellation, 
assuming the points a re  uniformly distributed throughout this 
region. Two numerical examples a re  shown for which the aver- 
age spectrum of an  optimized signal set resembles the water 
pouring spectrum that achieves Shannon capacity, assuming 
additive white Gaussian noise. 

Zrulex Terms -Coding, partial-response channels, intersymbol 
interference, multidimensional signal sets, lattices. 

I. INTRODUCTION 
IVEN A LINEAR, time-invariant, dispersive chan- G nel with additive white Gaussian noise, and a maxi- 

mum-likelihood receiver, a classical problem is to encode 
N messages into energy limited signals over a finite-time 
interval so as to minimize the probability of making a 
detection error. Unfortunately, this problem is quite diffi- 
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cult in general, and proving the optimality of any given 
signal set remains elusive even when.the channel is not 
dispersive. Rather than assume a complete statistical 
characterization of the channel, however, an alternative 
approach to signal design for digital communications is to 
assume that the receiver can distinguish between two 
channel outputs provided that they are separated by some 
minimum amount in a suitable metric space. Conversely, 
given a fixed number of messages, the channel inputs can 
be designed to maximize the minimum distance between 
any pair of outputs. Of course, if the noise in the system is 
known to be Gaussian, then the obvious choice of metric 
space is L ,  ( 1 ,  for discrete-time channels). 

Motivated by the application of high-speed data trans- 
mission over the telephone subscriber loop, we assume 
that it is very difficult, if not impossible, to characterize 
the statistical properties of the channel. This is due to the 
difficulty in building statistical models for impairments 
such as residual intersymbol interference (ISI), crosstalk, 
timing inaccuracy, VLSI nonlinearities, etc. We therefore 
model the discrete-time channel as a linear, shift-invariant 
system with given impulse response h[ k ] ,  or frequency 
response H(f), and assume that the receiver can distin- 
guish between any two channel outputs provided that they 
are separated by some constant d > 0 in a suitable metric 
space, say, I ,  in general. One interpretation of this as- 
sumption is that the channel and receiver add noise to the 
received signal, where the noise has unknown statistics, 
but is bounded in 1, norm by d /2 almost surely. Assum- 
ing that the channel inputs are time limited to [l, K ] ,  and 
that they are constrained in 1, norm, then this leads to 
the 1, / I p  signal design problem: Given N 2 2 and K ,  find 
N inputs, bounded in 1, norm, to maximize the minimum 
1, distance between channel outputs. 

As an example, if it is assumed that the receiver can 
distinguish two channel outputs separated in amplitude 
by d at some time k ,  and that the inputs are constrained 
in amplitude, then this leads to the lm/ lm signal design 
problem, which is considered in [l]. The implicit assump- 
tion there is that random disturbances to the received 
signal are bounded in amplitude. In this paper, we con- 
sider the 1, / 1 ,  problem, namely, we insist that all pairs 
of outputs be separated by at least d in 1, norm with an 
1, constraint on the inputs. Strictly speaking, the 1 2 / Z 2  
problem assumes that each input is bounded in 1,. A 
more common assumption, however, is that the average 1, 
norm over the entire signal set is bounded. The former 
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constraint will be referred to as the hard input constraint 
(HIC), and the latter will be referred to as the soft input 
constraint (SIC). As previously mentioned, these problems 
are closely related to coding for dispersive channels with 
additive Gaussian noise, although our approach is simply 
to assume that any additive noise is bounded in I, norm 
by d /2 almost surely. 

Designing power-limited discrete-time input signals to 
maximize minimum I, distance between pairs of channel 
outputs in the absence of noise, subject to various re- 
ceiver constraints, has been the topic of intensive research 
in recent years. This research includes the work on multi- 
dimensional lattice codes [3]-[5], trellis coding, as pro- 
posed by Ungerboeck [2], and the combination of these 
two schemes [4]-[7]. Much of this work assumes a nondis- 
persive (identity) channel; however, more recently there 
has been significant attention devoted to partial-response 
(PR) channels. References [81 and [91 discuss coding 
schemes in which nulls are created in the transmitted 
spectrum to more closely resemble the channel frequency 
response. In contrast, the problem of designing codes 
specifically for PR channels, or channels with ISI, is 
discussed in [lo]-[12]. Block coding combined with deci- 
sion feedback equalization for dispersive channels is stud- 
ied in [13]. In all of these cases an important figure of 
merit is minimum I, distance between pairs of channel 
outputs. 

For a given channel impulse response, h[.l, if we fix the 
number of messages N ,  and restrict the inputs to the time 
interval 11, K], an “optimal signal set,” or “optimal code,” 
is defined here to be a set of inputs u,[-1;..,uN[.] that 
maximizes the minimum I, distance between pairs of 
channel outputs. This paper studies the construction of 
such optimal codes. It is shown in the next section that for 
fixed number of messages N ,  time interval [ l ,K] ,  and 
assuming the HIC, the 1 2 / 1 2  signal design problem is 
equivalent to packing N points in an ellipsoid in 
min(K, N - 1) dimensions to maximize the minimum 
Euclidean distance between pairs of points. Each point 
.orresponds to a channel output in response to a code- 

word input, and the collection of points is referred to as 
the “output signal constellation.” The SIC problem has a 
similar geometric interpretation in which points, corre- 
sponding to channel outputs, are to be packed in Eu- 
clidean space subject to an average power constraint, 
which is transformed by the linear channel operator. In 
both cases the basis vectors for the Euclidean space are 
taken to be the eigenvectors of the linear channel opera- 
tor. These geometric interpretations are not entirely new. 
It has been shown in [14] and [15] that the analogous 
L ,  / L 2  problem for continuous-time channels is equiva- 
lent to packing points in an ellipsoid in Hilbert space. The 
geometric interpretation assuming the SIC can be in- 
ferred from discussions in [12]. 

Section I11 describes numerical techniques that are 
used to find approximate solutions to the preceding pack- 
ing problems assuming either the HIC or SIC. A heuristic 
construction technique based on cropping dense lattice 

packings is first described, followed by a description of 
gradient-based search techniques. Ascent directions in 
the latter case can be found by solving linear programs, 
assuming either the HIC or SIC. However, for the SIC 
problem we use an alternative algorithm that maximizes a 
continuous penalty function that approximates the mini- 
mum distance d. This penalty function is similar in form 
to the error criterion used in [16], where two-dimensional 
signal sets are optimized for the identity channel with 
additive white Gaussian noise. 

In Section IV, numerical results, consisting of minimum 
distance vs. input length for different information rates, 
are given for the SIC problem. The channels considered 
are the identity channel, the 1 - D channel, and the 
1 - D2 channel. When the number of points per dimen- 
sion becomes large, nearly optimal solutions (i.e., output 
signal constellations) can be obtained by cropping dense 
lattice packings by ellipsoids. There are two sources of 
degrees of freedom in cropping lattice packings: namely, 
the orientation of the lattice axes and origin with respect 
to the coordinate axes and origin. A simple search algo- 
rithm is used to find good choices for these degrees of 
freedom, and the resulting codes are compared with those 
of the gradient search algorithm for the SIC problem. The 
densest lattice packings are known for dimensions up to 
eight [3]. When the number of points per dimension is 
large the cropped lattice codes are typically better than 
codes found via gradient search for two reasons: first, 
because the gradient search penalty function differs from 
the true minimum distance, and second, because the 
gradient method finds local, but not necessarily global, 
optima. When the number of points per dimension is 
small, however, the gradient method generally produces 
the better solutions. 

The constructed codes have the effect of concentrating 
the transmitted signal energy into frequency bands where 
the channel has the least attenuation. It is shown in 
Section 5 that if the signal constellation at the channel 
output has uniform density, that is, the points are uni- 
formly distributed within the output region determined by 
the input constraint and are equally likely, then for large 
information rates the average spectrum of the corre- 
sponding input signal set is approximately constant over a 
subset of the channel bandwidth. This type of transmitted 
spectrum has appeared in different, but related, contexts. 
Specifically, Price 1171 has shown that if the channel is 
followed by additive white Gaussian noise, then the trans- 
mitted spectrum that maximizes the signal-to-noise ratio 
at the output of a decision-feedback equalizer is a con- 
stant over a subset of the channel bandwidth, assuming 
no error propagation. This subset is again where the 
channel has the least attenuation. The average spectra for 
two optimized constellations are shown in Section V. 
Similar transmitted spectra have also been observed in 
systems that use vector coding, as proposed in [12]. 

Part I1 of this paper [181 investigates the minimum 
distance between outputs, or coding gain, of optimal 
codes as K +W.  

