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Discrete-Time Signal Design for 
Maximizing Separation in Amplitude 

Michael L. Honig, Senior Member, ZEEE, Kenneth Steiglitz Fellow, IEEE, 
Venkataramanan Balakrishnan, and Erik Rantapaa 

Abstract-Given a discrete-time, linear, shift-invariant channel 
with finite impulse response, the problem of designing finite- 
length input signals with bounded amplitude (1, norm) such 
that the corresponding output signals are maximally separated 
in amplitude ( 2 -  sense) is considered. In general, this is a non- 
convex optimization problem, and appears to be computationally 
difficult. An optimization algorithm that seems to perform well 
is descebed. Optimized signal sets and associated minimum 
distances (minimum 1, separation between two distinct channel 
outputs) are presented for some example impulse responses. A 
conjectured upper bound on the minimum distance is given that 
is easily computed given the impulse response of the channel, 
the number of inputs, and the input length. This upper bound is 
shown to be valid for a limited class of impulse response functions. 

Index TennsSignal design, amplitude constraint, intersymbol 
interference. 

I. INTRODUCTION 
IGNAL design in digital communications typically refers S to the way in which source bits are mapped to the channel 

input. The objective is typically to optimize some performance 
criterion, such as probability of error, given a description of 
the channel, and subject to certain constraints on the receiver 
and on the channel inputs. For discrete-time, real-valued 
channels (i.e., channels that allow real-valued inputs and 
produce real-valued outputs), a typical performance criterion 
is minimum Euclidean distance between two distinct channel 
output sequences. This criterion is especially appropriate when 
the channel and receiver noise is assumed to be additive and 
Gaussian. 

Here we consider signal design for a different class of linear, 
discrete-time channels than are normally considered. Namely, 
we assume that the channel and receiver noise is additive, 
and is bounded in amplitude, say, by d /2 .  This implies that 
distinct channel outputs can be distinguished at the receiver 
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provided that their minimum pairwise separation in amplitude 
is at least d. In addition, we assume that the channel inputs 
are bounded in amplitude, and are time-limited to the interval 
[0, K - 11. The problem considered is therefore the design 
of N finite-length input sequences to a given discrete-time, 
linear, shift-invariant channel with finite impulse response so 
that the corresponding N outputs are maximally separated in 
1, norm. Because the inputs are assumed to be bounded in the 
I ,  sense, and the outputs are to be separated in the I, sense, 
we refer to this problem as the l,/lm signal design problem. 
The continuous-time version of this problem has previously 
been considered in [l]. 

This signal design problem was motivated by situations in 
which system performance is limited primarily by the precision 
with which the receiver can measure the channel output (i.e., 
the precision of the A/D converter). An application for which 
this type of signal design may be especially appropriate is 
the “Asymmetric Digital Subscriber Line” [ 2 ] .  In this case, 
the channel is copper wire, which has a very low ambient 
noise level. Since transmission is half-duplex, the only type 
of crosstalk present is far-end crosstalk, which is highly 
attenuated. It is therefore likely that measurement error at the 
receiver will pose a major limitation on achievable data rate. 

In general, it seems difficult to prove the optimality of 
a given signal set for a specific channel. Consequently, the 
approach taken here is to view this signal design problem 
as a nonconvex optimization problem, and attempt to solve 
it numerically. We present a numerical algorithm for finding 
locally optimal solutions which appears to work well on 
relatively small problems. We find that the algorithm typically 
finds many local optima, and that the number of these local 
optima grows extremely rapidly as the size of the problem (i.e., 
input len‘gth and number of inputs) increases. Some examples 
are presented in which the computer generated solutions are 
conjectured to be optimal. 

Before presenting the numerical optimization algorithm we 
first consider the continuous-time version of the l,/lm signal 
design problem, and state a conjectured upper bound on the 
asymptotic information rate for which a specified minimum 
(L,) distance between outputs can be achieved. This conjec- 
tured upper bound is uniformly better than a previous upper 
bound that was presented in [3 ] .  As supporting evidence for 
the conjecture, the upper bound is shown to apply to a specific 
class of channel impulse response functions. A discrete-time 
version of the bound is also presented, and is consistent with 
the results obtained from the numerical search algorithm. 

0018-9448/95$04.00 0 1995 IEEE 



HONK et al.: DISCRETE-TIME SIGNAL DESIGN 165 

11. CONTINUOUS-TIME L,/ L ,  SIGNAL DESIGN 

Consider a linear, time-invariant channel with continuous- 
time impulse response h(t) ,  where h ( t )  = 0 for t $! [0, 7-1, 

and 

l T ~ h ( t ) l d t  < 3o (i.e., h(t)  E ~ 1 ) .  

All inputs to the channel satisfy u(t)  = 0 for t $! [O, T ) ,  and 
it assumed that Iu(t)l 5 1 for all t .  Given a rate R (bits per 
second), and input length T ,  we wish to find N = L2RT] 
inputs u~(.),...>u~~(.) to 

where 1x1 is the greatest integer less than or equal to IC 

T 
2/i(t) = h(t - .s)uz(s)ds 

and the L ,  norm of any continuous function f is 

I1 f llcm= SUPlf(t)l 

This problem is called L,/L, signal design since the inputs 
are restricted in L ,  norm, and the outputs are to be separated 
in the L,  sense. 

As mentioned previously, this problem pertains to commu- 
nications systems in which the noise may be amplitude-limited 
(i.e., noise due to the A/D converter). This type of signal 
design also seems appropriate when the receiver estimates each 
transmitted symbol independently by sampling the channel 
output at a particular time and using a simple threshold device. 
In this case, the receiver is less likely to make a detection 
error if the received samples corresponding to different source 
sequences are widely separated. 

For fixed input length T and minimum distance d, we define 
the maximum number of inputs that can be separated by d at 
the channel output as 

II yi - yJ 1 1 ~ 2  d }  ( 2 )  

and the Maximum Channel Throughput (MCT) is defined as 

(3) 

The MCT is therefore the maximum asymptotic information 
rate for which the minimum distance between outputs is at 
least d. Consider an additive noise channel consisting of the 
original channel with impulse response h(t)  followed by an 
additive noise source n(t) where In(t)l < d / 2 ,  but otherwise 
n(t)  has arbitrary statistics. Clearly, by using a signal set with 
minimum distance d as the set of channel inputs, it is possible 
to design the receiver so as to achieve zero error probability. 
MCT (d) for the channel h(t)  is therefore a lower bound for 
the zero-error capacity of the corresponding additive noise 
channel. 

111. CONJECTURED UPPER BOUND ON THE MCT 

Upper and lower bounds on the MCT have been presented 
previously in [3], and it is shown in [ l ]  and [3] that these 
bounds are tight for the impulse response h(t)  = e-ff”, LY > 0. 
The upper bound, however, tends to be quite loose when the 
impulse response is highly oscillatory, and in fact diverges 
as the frequency of oscillation tends to infinity. However, 
other considerations based on bounding the volume of the 
region in signal space defined by the input constraints indicate 
that the MCT remains finite. We now present a conjectured 
upper bound which is uniformly better than the upper bound 
presented in [ 3 ] .  This conjectured bound is also tight for the 
impulse response h(t) = e-au, and in addition, is finite for 
all h(t)  E L l .  

For a given c > 0, define the set A ( c )  so that if t E A ( c )  
then Ih(t)l 2 c; and if t $! A ( c ) ,  then Ih(t)l 5 c. Now for a 
given d, consider all sets A[c(d ) ]  for which 

and define 

Furthermore, let ~ ( d )  = meas A[c* ( d ) ] .  We will refer to sets 
A[c*(d ) ]  as “minimal” sets, since ~ ( d )  5 meas A[c(d ) ]  for any 
set A[c(d ) ]  defined previously. Note that h(t)  = c ( d )  for any 
t in the symmetric difference between two minimal sets. For 
a given d, if h(t)  is continuous, then c(d) is uniquely defined. 
Furthermore, if in addition the set o f t  for which h(t)  = c ( d )  
has measure zero, then the symmetric difference between any 
two minimal sets has measure zero. 