- ~~ 
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11. PRELIMINARIES 
Let h[ k], k = 0,1,. * . , T - 1, be the discrete-time, real- 

valued impulse response of the channel, so that if u[k] is 
an input, then the output at time m is 

m 

y[m]=  u[k]h[m-k] .  (2.1) 
k = O  

It is assumed throughout this paper that h[k]= 0 for 
k < O  and k > ~ - l ,  and that Ih[kll<co, k = O , - . . , ~ - l .  
Given a set of inputs, or “codewords” u,[kl, i = 1; * ., N ,  
defined for k = 1 , .  . . , K ,  then the minimum distance be- 
tween pairs of outputs is defined as 

d =  minIIy,[.I- Y,[’lII, (2.2) 
1 ‘ 1  

where the norm is the 1, (Euclidean) norm evaluated over 
the time interval [ l ,  K + T - 11, and y, is the output corre- 
sponding to the input U,. 

Two constraints on the input signals are considered: a 
power constraint on each input (hard input constraint , or 
HIC), 

K 

I I U , [ * ] ~ ~ ~ =  u f [ k ] ~ P K ,  f o r e a c h i = l ; . - , N  
k = l  

(2.3a) 

and an average power constraint (soft input constraint, or 
SIC), 

I N K  

where P is the transmitted power. Defining vectors of 
channel inputs and outputs as 

4 = [ u,[lI,u,[21,. * . , u , [Kl ]  (2.4a) 
and 

Y:= [Y,[lI,Y,[21 ,. . . ,Y,[K+T--11], (2.4b) 

respectively, where “’” denotes transpose, then (2.1) can 
be rewritten as 

Y, = Hu,, (2.5) 
where H is the appropriate ( K  + T - l ) X  K convolution 
matrix. The squared minimum distance is therefore 

d2 = min 11 H (  U ,  - U,) 1 1 2  
= min (U, - u,)’H’H( U, - U,). (2.6) 

, # I  

Now H’H is real, symmetric, and Toeplitz, and can 
therefore be factored as 

H’H = @A@’, a’ = a-’, (2.7) 
where @ is the K X K orthonormal matrix whose columns 
are eigenvectors of H‘H (also referred to as the “channel 
eigenvectors”), and 

A = diag[ A , ,  A,,.  . . , AK], (2.8) 

where A,,  i = 1,.  . ., K are the real, nonnegative eigenval- 
ues of H’H arranged in nonincreasing order. Note that @ 
and the AI’s  are functions of K ,  the time index. If H’H is 
singular, so that some of the eigenvalues are zero, then 
we must project all signal vectors onto the subspace of RK 
spanned by the eigenvectors of H‘H corresponding to 
nonzero eigenvalues. This is simply accomplished by dis- 
carding the eigenvectors corresponding to the zero eigen- 
values. Consequently, throughout the rest of this paper 
we assume that H’H is nonsingular with strictly positive 
eigenvalues. Letting El, = @’U,, then 

llC,Il2 = U : @ @ U ,  = 1 1 ~ , 1 1 2 ,  (2.9) 
since @ is orthonormal. The signal set {U,} therefore 
satisfies the HIC (SIC) constraint, if and only if the 
transformed signal set { E l , }  satisfies the HIC (SIC) con- 
strain t. 

Assuming the HIC, fixing the number of inputs N, and 
the time interval [ l ,K] ,  the 1 2 / 1 ,  signal design problem 
can be written as 

subject to llElil12 I PK, i = 1; * .  , N .  (PI )  

The inputs Eli are therefore points in RK that lie within 
the sphere with radius m, and the objective is to 
maximize the minimum distance between pairs of points 
with respect to the Euclidean metric “warped” by A. 
Letting j i  = A’Y2Eli, then we can rewrite the 1, / 1 2  signal 
design problem as 

subject to llA-1/2j,l12 I P K ,  i = 1;. . 7N. (P2) 

The points j ,  lie inside an ellipsoid in R K ,  and the 
objective is to maximize the minimum Euclidean distance 
between pairs of points. The axes of the ellipsoid are 
oriented along the eigenvectors of H’H. Any set of vec- 
tors j l ; .  * , j N  will be referred to as an “output signal 
constellation,’’ and a set of vectors E l 1 ; * * , E l N  will be 
referred to as an “input signal constellation.” 

Given an output signal constellation, the inputs to the 
channel are given by U, = @ A - ’ I 2 j l .  The constellation 
point j ,  can then be recovered from the channel output 
Y, by 

1 @’H’Y, 9 (2.10) j = A-1/2 

as shown in Fig. 1. The type of signal representation 
described here, in which the basis vectors used to define 
the channel inputs are the eigenvectors of H‘H,  is a 
discrete-time version of one first used by Holsinger [ 191 
and Gallager [20] for continuous-time channels. More 
recently, this signal representation has been proposed in 
[ l l ] ,  [12], and [21]. The preceding discussion shows that 
the 1 2 / 1 2  signal design problem leads directly to this 
representation. Because the eigenvectors of H’H become 
sinusoidal for large values of K (see [19] and the discus- 
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Fig. 1. Transmission of codeword. 

sion in Section VI, the signaling scheme shown in Fig. 1 is 
also closely related to multicarrier modulation [19], [221. 

Consider now an output constellation j l , -  * ., j ,  for 
which N 5 K ,  that is, the number of points is less than or 
equal to the number of dimensions. For discrete-time 
channels this assumption is rarely true for information 
rates of interest; however, for continuous-time channels 
the analogous signal points lie on the surface of an 
ellipsoid in Hilbert space [14], so that the number of 
dimensions is infinite. However, the output signal constel- 
lation spans an N - 1  dimensional hyperplane, and the 
intersection of this hyperplane with the original ellipsoid 
is an ellipsoid in RN-' .  Let E' denote this ellipsoid in 

, with axes having lengths pi/', . . . , p1N/! ,, listed in 
nonincreasing order, and let E denote the ellipsoid in RN 
with axes having lengths A'l/',.-.,A',/2. (For the time 
being, we assume that PK = 1.) 

[ w N -  1 

Theorem: 

which implies that if E' is rotated so that its axes corre- 
sponding to pl, -  * , p N - ,  are coincident with the axes of 
E corresponding to A,, .  . .,A,-,, respectively, then the 
resulting ellipsoid E satisfies E" c E. 

The proof is given in Appendix A. This theorem im- 
plies that any N-point constellation in the original ellip- 
soid in R K  can be rotated and translated to fit inside E,  
so that there always exists an optimal constellation that 
lies in E. If N I  K ,  then the 1, / I 2  signal design problem 
is equivalent to packing N points in E to maximize the 
minimum Euclidean distance between pairs of points. Of 
course, N = 2RK for fixed information rate R, so that the 
number of dimensions spanned by an optimal signal set 
grows as O(1ogN). We shall see in Section IV that for 
most PR channels, and for fixed R,  the number of dimen- 
sions spanned by an optimal signal set grows as P K ,  
where 0 < p < 1. This is also true of the continuous-time 
L 2 / L ,  problem considered in [141. That is, although the 
N points can span at most N - 1 dimensions in this case, 
the number of dimensions spanned by an optimal signal 
set grows as O(p log, N). 

If the SIC (2.3b) is assumed then the constraint in (P2) 
becomes 

Section IV indicate that when the density of points is 
relatively large (i.e., at least 2 bits/symbol), the optimal 
output signal constellation approaches a uniform dense 
lattice cropped by an ellipsoid. The corresponding rotated 
inputs iil; . ., S, lie within a sphere in R N ,  but the density 
of points along the ith dimension is ( A i / A 1 ) ' I 2  times the 
density of points along the first dimension (that is, the 
dimension spanned by the eigenvector corresponding to 
the largest eigenvalue). The fact that optimal signal sets 
lie inside a sphere has been observed for the identity 
channel [4], and is due to the fact that the sphere has the 
least average energy per unit volume of any region. The 
situation for PR channels is the same because for an 
optimal n-dimensional input signal constellation, the den- 
sity of points in R" can be assumed to be constant, even 
though the densities with respect to each axis are gener- 
ally different. 

111. SEARCHING FOR OPTIMAL SIGNAL SETS 
A. Construction of Signal Sets From Lattices 

Consider first problem (P2) when the information rate, 
or number of points per dimension, is large ( R  2 2 bits/ T 
where 1 / T  is the symbol rate). Since we will later show 
that the optimal signal set consisting of N = 2RK points 
may not span all K dimensions, we will denote the 
number of dimensions as n,  where n I K .  It is plausible 
that the optimal packing of a finite number of points must 
approach in some sense an optimally dense packing in R". 
This suggests the idea of constructing a finite-length sig- 
nal set by selecting a piece of a dense infinite lattice near 
the origin. In this section we describe an algorithm for 
doing this, assuming the SIC. 

The densest lattice packings of infinite extent are known 
for dimensions up to dimension n = 8 [3]. For n = 2, the 
result is the familiar hexagonal lattice, denoted as A, ,  
and for 3 < n < 5 the densest lattices are the checkerboard 
lattice defined by 

0,=((x1,...,x,)~Znlxl+ +x, iseven}, (3.la) 

where 2" is the fundamental lattice of integers. We will 
be searching for good finite croppings, and for this pur- 
pose we may also want to allow a displacement of this 
lattice so that a point appears at the origin. We therefore 
introduce a parameter 7 E (0,l) in the definition of 0, as 
follows: 

0, = { ( x 1, . . . , x, ) E zn I x , + . + x, + 7 is even}. 
(3.lb) 

so that some points in the output constellation may lie 
outside of the ellipsoid with axes having lengths We call 7 the parity of the lattice, and speak of the even 
(PKAl)1/2,* .,(PKA,-,)'/*. Nevertheless, the results in (odd)  checkerboard lattice when 7 = O(1). The only dif- 
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ference between A ,  and D ,  is a scale factor of fi in one 
dimension. 

The construction proceeds as follows. We first select a 
finite section of D,, ( A ,  if n =  2), called the field, to 
represent points 5 in the output space. These points are 
densely packed with respect to a minimum distance crite- 
rion, as desired in (P2). We then map these points back to 
points z’i in the input space, where we are interested in 
minimizing average power. We sort those points with 
respect to distance from the origin, and take the first n of 
them for an N-point signal set. The algorithm is thus a 
“greedy” one. We can view this as minimizing input 
power for fixed minimum distance d. 

The results of this strategy depend on the parity, the 
exact size of the field, and the orientation of the axes with 
respect to the fundamental lattice. In the final algorithm 
we therefore search over these parameters, to the extent 
allowed by our time budget. For a small number of 
dimensions n we can afford to do a much more thorough 
search than for larger n. 

The final algorithm contains some heuristic features 
arrived at through trial and error. The parity, the size of 
the field k, ,  and the angles O j ,  j = 1; * ,  n - 1, are param- 
eters searched over in an outside loop. 

by another function, called the potential function, which is 
smooth, but which can be made to approximate the true 
cost function. This technique has been used in other 
applications, such as digital filter design [23]. In this case 
we can use the function 

where W is a weight, large enough so that f is an 
accurate approximation to d2,  but small enough so that f 
is sufficiently well behaved to allow a gradient search 
algorithm to converge. Note that f .+ d 2  as W -+ m. Good 
values of W must be found by trial and error; typically 
W = 20 was found to be effective in the smaller problems 
considered in this paper (i.e., N I  32). If the same value 
of W is used in larger problems, however, the potential 
function becomes a less accurate approximation to d. 
This is because f depends on the number of nearest- 
neighbors to each point. As N and n increase, the num- 
ber of nearest-neighbors increases, and the function f 
deviates more from d. Consequently, larger values of W ,  
i.e., W > 50, were typically used in larger problems. This 
potential function is nearly identical to the probability of 
error criterion in [16], which was used to optimize two- 
dimensional signal sets in the case of a nondispersive 
channel with additive white Gaussian noise. The primary 
difference between f in (3.2) and the error criterion in 
[16] is the presence of the matrix A in (3.2). This matrix 
would also appear in the error criterion used in [161 if the 
noise were correlated with covariance matrix ( H ’ H ) - ’ .  

One optimization algorithm, which was implemented, 
picked a random starting point U on the unit sphere, and 
then minimized the function 

a> Generate the field Fp of points 5; where each coor- 

b) Move FF to its centroid. 
c) Rotate Fp by O 1  in the 1 - 2 plane, by 0, in the 2 - 3 

plane, and so on, up to e,, - in the ( n  - 1) - n plane. 
d) Map the result back to a field Ffi in the input 

constellation space by the transformation z’i = 

A-  1/25. 

dinate satisfies - k ,  I f [ k ]  5 k, .  

e) Select the N points closed to the origin. 
f) Move the resulting input signal constellation to its 

Numerical results will be presented in Section IV, and 
compared with the results of a gradient search algorithm, 
described next. 

B. Construction of Signal Sets by Gradient Search 

U + aVf 
(3.3) centroid and normalize to unit average power. g ( a )  = f ( IIU + uvfll) 

with respect to the positive step-size a. This is the cost f 
of the point obtained by moving in the gradient direction 
and projecting on to the unit sphere. Such iterative one- 
dimensional optimization is encountered frequently in 
nonlinear optimization algorithms, and it is important to 

The problem of finding an optimal signal set is a 
nonlinear optimization problem that we can attempt to 
solve numerically. We will view the problem in the space 
of possible input signal constellations, formulated as (P1) 
in the last section, but assuming the SIC. With N points 
in n dimensions, the unknown vector, denoted as U,  is 
N .  n-dimensional, and the average power constraint means 
that allowable solutions must lie on the unit sphere in 
N.  n -space. 

The major difficulty with this approach is caused by the 
fact that the cost function is of the form max-min, and is 
therefore not differentiable. A standard method which 
allows us to apply gradient search is to replace the true 
cost criterion 

d 2  = min I( A’/*( iii - 
i # j  

balance its precision: it should be done accurately enough 
to increase the cost effectively, but not so accurately as to 
waste time working on a cost that is only approximate. As 
in the construction algorithm described in the previous 
section, some trial and error was necessary to arrive at a 
useful heuristic. A one-dimensional search for a was used 
that shrunk the step-size until an improvement was found, 
and then expanded it (more slowly than it was shrunk) as 
much as possible. 

Another, simpler, gradient search strategy is to take 
one step at each iteration, and then recompute the gradi- 
ent. The step-size, a,  is adjusted adaptively at each itera- 
tion, based on how much the potential function increases 
(or decreases). This approach is faster than optimizing 
over a at each iteration; however, convergence to a sta- 
tionary point, as will be described shortly, is sometimes 
harder to achieve with this method. 
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Finally, another strategy for gradient search uses a 
linear programming subproblem to find an optimal ascent 
direction. This was implemented also, and worked well 
for small problems. The memory requirements for large 
problems were excessive, so this algorithm was used only 
for checking results on smaller problems. The idea is to 
move the vector U along a direction in the plane tangent 
to the unit sphere, so that the smallest rate of change of 
distance from each constellation point to its nearest 
neighbors is as large as possible. This rate of change is, 
for a constellation point C k ,  a nearest neighbor C, of i i k ,  

and a direction vector g, in the tangent plane, 

Since g, is in the tangent plane, &C, = 0, so the condi- 
tions just described lead to the following linear program: 

subject to 
max C (LP) 

I g, 3, I 5 1, m = 1, .  . . , K ,  
where k = 1,. . ., K ,  and J, is the set of indices associated 
with the nearest neighbors of C k .  The variables in (LP) 
are C and g,. The last constraint on the components of 
g, is added to bound C. Without this constraint any gk 
and C that satisfy the remaining constraints can be scaled 
by any positive constant. This is to be expected, since it is 
only the direction of gk that is desired. The norm of g, is 
irrelevant. 

The convergence criterion for all gradient search algo- 
rithms described was to stop when sin28 was sufficiently 
small, where 8 is the angle between Vf and U. The angle 
8 is zero when U and Vf are colinear; that is, when the 
gradient is normal to the spherical constraint surface. 
Explicitly, 8 is determined by 

sin28=1-cos2e=1-(lUlVfI/(IIUII.IIVf11))2. (3.5) 
An alternative characterization of a good signal set is 

obtained by defining the Lagrangian 

\ , = 1  I 
where p' is the Lagrange multiplier, and setting V L  = 0. 
Subsequently taking the limit as W -+ CC gives the follow- 
ing condition, 

( C , - C k ) = p A - ' C I ,  i = l , . . . , N ,  (3.7) 
k E J, 

where p is a constant, and J, is the set of indexes 
corresponding to nearest-neighbors of C, . This condition 
has also been observed in [161 for the case R = I ,  the 
identity matrix. The geometric interpretation is that for 
fixed C,, the sum of the vectors from nearest-neighbor 
points to C, is colinear with A-lC,. We point out that the 
condition (3.7) is not a necessary condition for local 
optimality of a signal set, in the sense of problems (PO or 

(P2). This is because d is not a differentiable function of 
the Cl's .  One can easily construct an example for which 
(3.7) is not satisfied, yet the points cannot be moved to 
increase d locally. (Take A = Z and initially place six 
uniformly spaced points on a circle. Construct the constel- 
lation by moving one of the points to the center of the 
circle.) Nevertheless, because the potential function is a 
continuous approximation to d, the solutions found by 
the preceding gradient algorithms always satisfy (3.7) ap- 
proximately. 