Conjecture: 

1 
MCT( d )  5 - . 

T ( d )  

To see why the conjecture might be true, first consider the 
case of designing N = 2 inputs, ‘1~1 and u2, to maximize the 
minimum L ,  distance between outputs. The two inputs must 
satisfy u1 = -uz, and the corresponding minimum distance 
is then d = 2(yl ( to) ( ,  where t o  is the time at which 12/11 
achieves its maximum value. If the inputs have support on a 
set of measure T where T 5 t o ,  then 

where c is selected so that meas A ( c )  = T.  Equality is 
achieved if u ~ ( s )  = sgnh(t0 -s )  f o r s  E A(c), and u ~ ( s )  = 0 
for s $! A ( c ) .  Since meas A ( c )  2 ~ ( d ) ,  it therefore takes at 
least time ~ ( d )  to distinguish one bit, given that only one bit 
is being transmitted. 

The conjectured upper bound has the following proper- 
ties, which seem intuitively reasonable. First, if the impulse 
response is nonincreasing and nonnegative, then this upper 
bound can be achieved by “bit-by-bit” signaling [l]. That is, 
the transmitted signal is the square wave associated with the 
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0 < a 5 1 the conjecture states that MCT (ha; 4) 5 1/2, and 
that as a increases beyond one, the conjectured upper bound 
increases beyond one half. This discussion will be developed 
further in Section VI where a discrete-time version of this 
impulse response (i.e., h(D)  = 1 + a D  + 0’) will be used to 

h ( I )  

1 2 3 4 generate numerical results. 
I 

Fig. 1 .  Example impulse response. 
IV. DISCRETE-TIME (l,/l,) SIGNAL DESIGN 

tors ul, . . . , UN. Assuming that each channel input sequence 
is zero outside of the time interval [0, K - 11 implies that each 
input vector has K components. Letting yi denote the output 
vector corresponding to U;, then 

sequence of Source bits. The duration of each bit 7 is selected In this Case the set of inputs can be represented by the vec- 

so that 

d 
2 

h(t)dt = -. 

In this case a minimal set is A[c*(d)] = [O, ~ ( d ) ] .  This 
signaling scheme has been proven optimal (i.e., achieves the 
MCT) for h(t)  = e--au, Q > 0. The second property is that the 
upper bound is invariant to time translations of h(t) ,  and third, 
the upper bound is the same for h(t)  and Ih(t)l. Finally, the 
discrete-time version of this conjecture, which will be given 
in the next section, is consistent with the numerical results in 
Section VI. 

Although there currently is no proof of the conjecture for 
arbitrary h(t)  E L1, the following theorem specifies a class of 
impulse response functions for which the conjecture is true. 

Theorem: Let h(t)  2 0 for all t ,  d > 0, and suppose that 
c*(d)  > 0. Let 

(7) 
- 
h(t)  = max [h(t), c* (d) ] .  

Then MCT(& d )  5 1/[7(d)]. 
The proof is given in the Appendix. It is also indicated there 

how this theorem might be generalized so as to apply to both 
positive and negative h(t) .  

If it were the case that MCT(h1; d )  2 MCT(h2; d )  when- 
ever Ihl(t)l > Ihz(t)l for all t ,  then the theorem would imply 
that the conjecture is true for all c(d)  > 0. The following 
example, however, suggests that this “monotone” property is 
unlikely to be true. Consider the impulse response shown in 
Fig. 1. For d = 4, the conjecture says that MCT(4) 5 1/2. In 
this case signal sets that achieve this MCT can be constructed 
explicitly. Specifically, for each sequence of source bits {bk}, 
where bk  E {&I}, the corresponding transmitted waveform is 

s ( t )  = z ( b Z k p ( t  - 4k) f bZk+lp(t - 4k - 1)) (8) 
k 

where 

dt )  = x[O,l) + x [ 2 , 3 )  (9) 

and ~ [ ~ , b )  is the characteristic function for the interval [ a ,  b) .  It 
is easily verified that two distinct channel outputs can separate 
by d = 4 only at times 4k, 4k + 1, k = 1, 2 , .  . .. 