In the preceding variations of gradient search, we can 
move all of the constellation points simultaneously, or one 
at a time. Generally, faster convergence was achieved by 
moving all of the points simultaneously. Although these 
methods can also be used to find signal sets assuming the 
HIC as well as the SIC, we will only present numerical 
results assuming the SIC. 

Gradient search algorithms lead to different local op- 
tima, depending on the initial condition. We, therefore, 
tried several random starting points, typically 10 or 20 for 
relatively small N and n. The best solution from among 
those was then refined further by a random search algo- 
rithm using the max-min distance cost criterion, rather 
than the potential function. The random search strategy 
was similar to simulated annealing: A large step size was 
used initially to find improvements, and after a given 
number of consecutive failures, the step size was shrunk, 
and this process continued until the step size fell below a 
prescribed value. The motivation for this procedure is 
that an approximate cost function can be used to find 
approximate locations of many local optima, and then 
more computer time can be invested in refining the best 
of those. 

As an example, consider packing 64 points in two 
dimensions for the 1 - D channel. Ten different random 
initial conditions led to ten different local optima, with 
minimum distances ranging from 0.420 to 0.430, assuming 
the average energy PK = 1. Random search applied to the 
solution with the latter value led to one with a minimum 
distance of 0.435. 

In the next section we present the results obtained 
when the algorithms in this and the preceding section 
were used to design sets. In cases where several variations 
of the gradient algorithms were used, we give the best 
result obtained. 

IV. SEARCH RESULTS 
For a given constellation the figure of merit used here 

is coding gain, which is defined as 

d 2 / P  
(4.1) CG=10logl, - ( d W S S )  

in dB where d,, and P,, are the minimum distance and 
average power assuming single-step detection. Single-step 
detection refers to one-dimensional, multilevel signaling 
in which the receiver makes a decision on a (scalar) 
transmitted symbol based on a single channel output. In 
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Fig. 2. (a) Best constructed input signal constellation, 16 points in two 
dimensions, 1 - D channel, minimum distance = 0.903 (3.10 dB gain). 
(b) Locally optimal constellation from gradient sekrch, 16 points in two 
dimensions, 1 - D channel, minimum distance = 0.877 (2.84 dB gain). 
Another local optimum essentially coincides with the solution shown in 
(a). 

this case the normalized distance between outputs is 

d:s 12a2 _ -  -- 

P,, 4 R - 1 ’  

where a is the ratio of the minimum distance between 
any two possible outputs at a particular time to the 
spacing between input levels. For the channels consid- 
ered, a = 1. 

The optimization problems considered in this paper are 
similar to many difficult combinatorial optimization prob- 
lems in that they typically have many different locally 
optimal solutions with associated cost very close to the 
global optimum. Fig. 2 illustrates this point for the case 
n = 2, N = 16, and the 1 - D channel. Fig. 2(a) shows the 
result of the construction algorithm (verified to be locally 
optimal), with d = 0.903, and Fig. 2(b) shows a local 
optimum obtained from the gradient algorithm, with d = 

0.877. Throughout this section, the numerical results for 
minimum distance assume that the average energy PK = 1. 

Note that both the construction and the gradient meth- 
ods produced signal sets with a lattice tilted with respect 
to the axes. The gradient method did so “automatically,” 
while the tilt in the lattice construction was the result of 
searching over a grid of possible angles. The search over 

angles is more important for cases with a small number of 
points per dimension, where conformation to a spherical 
envelope in the input space is more difficult, and the 
discrete clipping of the lattice is more significant. To 
illustrate the possible improvement, consider the case of 
optimizing 16 points in three dimensions for the 1 - D 
channel (this corresponds to an information rate of 1 
bit/ T with “padding”, which will be explained shortly). 
Without allowing rotations of the lattice, the construction 
procedure yielded d = 1.155 (1.25 dB gain relative to 
single-step detection). The corresponding result searching 
over 21 possibilities for two angles was d = 1.212 (1.67 dB 
gain). Note that this is still not as good as the result of 
gradient search, which yielded d = 1.235 (1.83 dB gain). 
In such examples with few points per dimension, the 
construction method is very likely to be outperformed by 
the gradient method, and when there are many points per 
dimension angle search offers little advantage (and is very 
expensive). Thus, while angle search may improve some of 
our gains slightly in intermediate cases, it is not critical. 

Tables 1-111 show minimum distance, assuming PK = 1, 
and coding gains, relative to single-step detection, for a 
range of cases for three different channels: the identity, 
1 - D ,  and 1 - D2 channels. Two sets of results are shown, 
one assuming the inputs are “padded” with r - 1 zeros, 
where r is the length of the impulse response, and one 
assuming that no additional zeros are appended to the 
input vectors. Zero padding is used to eliminate intersym- 
bo1 interference (ISI) between successive output vectors. 
That is, if the input vectors u l , *  “ , u N  are of length K ,  
then the corresponding outputs, y, , .  . ., y,, are of length 
K + 7 - 1 where T is the length of the impulse response. 
When this input signal set is used as a block code, then 
IS1 occurs between successive output vectors when r > 1. 
This IS1 is eliminated when each input vector is padded 
with 7 -1  zeros. Assuming this is the case, then the 
receiver can detect a sequence of transmitted K-vectors 
by examining successive channel output blocks of length 
K + 7 - 1, and in each case selecting the corresponding 
input that produces an output closest to the received 
vector in I,. If the input vectors are transmitted without 
padding, then a decision feedback equalizer (DFE) can be 
used at the receiver to remove the IS1 between successive 
output blocks, as proposed in [ill, [131, and [241. Combin- 
ing (4.1) and (4.2), the entries for coding gain are there- 
fore given by 

without padding, 
1010g, , [d2(K+r - l ) - (4R-1) /12]  

with padding, 

(4.3) 
where d is the corresponding entry for minimum distance 
in the tables. 

Consider a block coding scheme with padding at the 
information rate R. If the inputs are of length K ,  then 
each input codeword uses K + 7 - 1 time slots, so that the 
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TABLE I 
CODING GAIN (CG), IDENTITY CHANNEL 

2 bits/ T 1 bit/ T 1.5 bits/ T 
N / K  d CG N / K  d CG N / K  d CG 

*4/2 1.414 0.00 *8/2 0.963 0.34 *16/2 0.676 0.58 
8/3 1.228 0.53 :23/3 0.821 0.72 *64/3 0.585 1.08 

16/4 1.135 1.10 64/4 0.766 1.36 *256/4 0.544 1.71 
32/5 1.075 1.60 *181/5 0.719 1.78 #1024/5 0.507 2.06 

t64/6 0.984 1.62 
t128/7 0.944 1.93 
t256/8 0.900 2.10 

Minimum distance d ,  assuming PK = 1, and corresponding coding gain in dB for the identity channel. The “* ” 
indicates cases where the construction yielded results at least as good as the gradient search, “#” indicates that 
only a construction result is available, and “7” indicates that only a gradient result is available. 

TABLE I1 
CODING GAIN (CG), 1 - D CHANNEL 

Without Padding 

2 bits/ T 1 bit/ T 1.5 bits/ T 
’ N / K  d CG N / K  d CG N / K  d CG 

*4/2 2.000 3.01 *8/2 1.281 2.82 *16/2 0.903 3.10 
8/3 1.647 3.08 23/3 1.073 3.04 *64/3 0.743 3.16 

*32/5 1.389 3.82 *181/5 0.871 3.45 #1024/5 0.597 3.48 
t64/6 1.292 3.98 

t128/7 1.227 4.21 
1256/8 1.171 4.38 

16/4 1.480 3.40 *64/4 0.952 3.25 *256/4 0.664 3.43 

With Padding 

1 bit/ T 1.5 bits/ T 2 bits/ T 
N / K  d CG N / K  d CG N / k  d CG 

16/3 1.235 1.83 *64/3 0.743 1.10 *256/3 0.465 0.34 
32/4 1.179 2.40 *181/4 0.727 1.88 #1024/4 0.470 1.40 
64/5 1.120 2.74 #512/5 0.702 2.36 

*8/2 1.281 0.90 *23/2 0.746 -0.11 *64/2 0.444 -1.31 

t128/6 1.092 3.19 
t256/7 1.064 3.55 

Minimum distance d ,  assuming PK = 1, and corresponding coding gain in dB for the 1-D channel. The “* ” indicates 
cases where the construction yielded results at least as good as the gradient search, “#” indicates that only a 
construction result is available, and “t” indicates that only a gradient result is available. 

TABLE I11 
CODING GAIN (CG), 1 - D 2  CHANNEL 

Without Padding 

1.5 bits/ T 2 bits/ T 1 bit/ T 

*4/2 2.000 3.01 *8/2 1.362 3.35 *16/2 0.956 3.59 
8/3 1.712 3.42 23/3 1.130 3.49 *64/3 0.794 3.73 

16/4 1.516 3.61 *64/4 1.033 3.96 *256/4 0.716 4.09 
32/5 1.376 3.74 *181/5 0.931 4.03 #1024/5 0.650 4.22 

t64/6 1.291 3.98 
t128/7 1.224 4.19 
t256/8 1.156 4.27 

With Padding 
~ ~~ 

1 bit/ T 1.5 bits/ T 2 bits/ T 
N / K  d CG N / K  d CG N / K  d CG 

*16/2 0.956 -0.39 *64/2 0.476 -2.76 *256/2 0,238 -5.47 
*32/3 1.013 1.08 *181/3 0.559 -0.40 #lo2414 0.312 -2.16 
*64/4 1.033 2.04 #512/4 0.602 1.03 #4096/4 0.357 -0.19 

*128/5 1.000 2.43 
1256/6 0.966 2.71 

Minimum distance d ,  assuming PK = 1, and corresponding gain in dB for the 1-D2 channel. The “* ” indicates cases 
where the construction yielded results at least as good as the gradient search, “#” indicates that only a construction result 
is available, and “t” indicates that only a gradient result is available. 



number of points in the K-dimensional signal constella- 
tion is N = 2R(K+T-1). Since the number of points per 
dimension is larger with padding than without (by the 
factor 2R(T-1)), the coding gain of a K-dimensional signal 
set with padding is less than the corresponding coding 
gain without padding. This can be observed from the 
tables. 

Each entry in the Tables is the best result available. 
Unmarked entries correspond to cases where the gradient 
method is better than the construction method; entries 
marked "* " correspond to the reverse. Entries marked 
"#" correspond to cases that were too large to run for the 
gradient method, so only the construction result is avail- 
able. The construction method was run only for cases 
where the dimension n I 5, so that entries marked "t" 
correspond to cases where only the gradient result is 
available. Because of the computer time involved, the 
random search procedure mentioned in the last section 
was used only for the cases N 5 64. For the same reason 
the entries obtained via the gradient algorithm for N > 64 
are the best of only one or two runs. Generally, the 
gradient method out-performed the construction proce- 
dure only when the number of points per dimension was 
small. This is intuitively reasonable because it is in these 
cases that we would expect the optimal packing to deviate 
most from a lattice. We also note that more coding gain is 
obtained for the PR channels than for the identity chan- 
nel, as will be discussed in [MI. 

Each coding gain shown for the identity channel in 
Table I at the rate of 2 bits/T is 0.2 to 0.3 dB less than 
the corresponding coding gain shown in [4], which results 
from adding the coding gain of the densest known lattice 
in that dimension, relative to the integer lattice, to the 
corresponding shaping gain obtained by selecting the con- 
stellation points from within a sphere rather than a cube. 
The estimates in [41 also assume a continuous distribution 
of points within the boundary region, which is the limiting 
situation as R +W.  For dimensions n = 2, 3, 4 and 5, the 
estimated coding gains shown in [4] in dB are 0.82, 1.35, 
1.96, and 2.35, respectively. 

A. Discussion 

It is often the case that an optimized signal set does not 
use all dimensions available. That is, f i i [k ]  = 0 for each 
1 s i 1  N, and k > n ,  where n <  K.  For example, the 
256/8 signal sets for the identity and 1 - D channels 
represented in Tables I and I1 use seven of eight dimen- 
sions, and the 256/8, 1 -  D2 signal set uses six of eight 
dimensions. To see why this is the case, consider packing 
N points inside a K-dimensional ellipsoid with axes mA\/2, k = 1,. . a ,  K, and suppose that the optimal 
packing results in a minimum distance d .  Then we can 
surround each point by disjoint spheres of radius d/2. 
The volume of the set of disjoint spheres is approximately 
the volume of the ellipsoid, i.e., 

or 

(4.4) 

where y,r" is the volume of the n-dimensional sphere 
with radius r .  Since N = 2RK, 

For fixed d, (4.4) indicates that to maximize N ,  n 
should be the largest integer such that mA;I2 2 d /2. 
Now for a fixed rate R,  as K +w, d 2  for optimal signal 
sets increases linearly with K (see [14] and Section 4 of 
[18]). Consequently, as K + w, the number of dimensions, 
n,  is given approximately by the largest integer such that 

d 2  
n -  4K 

PA >-+Z2 ,  

where d is a constant that depends only on the channel 
and R. 

According to the Szego Theorem [25], as K +CO, the 
distribution of eigenvalues A,(K), k = 1,- . ., K, converges 
to the channel spectrum IH(f)I2 (see (5.6)), where 

T - 1  

(4.7) 
k = O  

This implies that as K +w, the fraction of eigenvalues 
that satisfy (4.61, i.e., n / K ,  converges to a_ constant p, 
where 0 I p 5 1. Furthermore, if IH(f)I2 < d 2 / P  for f in 
a set of positive measure, then p < 1, and n behaves as 
p K  < K for large K .  (The preceding argument can be_ 
made rigorous by using upper and lower bounds on d 
given in Section 4 of [MI; however, the details are 
straightforward and are omitted.) Since the normalized 
distance, Z, decreases monotonically as R increases, p 
increases with R ,  and is approximately the fraction of 
channel bandwidth used by optimal signal sets as K +w. 
This is investigated further in the next section.' 

The numerical techniques discussed in Section I11 are 
concerned only with finding solutions to the signal design 
problem (Pl), and ignore decoding complexity. Neverthe- 
less, because output signal constellations obtained from 
the construction technique presented in Section 111-A are 
taken from regular lattices, decoding these signal sets can 
proceed as in the case of the identity channel [3] after 
post-processing the channel outputs by A-'/'@'H',  as 
shown in Fig. 1. It may be worthwhile, however, to modify 
these constellations so as to enforce symmetries that 
reduce decoding complexity. The signal sets found by 
gradient search are not necessarily selected from a dense 
lattice; however, it is likely that these constellations ex- 

'A similar type of argument to the one just given is used in [12] to 
show that the optimal transmitted spectrum in vector coded systems 
generally occupies a proper subset of the available channel bandwidth. 
The subset of channel bandwidth used in vector coded systems will, 
however, be somewhat different than the subset of channel bandwidth 
used by optimal signal sets, as defined in the next section. 
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hibit sufficient structure to enable efficient decoding pro- 
cedures. 

As pointed out in [12], a trellis code can be defined 
with respect to an output signal constellation f l , .  . ., fN.  

The coding gain of the trellis code is then added to the 
coding gain of the signal constellation. A 16-state trellis 
code is proposed in [12] for the 1 - D channel at a rate of 
1 bit/T, and uses a padded input signal constellation 
corresponding to output points selected from the four- 
dimensional integer lattice. This code gives an overall 
gain of 5.86 dB relative to single-step detection, which is 
about 2.3 dB more gain than the 256/7 code shown in 
Table I. Of course, more coding gain than reported in the 
tables can be obtained by using longer block lengths. 
Results in [18] indicate that an optimal signal set of block 
length K = 10 ( N  = 2048 for R = 1 bit/ T with padding) is 
needed to achieve a 6 dB coding gain. However, practical 
issues, such as decoding complexity, are likely to favor the 
trellis coding approach. 

Of course, it is also possible to superimpose a trellis 
code on one of the optimized signal sets found in this 
section. Specifically, some of the smaller signal sets can 
be set-partitioned by inspection 121, and a trellis code 
constructed according to rules in [2]. This approach was 
tried for some examples, and was found to offer relatively 
little additional coding gain for the added complexity. 
This is consistent with previous results in the literature 
that state that trellis codes based on coset partitions of 
the multidimensional integer lattice often give more cod- 
ing gain than trellis codes of the same complexity, but 
which are based on cosets of a denser lattice 151, [261. 