Consider now the impulse response h,(t) = max [h(t) ,  a ] ,  
where h(t)  is shown in Fig. 1. If the MCT satisfies the 
monotone property, then we would have that MCT (ha;  4) 2 
l /2.  However. it seems unlikely that this rate of 1/2 can be 
achieved when 0 < a 5 1. That is, at a rate of 1/2 b/s the 
sections where h(t)  = a appear to decrease the minimum 
distance below what it would be for a = 0. Note that for 

yi = Hu; 

where H is the appropriate ( K  + m - 1) x K lower triangular 
Toeplitz convolution matrix, m is the length of the channel 
impulse response, which is assumed to be finite, and y; 
has K + m - 1 components. The problem of maximizing 
the minimum painvise separation in 1, can be expressed as 
finding values for the K . N components of ui, i = 1, . . . , N ,  
to 

d = min a#j  O<k<K+m-l max (y;[k] - y j [ k ] l }  (P) 

subject to 

l.;[klI 5 1 (C) 

for all i and k ,  where u;[k] ( y i [ k ] )  is the kth component of 
ui (y;). The maximum value of d for given R and K will be 
denoted as dmax(K), and will be referred to as “max-min” 
distance. 

The l,/l, signal design problem has the following geo- 
metric interpretation. The amplitude constraint means that the 
input vectors u1, . . . , UN must lie within the unit cube in RK. 
The corresponding output vectors y, , . . . , yN must therefore 
lie within a parallelopiped in RK+m-l defined by the vectors 
Het, i = 1 , .  . . , K ,  where ei is the ith unit vector in RK. 
Since the output points must be separated in the 1, sense by 
d, this means that N nonintersecting cubes in RKfm-’ of 
length d on a side can be placed so that an output point is 
at the center of each cube. Of course, cubes corresponding 
to points on the boundary region are not entirely contained 
within the boundary region. 

The l,/l, signal design problem is therefore closely re- 
lated to packing cubes within a parallelepiped. Although there 
is an extensive mathematical literature on packing problems, 
much of this literature is concemed with packing spheres, in- 
stead of cubes. References [4]-[7] are concemed with packing 
parallelepipeds into larger cubes ([6] and [7] only consider the 
problem in W2). However, the emphasis in all of this work 
is on proving the existence of packings that cover the entire 
region within the boundary, and on estimating the amount of 
“wasted space,” or portion of the region which is not covered. 
It appears that the packing problem considered here has not 
yet received significant attention. 
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The objective function d is a piecewise linear function 
defined over the unit cube in K . N-dimensional space. In 
general (P-C) is a nonconvex optimization problem, and may 
have local optima that are not globally optimal. The discrete- 
time MCT can be defined exactly as in the continuous-time 
case, i.e., by ( 2 )  and (3), where for any bounded vector t~ its 
l-infinity norm is 1 1  w 1Im= max [ V I ,  and where T is replaced 
by K .  

To state the discrete-time version of the conjectured upper 
bound on MCT, assume that the rate R = (log, N)/K = 2', 
where I is a finite. integer (can be positive or negative). 
Generalization to arbitrary R is StLaightforward, but is omitted 
for simplicity. Let the sequence h[IC], k = 0, . . .  , m  - 1, be 
the magnitudes of the channel impulse response coefficients 
arranged in nonincreasing order. That is 

h[O] = max lh[IC]l 
O < k < m - 1  

and 

h[O] 2 7411 2 . . . 2 h[m - 11 

The shape of a set of N vectors yi, i = l , . . . , N ,  is a set 
of extremal dimensions and associated senses for each pair 
i ,  j ,  1 5 i < j 5 N. Loosely speaking, for each pair of output 
vectors the shape tells us the dimension in which they are 
maximally separated, and the sense in which they are ordered 
along that dimension. 

Once the shape of a solution is known, the optimal inputs 
can be determined by solving a linear program. Specifi- 
cally, for each pair of signals we enforce the constraint 
c(ICij)(yi[kij] - yj[ICzj]) 2 d. These N(N - l ) / 2  constraints 
imply that the minimum distance is at least d. We therefore 
wish to maximize d subject to these constraints and the 
amplitude constraints on the input signals ui. The linear 
program is then 

max d (144  

where h[k]  is the channel impulse response, and h[k] = 0, I u ~  [IC] I 5 1, i = 1, . . . , N, IC = 0, . . . , K - 1. ( 1 4 ~ )  k $ [O, m - 11. 
Conjecture: The general approach consists of two stages: 

R-'-1- 
( 2  h[i] ,  if R 5 I 

d 5 i=o p& 
2 R - 1 '  if R >  1. 

The plausibility arguments and theorem presented in support 
of the continuous-time conjecture are easily modified so as 
to apply to the discrete-time case. If R 5 1, then the 
conjecture states that the minimum distance can be no greater 
than twice the largest magnitude of the output which results 
from selecting the input u[k] = sgnh[i - IC] for IC such that 
Ih[i - k]I 2 c*(d)  and u[k]  = 0 elsewhere, where c*(d) is 
defined analogously to the continuous-time quantity, and i 
is the time at which Iy[i]l is a maximum. If R > 1, then 
the conjectured upper bound depends only on maxkIh[k]l. In 
this case, the conjectured upper bound is achieved by simple 
multilevel signaling in which n incoming source bits are 
mapped to one of 2" levels between -1 and 1 .  

1) Search for a reasonably good solution by using an 
iterative ascent algorithm based on either steepest ascent 
or random perturbations. 

2) Find the shape of that solution, and use the linear 
program (14) to find the optimal solution with that shape. 

In practice we found it effective to run the algorithm many 
times with different initial inputs chosen at random, and to 
stop the search in step 1) well before convergence to go on 
to step 2).  The idea is that the shape of the solution can be 
found relatively quickly via an iterative ascent method, to be 
explained shortly, and that the optimal solution (for that shape) 
can be computed quickly from the linear program. The simplex 
method was used to solve the linear program. 

The iterative ascent method in step 1) requires an expression 
for the gradient of the objective function ( d )  with respect to 
the components of the input vectors. This assumes, of course, 
that the objective is differentiable at this point, which may not 
be true. For each fixed i = 1,. . . , N one of the following two 

V. COMPUTATIONAL ALGORITHMS cases must apply: 

We now describe a heuristic computational approach to 
obtaining solutions to (P-C). The algorithms to be described do 

rniri rnax 1 yz [ I C ]  - y, [ I C ]  1 > d (154 
,#% k 

not guarantee global optimality, but have been run on problems 
of moderate size with consistent results, and appear to yield 
very good, if not optimal, solutions for the examples tried. 

We need a few definitions. An extremal dimension k,, 
between an ordered pair of output vectors y, and y, is any 
time for which 

in which case Vu% d = 0, or 

minmaxlyl,[k] - y,[IC]I = d. (15b) 

In the latter case, suppose that the minimum Occurs only for 
J = j 0 .  Let K,,Jo denote the set of extremal dimensions, 

J # 1  k 

IYZ[k.lJI - V,[k%,ll = d (12) K2JO = { k :  IY.l[kl - Y,[4l = 4. (16) 

and the extremal sense associated with this extremal dimension In this case 
is 
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where H,k is the ilcth component of H ,  and ~ ( k , ~ )  is defined 
by (13). If the minimum in (16) occurs at two different 
values of k ,  then in general the derivative does not exist. 
Furthermore, the gradient VUtd does not exist in general if 
the minimum in (15b) occurs for two different values of j .  Of 
course, perturbing U, in any direction by a very small distance 
t generally eliminates this problem. The gradient portion of 
the algorithm, which was implemented, computed the gradient 
under the assumption that the minima in (15b) and (17) occur 
at unique values of j and k, respectively. This is followed by 
a line search along that descent direction to find the optimal 
step length. 