V. TRANSMITTED SPECTRA 
As discussed in the last section, the optimized signal 

constellations have the property that more signal levels, 
or bits, are allocated to dimensions corresponding to 
larger eigenvalues. Furthermore, in many cases dimen- 
sions corresponding to the smallest eigenvalues are not 
used. This implies that as K -03, the spectrum of the 
transmitted signal is concentrated in frequency bands 
where the channel transfer function has the least attenua- 
tion. In this section we show that for fixed minimum 
distance d,  large information rate R (many bits/T), and 
large K ,  the transmitted spectrum associated with an 
optimized signal set is approximately given by 

where c is a constant determined by the input power 
constraint, and 

where K is a constant, and the average energy per signal 
point, PK, is normalized to one. The numerical examples 
considered in this section suggest that K = 2. For frequen- 
cies f such that d / 2  < IH(f)l< ~ d / 2 ,  S(f) makes a 

smooth transition between 0 and c. For large K ,  solutions 
to the 1 2 / 1 2  signal design problem therefore result in a 
transmitted spectrum which is approximately white over 
the frequency band F(f; K). 

The input power spectral density given by (5.1) is simi- 
lar to the input power spectral density obtained from 
“water pouring,” which achieves Shannon capacity for 
dispersive channels with additive Gaussian noise. Specifi- 
cally, assuming additive white Gaussian noise with spec- 
tral density No, the input power spectral density that 
achieves capacity is [20, Section 8.31 

where M is a constant chosen to satisfy the input average 
power constraint. As the information rate becomes large, 
the minimum distance d tends to zero, assuming fixed 
average energy. If the error exponent is a constant, then 
No is proportional to d2, and also tends to zero. Conse- 
quently, for large rates the water pouring spectrum (5.3) 
also becomes constant over the frequency band {f: IH(f)l 
% No}. This property has previously been noted by Price 
[171 (see also [271). 

Given the input signal set u l ; - . , u N  on the interval 
[ l ,  K ] ,  the Fourier series associated with the input U, is 

K 

f i l ( f )  = ~ ~ [ k ] e - ’ ~ ~ f ( ~ - l ) ,  (5.4) 
k = l  

and the average input spectrum is defined as 

1 N  
S( f )  = - Ifii( f ) I 2 ,  

i = l  

where f denotes normalized frequency (that is, the analog 
frequency times the symbol interval T). The transmitted 
signal is then obtained by concatenating a sequence of 
vectors chosen from the preceding signal set. Each vector 
is selected from successive RK source bits. Strictly speak- 
ing, this transmitted signal is nonstationary for K > 1. 
However, the preceding definition of average spectrum is 
the “short-term” spectrum of this transmitted signal within 
coded blocks, ignoring block-to-block edge effects. 

The average input spectrum for the signal sets obtained 
in Section IV must be computed numerically. However, 
the estimate (5.1) of average input spectrum for an opti- 
mized signal set is easily obtained as both the block length 
K and the information rate R become large. This esti- 
mate relies upon the following assumption, which is based 
on the results in Section IV. It is assumed that for 
moderate to large R (i.e., R 2 2 bits/T), the input signal 
constellation { f i i )  consists of points inside an n-sphere of 
radius r ,  where r is determined by the average power 
constraint, and are uniformly distributed in each dimen- 
sion, but the density of points along dimension i is 
( A i / A , ) 1 / 2  times the density of points along the dimen- 
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sion corresponding to A,. This implies that the output 
signal constellation 5,; . . , j N  consists of points uniformly 
distributed inside an ellipsoid with axes rA;l2,. . . , rA;12. 
The volume argument at the end of Section IV implies 
that the dimension n is approximately the largest integer 
such that rA;l2 2 d / 2 .  Note that the density of input 
points is a constant throughout the sphere of radius r 
even though the densities along each axis are different. 
Although we have not proved this assumption in general, 
we remark that a proof for the special case of n = K = 2 
and the identity channel appears in [16]. This proof is 
easily generalized so as to apply to PR channels with 
n = 2, resulting in the preceding assumption. 

Approximation (5.1) also depends upon the well-known 
fact that as the block length K +w, the columns of @, 
defined by (2.71, which are eigenvectors of H’H,  become 
sinusoidal functions. In other words, a sinusoidal input 
with frequency f o  to a linear system with transfer func- 
tion H ( f )  produces a sinusoidal output with frequency 
f,,; the corresponding eigenvalue is IH(fO)l2. Further- 
more, as K -+w, the frequencies of these sinusoids are 
uniformly distributed on the interval [ - 0.5,0.51, or equiv- 
alently, on the interval [0,0.5] since IH(f)l is an even 
function. More precisely, let N k ( a , p )  be the number of 
eigenvalues of H’H between a and p for fixed block 
length K .  The Szego theorem on the asymptotic distribu- 
tion of eigenvalues of a linear operator implies that [251 

1 
K - m  K 

=2meas{f:  a < I H ( f ) I 2 < p ,  O < f < 0 . 5 } ,  (5.6) 

lim -N,(a,p) 

where H ( f )  is defined by (4.7). As K +w, the A,’s 
therefore behave as uniformly distributed samples of the 
channel spectrum, so that the corresponding set of eigen- 
vectors can be approximated as sinusoids at uniformly 
distributed frequencies. (A definition of “approximate” 
eigenvalues and eigenvectors is given in [28].) It is shown 
in Appendix B that if the impulse response is of length 
two, then for any finite K it is precisely the case that 
A,(K)=IH[u, / (2K+2)]l2,  k = 1 ; . . , K ,  where uk ,k  = 
l ; - - , K ,  is the set of permuted indexes for which 
I H [  / ( 2  K + 2)]1, k = 1,. . . , K ,  is monotonically decreas- 
ing. The eigenvector corresponding to A, has components 
sin(.rra,m/(K + l)), m = 1;. ., K .  

Letting 41m = [@Ir,, then 

f i l ( f >  = 5 ( 5 4,, l i ,[m] e - 2 “ f ( l - 1 )  

)fib]. (5.7) 

I = 1  m = l  1 
- - .zl ( &41me-J2+l) 

K K  

Now the inner sum is the Fourier transform of the mth 
eigenvector of H’H, which is approximately sinusoidal 
with frequency f = U, / ( 2 K  + 2). If we consider f i L ( f )  
evaluated at the discrete frequencies f = k / ( 2 K  + 21, 
k = 1; . ., K ,  then for large K the inner sum can be 
approximated as the Kronecker delta Let a i ’ ,  
k = 1; e ,  K ,  denote the inverse permutation to de- 

fined previously, i.e., if k‘ = U,, then k = U;’. The u;lth 
eigenvector is therefore approximately sinusoidal with 
frequency k / ( 2  K + 2). For large K ,  we assume that 

k ”( 2 ( K + 1 ) )  = ii;[ U;’], 

, N .  (5.8) i = l , * - .  
If the impulse response has length T = 2, then because 
+ k m  = sin [(.rru,m)/(K + l )] ,  (5.8) becomes exact as 
K +w. 

Given that the Szego theorem specifies only the asymp- 
totic distribution of eigenvalues, and not the behavior of 
individual eigenvalues, we cannot expect (5.8) to be exact 
as K -+a, except when T = 2. However, we do expect that 
the components of 6 and fi[ k / ( 2  K + 2)1, k = 1, * * , K ,  
have the same distribution of values asymptotically. 
Specifically, for given positive real numbers a and p, let 
L,(a,P) be the nvmber of components k such that 
a I l f i[k]l< p, and L K ( a , p )  be the number of indexes k 
such that a I l f i [ k / ( 2 K  +2)]1< p. A weaker version of 
the anssumption (5.8) states that for U in an optimal signal 
set, L,  can be accurately approximated by L,  for large 
enough K .  This statement can be made more precise by 
using the notion of approximate eigenvalues and eigen- 
vectors introduced in [281. 

Combining (5.5) and (5.8), we can estimate the average 
input spectrum at the frequency f = k / ( 2 K  + 2)  as 

k = 1,. . * , K ,  

(5-9) 
Since l i i[  k ]  = 0 for k > n,  this implies that s [ u k  / ( 2 K  + 
2)] = 0 for k > n,  where n is approximately the largest 
integer such that rA;12 2 d / 2 ,  and r is the radius of the 
sphere containing the input signal constellation. Assum- 
ing the constellation points are uniformly and continu- 
ously distributed throughout this sphere, then the average 
energy per point is nr2/(n + 2). As K +w, n +w, so that 
the average energy per point becomes r 2 ,  i.e., all points 
gravitate towards the surface of the sphere. For large K ,  
we therefore conclude that r is accurately approximated 
as fi = 1, which implies that S[u, / ( 2 K  + 211 = 0 where 
A i l 2  5 d / 2 .  As K + w, the Szego theorem therefore im- 
plies that S ( f )  = 0 if IH(f) l  < d / 2 ,  as stated in (5.1). 