Clearly, an optimal packing of many signal vectors must 
have the property that a particular vector U, has more than one 
nearest neighbor. In this case, the minimum in (15b) holds for 
more than one j .  The gradient Vutd therefore does not exist 
in general when the signal vectors are optimally packed. This 
is one motivation for using random perturbations, instead of a 
gradient type of search, to find a good shape for the signal set. 

The two iterative ascent methods tried in step 1) yielded 
similar results. The random search method requires many more 
steps to achieve the same increase in minimum distance as the 
steepest ascent method, but each step is much less expensive 
computationally. The practical limits of the algorithm are 
reached not because of time but memory, because the linear 
program has N ( N  - l ) / 2  + K N  constraints. 

VI. NUMERICAL RESULTS 

In this section we present the results obtained from running 
the previous optimization algorithms for a few partial response 
channels, namely the 1 -D and 1 + aD + D2 channels, where 
D is the delay operator and a is a constant. Consider first the 
1 - D channel with K = 2 and R = 1/2 b/symbol so that 
N = 2. That is, two input vectors of length two are to be 
chosen to maximize the minimum 1, distance between the 
two corresponding outputs. The solution in this case is clearly 

U: = [-U] U2 = -U1 (18) 

which gives d = 4. Note also that this solution achieves the 
conjectured upper bound (1 1). For a fixed information rate 
R = 1/2 bkymbol, longer code sequences can be constructed 
by taking the Cartesian product of the previous signal set in 
(18) with itself. That is, denoting the preceding signal set as 
U = [ul, uz], then a signal set of length K containing 2K/2 
vectors that achieves d = 4 is U K l 2  (assuming K is even). 
In this case, the conjectured upper bound (1 1) is achieved 
for each even K ,  and the conjecture furthermore implies that 
MCT (4) = 1/2 b/symbol. 

The preceding simple example illustrates an important prop- 
erty of signal design using the 1, criterion, which is apparently 
quite different from more conventional signal design using 
the 12 distance criterion. Namely, for fixed R the max-min 
distance is a nondecreasing function of input length K ,  and 
seems to have a jinite asymptote which is achieved for jinite 
K. That is, for the channels considered our results indicate 
that there exists an input length KO for which &,,(KO) 2 
d,,,(K) for all K .  For many impulse response sequences 

and information rates, this follows from the conjectured upper 
bound ( 1 1 ) .  That is, in many cases, the conjectured upper 
bound (1 1) can be achieved by an explicit construction of 
signal sets, which have the preceding property. In contrast, 
if the channel inputs are power-constrained, and are selected 
to separate the outputs in the 12 (rather than 1,) sense, then 
as the input length becomes large, the analogous 12 max-min 
distance increases linearly with input length. 

The numerical algorithms of Section V were also run for 
the 1 - D channel for the case R = 1 b/symbol, K = 2, and 
N = 4. and the best solution found was 

U; = [l 11 U; = [l - 11 U3 = -U1 

and u4 = -u2 (19) 

which gives d = 2. That is, binary signaling was the best 
solution found. This solution also satisfies the conjectured 
upper bound (1 1) with equality. This suggests that d,,,(K) 
achieves its maximum for K = 1, and MCT (2) = 1 b/symbol. 

Consider now the 1 + D2 channel with R = 1/2 b/symbol, 
and K = 4. This channel is analogous to the continuous-time 
channel shown in Fig. 1 .  The best solution found was 

U: = [l 11  11 U; = [l - 11 - 11 U3 = U1 

U 4  = -212 (20) 

which gives d = 4 and achieves the conjectured upper bound 
(11) .  It therefore appears that optimal signal sets of length 
4m, where m is a positive integer, can be constructed by 
taking Cartesian products of this signal set with itself. If this 
is true, then d,,,(K) achieves its maximum for K = 4, and 
MCT (4) = 1/2 b/symbol. 