Assume now that the zit’s are uniformly distributed in 
each dimension and are contained in a sphere. Choose 
now a dimension k for which A, is large enough so that 
the input constellation points can be assumed to be 
continuously distributed along this dimension (i.e., 
2A\12 >> d ) .  Then, (5.9) becomes 

where p is the density of points in the n-sphere, d V ( x )  is 
the differential volume of the region formed by the inter- 
section of the interior of the sphere containing the input 
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points with planes perpendicular to the kth axis at the 
points x and x + dw, and the denominator is N = 2RK. 
Since S [ a k / ( 2 K  +2)] in (5.10) is independent of k, this 
implies (5.1) where K in (5.2) is chosen to satisfy the 
assumption that the number of points distributed along 
dimension k is sufficiently large, so that the preceding 
integral approximation is valid. Taking k to be any di- 
mension such that A\/, 2 d implies that K = 2, and ap- 
pears to be adequate for the examples shown in this 
section. 

Characterization of S(f ) for frequencies f such that 
d / 2  < IH(f) l  < ~ d / 2  is relatively difficult. However, the 
following plausibility argument indicates that for uni- 
formly distributed input signal constellations bounded by 
a sphere, if 1 H(f)l is monotonically increasing (decreas- 
ing) where d / 2  < IH(f) l  < ~ d / 2 ,  then S ( f )  is monotoni- 
cally increasing (decreasing) for f in this frequency range. 
Consider first a two-dimensional input signal constella- 
tion consisting of a regular lattice with minimum distance 
d stretched in the x-y plane by A’/’, k = 1,2, respectively, 
and bounded by a circle of radius one. That is, distances 
in the x ( y )  direction are multiplied by A;1/2(Ai1’2). 
Assume also that A ,  >> A, (the density of points along the 
x axis is much greater than along the y axis), and that 
A;’/2 2 2 / d .  In this case all of the points will be clus- 
tered near the x axis, so that the average of the squared y 
components will be close to zero. As A, increases, how- 
ever, the number of points that can fit inside the circle 
increases, and more points will be farther from the x axis, 
so that the average energy of the constellation along the y 
axis increases. As A i l 2  becomes much larger than d / 2 ,  
the distribution of points along the y axis becomes uni- 
form, and the energy along the y axis becomes the same 
as the energy along the x axis. 

The preceding argument easily generalizes to n > 2 
dimensions by projecting the n-dimensional signal con- 
stellation onto two dimensions corresponding to hk and 
A,. When rA\/, is not much greater than d / 2 ,  most of the 
points will be clustered around the axis corresponding to 
A,; however, as k decreases ( A i l 2  increases) more points 
will be spread along the kth dimension, so that the 
average energy with respect to the kth dimension in- 
creases. Combining this with (5.10) indicates that S(f) 
increases (decreases) if I H ( f ) l  is increasing (decreasing) 
in the region where d / 2  < IH(f)l < ~ d / 2 .  Note that this 
argument does not assume any particular lattice, just that 
the signal constellation lies within a sphere. The spectrum 
of the constellation is therefore determined primarily by 
its shape, rather than by the lattice from which it is 
chosen. 

The preceding arguments, and hence approximation 
(5.11, apply to both the HIC and SIC. To estimate c, note 
that - L I  

which is true assuming either the HIC or SIC. Conse- 
quently, if meas{f: d / 2  I IH(f) l  5 ~ d / 2 }  is small, then 

P 
C =  (5.12) 

meas F(  f; K )  ‘ 

From the preceding discussion it is obvious that the 
shape of the spectrum given by (5.1) applies to any input 
signal set consisting of points uniformly distributed 
throughout a region that is invariant with respect to 
permutation of axes. If the signal set is not optimal, as 
defined here, then the type of volume argument given in 
the last section implies that the set F ( ~ ; K )  should be 
replaced by the set F ’ ( f ;  K )  = {f: I H ( f ) l 2  ~ d ‘ / 2 } ,  where 
d‘ is the minimum distance between points in the output 
constellation. Since by definition d’ I d,  this argument 
would imply that the bandwidth (i.e., measure of the set 
F’) occupied by a “suboptimal” signal constellation satis- 
fying the preceding conditions (such as one of the constel- 
lations described in [12]) is greater than the bandwidth 
occupied by an optimal signal set with the same number 
of points. However, the “volume” estimate for the num- 
ber of dimensions spanned by an optimal signal set as- 
suming PK = 1, n = max{k: h\/’ 2 d / 2 } ,  is typically less 
than the number of dimensions spanned by a particular 
PR signal set found in Section IV. Consequently, the 
preceding approximate comparison of bandwidth occu- 
pied by optimal signal sets as K -+ cz with the bandwidth 
of other signaling schemes is inconclusive. 

The behavior of S(f) where d ‘ / 2  < IH(f)l< ~ d ’ / 2 ,  
depends a great deal on the shape, or boundary region, of 
the signal constellation, rather than on the underlying 
lattice from which the points are chosen. This is simply 
because the density of any lattice is uniform throughout 
n-space (even when scaled by the A,’/*’s in each dimen- 
sion), and the relative energy of a constellation in each 
dimension, given by (5.10), is independent of this density. 
This will be further demonstrated in Part I1 [ N I ,  where 
the spectrum of an input constellation based on the 
integer lattice and bounded by a cube is computed. 

We conclude this discussion by showing plots of aver- 
age spectra, given by (5 .9 ,  for two signal sets represented 
by the numerical results in Section IV. Figs. 3(a) and 3(b) 
show average spectra for the 256/8 codes obtained for 
the 1 - D and 1 - D 2  channels, respectively. Also shown 
in each figure are the water pouring spectrum given by 
(5.3) where No = d 2 / 4  (i.e., the noise has standard devia- 
tion d / 2 ) ,  and the approximation to the spectrum at 
frequencies f = k / ( 2 K  + 2), k = 1,. . . , K ,  given by (5.9). 
It is interesting that the input spectrum in each of these 
two cases resembles the corresponding water pouring 
spectrum. All spectra are scaled so that they integrate to 
one. 

Although the information rate (as well as the input 
length) for the codes used to generate Figs. 3(a) and 3(b) 
is relatively small (1 bit/ T ) ,  some characteristics of 
asymptotic spectra previously described can be observed. 
In both cases, the estimate (5.9) accurately approximates 

1 IV 

/o’S(f) d f =  - c / h ( f ) I 2 d f  
mi=, 0 

(5.11) 
1 N  

r = l  

=- ,E llUJl2 = P ,  
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Fig. 3 .  (a) Input spectrum for the 256/8 code found by computer 
search for the 1 -  D channel. Also shown are the water pouring spec- 
trum, assuming additive white noise, and the average squared signal 
components, given by (5.9). (b) Input spectrum for 256/8 code found by 
computer search for the 1 - D z  channel. Also shown are the water 
pouring spectrum, assuming additive white noise, and the average 
squared signal components, given by (5.9). 

the input spectrum at the discrete frequencies f = k /18, 
k = 1; . . ,8. The 1 - D code uses seven out of the avail- 
able eight dimensions, so that the estimate (5.9) is zero at 
f = 1/18. The 1 - D2 code uses six out of the available 
eight dimensions. The input spectra do not go to zero at 
the frequencies where the estimate (5.9) is zero, however, 
because in both cases the discrete Fourier transform of 
the mth eigenvector of H'H, evaluated at frequencies 
f = k/(2K +2), k = 1; . ., K ,  is not exactly i3k,uk. This, 

combined with (5.7), implies that the approximation (5.8) 
is not exact. 

For both the 1 - D and 1 - D 2  signal sets, d2/4  = 0.33. 
Figs. 3(a) and 3(b) therefore agree with (5.1) where K = 2. 
Specifically, in both cases the spectrum is relatively flat 
where IH(f)I2 > d 2 ,  and is close to zero where IH(f)I2 < 
d2 /4 .  The input lengths for the signal sets corresponding 
to 2 bits/ T shown in Tables 1-111 are too short to exhibit 
the asymptotic behavior predicted by (5.1). Specifically, 
for the 1024/5 codes, d is small enough so that there are 
many points with components in all five dimensions. The 
average spectra of these codes therefore do not decrease 
where the channel attenuation is small. 

VI. CONCLUSION 
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~ ~ -~ 

We have shown that the I 2 / l 2  signal design problem, 
assuming the HIC, is equivalent to packing N points in 
an ellipsoid in R", where n I N - 1, so as to maximize the 
minimum Euclidean distance between points. A similar 
interpretation was shown to hold for the SIC problem. 
Numerical techniques were then proposed, and used to 
find locally optimal solutions to these packing problems. 
Proving that a locally optimal signal set is globally optimal 
appears to be quite difficult. 