Finally, consider the channel h(D)  = 1 + aD + D2 for 
R = 1/2 and K = 4. Fig. 2 shows a plot of the max-min 
distance found by the optimization programs versus a for 
specific values of a between a = 0 and a = 2. As an example, 
for a = 0.4 one of the best solutions found is 

u / ,=[1111]  U $ =  1 - -  1 - 1  u3=-u1 

(21) 
[ :  1 

U 4  = -U2 

which gives d = 32/9. It'is easily shown that if the shape of 
the solution, as defined in the preceding section, is the same as 
for the solution shown in (21) for a = 0.4, then the max-min 
distance is d = 3 + (1 + 2a)-'. Fig. 2 indicates that this 
shape does yield an optimal solution for small a; however, the 
discontinuity in the derivative suggested in Fig. 2 is due to the 
fact that the shape of the best solution changes at a = 1/&. 
For any a > 1/fi  the best solution found is 

U: = [ l l  1 11 U; = [l 1 - 1 - 11 

U4 = -U2 (22) 

U 3  = -U1 

which gives d = 2(1 + a). Notice that d,,, in this region 
would be the same for the impulse response h ( D )  = 1 + aD, 
and that these results are consistent with the conjectured upper 
bound ( 1  1) .  
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Fig. 2. 
channel h ( D )  = 1 + a D  + D z .  

Max-min distance found by the numerical search algorithms for the 

VII. CONCLUSIONS 

A class of numerical optimization algorithms have been 
proposed for the l,/l, signal design problem that seem to 
perform well for small input lengths and moderate information 
rates. The performance of the proposed algorithms degrades 
for larger sized problems because the number of possible 
solution shapes grows extremely fast with input length. Fur- 
thermore, the number of local optima also appears to become 
quite large, greatly increasing the chance that the algorithm 
will yield a locally optimal solution that is not globally 
optimal. In contrast to signal design using the 12 criterion 
(i.e., the 12/12 signal design problem [SI), in principle the 
globally optimal solution for the 1,/1, problem can always 
be found by an exhaustive search over all solution shapes, and 
by solving the associated linear programs. 

There are, of course, many remaining unanswered questions 
suggested by this work. In addition to establishing the conjec- 
tures (5) and (1 l), it is also of interest to determine, for a 
given channel and information rate, the minimum input length 
K for which d,,,(K) achieves its asymptotic value. 

Finally, another interesting question is what is the computa- 
tional complexity class of the l,/l, signal design problem? 
A related question has been posed in [9] and [lo], where 
the 12 criterion is used to separate channel outputs. It is 
conjectured in [9] that this related signal design problem using 
the 12 norm (for two inputs) is NP-hard. The 1, signal design 
problems considered here are easier to solve in some cases 
than the analogous problems using the 12 criterion (i.e., explicit 
solutions for the l,/lm problem are easily obtained for any 
impulse response when N = 2). However, the question of 
whether or not this class of problems, or a subset of this class 
of problems, is NP-hard is open. 

APPENDIX 
PROOF OF THEOREM 

For any function f ( t ) ,  let 

(AI) 
if f ( t )  > 0 
otherwise 

and let [f(t)]- be defined in the analogous way. The theorem 
relies on the following Lemma, which is a generalization of 
[ I ,  Lemma A.81: 

Lemma: Let h(t)  be an integrable function, and suppose 

Let the set A[c*(d)] be defined as in Section 111, and suppose 
d > 0 is chosen so that Jlhl 2 4. 
that 

d 
Ihl = -. 