The optimization of signal sets in Sections I11 and IV 
paid no attention to important practical issues such as 
receiver complexity (i.e., decoding), and peak-to-average 
power. In addition, if passband transmission is assumed, 
then additional considerations such as phase symmetry 
and constituent two-dimensional constellations become 
important [ 291. 

In practice, decoding may be only marginally more 
difficult for PR codes than for identity channel codes. 
This is because when the number of bits/T is two or 
greater, nearly optimal codes can be generated by crop- 
ping a dense lattice in R". Assuming the eigenvectors of 
H'H are the basis vectors for the input space, the lattice 
must be scaled along the kth dimension by Ai l2 .  Assum- 
ing the channel impulse response is known a priori, after 
appropriately scaling and rotating the received signal 
points, decoding can proceed exactly as for the identity 
channel. However, if the rate is reduced to 1 bit/T, then 
the signal constellations found by computer search in 
Section IV are no longer based on lattices, although it is 
likely that these signal sets have considerable structure, 
which can be exploited to minimize decoding complexity. 
For any information rate, however, the fact that the 
output constellation is not necessarily symmetric about 
the origin can present problems with phase ambiguities. 
This may be a topic for future investigation. 

An additional consideration that has been ignored here, 
but is important for channels with additive Gaussian 
noise, is the number of nearest neighbors corresponding 
to each codeword. This consideration is inherently ig- 
nored in 1, /I, signal design, since the optimization crite- 
rion is simply minimum distance between outputs, and 
assumes no statistical model by which probability of error 



1340 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 5, SEPTEMBER 1991 

can be evaluated. Nevertheless, the numbers of nearest- 
neighbors for the A ,  and Dk lattices, k = 3,. . . ,5 ,  on 
which many of the codes in Section IV are based, are 
relatively small [31, so that these codes might be useful for 
channels with additive Gaussian noise. 

It has also been shown empirically that the spectra of 
two signal sets represented in Section IV with input 
length K = 8 are quite similar to the corresponding water 
pouring spectra that achieve Shannon capacity, assuming 
additive white Gaussian noise. As the information rate 
increases, it has also been shown that both spectra be- 
come constant over a frequency band whose measure 
increases with rate. It has been pointed out that the 
average spectrum of a signal constellation is primarily 
determined by its shape, i.e., the region in which it lies, 
assuming the signal points are uniformly distributed 
throughout this region. 

The numerical techniques discussed in Section I11 are 
also applicable to other types of signal design, say l q / l p ,  
in general. Specifically, maximization of minimum dis- 
tance between outputs in the I, sense, and given an I, 
constraint on the inputs, is no longer an ellipsoid packing 
problem, but is another nonlinear optimization problem, 
and one can again find locally optimal solutions numeri- 
cally. This approach has been used to design signal sets 
for the lm/lm problem [30]. Application of these numeri- 
cal techniques to other signal design problems remains to 
be explored; for example, a particularly interesting candi- 
date is the Im/l2 problem-maximization of minimum 
Euclidean distance between outputs subject to an ampli- 
tude constraint on the inputs. 
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APPENDIX A 
PROOF OF THEOREM 

Since hk is the kth largest eigenvalue of H’H,  we apply 
the Courant-Fischer theorem, which states that [31, Sec- 
tion 10-21  

A ,  = max min {v’H’Hv: llull= 11, (A.l)  

where the first maximum is over all ( N  - k)-dimensional 
spaces S N - k ,  and the minimum is over all vectors orthog- 
onal to SNPk. Clearly, the S N - k  for which this maximum 
occurs is the space spanned by the N - k eigenvectors of 
H‘H corresponding to h k + l , .  . * , A N .  Denoting this space 
as S L - k ,  then we have the orthogonal decomposition 
sN = sL-k@YL where Si  is the k-dimensional space or- 
thogonal to S h - k .  We can therefore rewrite (A.1) as 

SN-k V 1 s N - k  

h k  = max min {v’H’Hv: llvll= I ) .  (A.2) 
Sk v E S k  

The s k  for which the maximum occurs is now the space 
spanned by the first k eigenvectors. 

Assume initially that the center of the ellipsoid E‘ is at 
the origin. Letting Q denote the ( N  - 1)-dimensional 
hyperplane in which E‘ lies, we again use the 
Courant-Fischer theorem to write 

pk = max min { v ’H’Hv:  llvll= I ) ,  (A.3) 

that is, since E’ lies in E,  p k  has the same form as h k  

with the additional restriction that the space Sk must lie 
in Q. Since the maximum in (A.3) is over a more restric- 
tive set than in (A.l), it follows that pk I A , .  

We add that the min-max form of the Courant-Fischer 
theorem states that 
h k  = min max { v ’H’Hv:  llvll= I} 

s, V E S k  

S k C Q  

S N - k + l  V E S N - k + l  

- < min max {u’H’Hv: llvll= 1) = p k - l ,  (A.4) 
S N - k + i C Q  V E S N - k + l  

where the last equality follows from the fact that Q has 
dimension N - 1, so that pk is found by minimizing over 
N - k dimensional spaces. Consequently, if E’ is cen- 
tered at the origin, we have shown that A k + l  I p k  I A k ,  

If E‘ is centered at xo # 0, then we translate E by xo. 
This is accomplished with the operator T = T3T2T1, where 

k = 1; * ,  N - 1. 

T, :  x + A - 1 / 2 ~ ,  T2:  x + x - x ~ ,  T3: x + A1I2x. 

The transformation T,  maps both E and E‘ into spheres 
( T , ( E )  has radius one and is centered at the origin), T2 
translates T J E ’ )  so that its center is at its origin, and T3 
restores the spheres to ellipsoids with the original dimen- 
sions. 

Since E = {x: x’A-’x = 11, we have that 

T (  E )  = {x: ( X  - xo)’A-’( x - x0) = 1 ) .  ( A S )  
Now T,(E’)  is the intersection of a plane (T,(Q))  with the 
unit sphere, so that the vector from the origin to the 
center of T,(E’),  i.e., Tl(xo) ,  must be orthogonal to any 
vector in T,(E’).  This implies that xbA-lx=O for any 
x E T,(E’).  Consequently, 

T (  E’) = T (  E )  n T (  Q )  

= {x: x’A-’x = 1 - xbA-’x,, x E T (  e)). (A.6) 

Since xo lies inside E,  0 I 1 - xbA-’x, I 1 ,  so that pk is 
clearly maximized by taking xo = 0, which reduces to the 
preceding case in which E‘ is centered at the origin. 0 

APPENDIX B 

IMPULSE RESPONSE 
Suppose that the impulse response satisfies h[ k ]  = 0 for 

k < 0 and k > 1 .  With an input of length K ,  H is the 
( K  + 1) X K matrix with entries [ H ] k m  = h[ k - m],  and 

EIGENVECTORS OF H’H FOR LENGTH-2 

K t l  
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We will show that the K-vectors with components 

+ [ k ]  = s inko ,  k = l;.. , K  (B.2) 

are eigenvectors of H‘H for the discrete values o = 

.rri/(K + 11, i = 1,. . ., K. Since the matrix H‘H is K X K ,  
this is a complete set. 

For convenience in algebraic manipulation, we will 
consider a complex equation, but enforce only the imagi- 
nary part. In particular, the imaginary part of the follow- 
ing equation must hold: 

K 
[ H’HIkreJro = heJkw,  k = 1,. . . , K .  (B.3) 

r = l  

Using (B.1) and rearranging sums, this becomes 

k = 1;. . , K .  (B.4) 

When k = 2;. ., K - 1 we can write this as 

I h[O] + h[l]e- j” I2ejkw = heJko,  k = 2; . . , K - 1, 

(B.5) 

so a candidate for the eigenvalue corresponding to o is 

A = J ~ [ o J  + h[l]e-jwl2, (B.6) 

which is, of course, the squared magnitude of the channel 
frequency response at frequency o. When k =1  or K, 
however, the left-hand side of (B.5) contains terms miss- 
ing from the left-hand side of (B.4). These missing terms 
are 

h(O)h(l) ,  for k = 1, 

and 

h(0)h( l )e j”(K+’) ,  for k = K 

The required eigenvalue conditions will be satisfied if the 
imaginary parts of these quantities are zero. The first 
quantity is real since the impulse response is real-valued; 
the second quantity is real when o = i.rr/(K + l), which is 
what we wanted to show. 
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