J,,*,dll 2 

If U is an integrable function, IuI 5 1, and 

d 
l * h ( T  - s ) u ( s )  ds 2 - 2 

at some time T ,  then 

L T [ u ( s )  sgnh(T - s)]+ds 2 7(d) 

where ~ ( d )  = measA[c*(d)]. 
Proofi By assumption, 

= l i / h ( T  - s ) l [ u ( s )  sgnh(T - s)] ds 

_< l T l h ( T  - s)l[u(s) sgnh(T - s ) ]+ds .  (A3) 

Since Ih(T - s)l is nonnegative, and the term in brackets is 
between zero and one, we can apply [ l ,  Lemma A.81, which 

To prove the theorem, let the sampling time tz3, 1 5 i 5 N ,  

('44) 

gives the result. 

1 5 j 5 N ,  be defined as 

t,, = inf{t: IYz( tz3)  - Y3(t2J 2 4. 
Then 

LtaJh(tzJ - s)[uz(s) - u3(s)] ds 2 d 645) 

which implies that 
+ 

f Z J  (h(L3 - s)[u2(s) - u3(s)]) ds 2 d 

f J" 0 (X(t,, - s)[u,(s) - u3(s)])-ds 2 d + c(d)tc (A6) 

where 
t v  

K = [(sgn w, - s ) ) (u , ( s )  - u3(4)1- ds (A71 

since h(t) 2 c(d) for all t .  Let A(s) = max(0, 1/2[uz(s) - 
u3(s)]}. Since h(t)  2 0 for all t ,  (A6) implies that 

and since lA(s)l 5 1, we can apply the Lemma to obtain 

~ t ' J ( [ s g n h ( t i j  - s ) ]A(s) )+ds  2 T[d + c(d)tc]. (A9) 
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By definition of z ( t )  and A[c*(d ) ] ,  it follows that ~ [ d  + 
c(d)n] = ~ ( d )  + K .  Furthermore, A(s) in (A9) can be replaced 
by 1 /2[u ; ( s )  - u ~ ( s ) ]  so that (A7) and (A9) imply that 

h(t)  2 0 could be dropped. Whether or not this is true is 
currently an open question. 

REFERENCES 
1 

/t’’ (sgn%(tij - s ) )  (u ; ( s )  - u j ( s ) )  ds 2 ~ ( d ) .  (A10) 
J o  

If the set of inputs { U ; }  is applied to the channel with 
impulse response 1/2sgn%, then the outputs yi and yj are 
therefore separated by at least ~ ( d )  at time t ; j .  Now h(t)  > 0 
implies that 1/2 sgnx(t)  = l /2 ,  and it has been shown in [ 11 
that for a channel with constant impulse response h(t)  = 1/2 ,  
the minimum time to separate N outputs by d, assuming the 
inputs are bounded in magnitude by one, satisfies 

T 2 (log, N ) d .  (‘41 1) 

Since in this case d is replaced by ~ ( d ) ,  it follows that 
( log,N)/T 5 l / ~ ( d )  for all T ,  and hence this must be true 
in the limit as T + 00. 

We remark that if h(t)  is not nonnegative, then A(s) can 
still be defined so that (A8) remains valid, and furthermore, 
so that (A9) and (A10) still hold. Consequently, if the bound 
( A l l )  applies more generally to an impulse response of the 
form 1/2 sgn h(t) ,  where h(t)  E L1, then the assumption that 

[I]  M. L. Honig, S. Boyd, B. Gopinath, and E. Rantapaa, “On optimal signal 
sets for digital communications with finite precision and amplitude 
constraints,” IEEE Trans. Commun., vol. 39, no. 2, pp. 249-2.55, Feb. 
1991. 

[2] J. Lechleider, “High bit rate digital subscriber lines: A review of HDSL 
progress,” IEEE J.  Selected Areas Commun., vol. 9, no. 6, pp. 769-784, 
Aug. 1991. 

[3] M. L. Honig, K. Steiglitz, B. Gopinath, and S. Boyd, “Bounds on 
maximum throughput for digital communications with finite precision 
and amplitude constraints,” IEEE Trans. Inform. Theory, vol. 36, no. 3, 
pp. 472484, May 1990. 

[4] F. W. Barnes, “Algebraic theory of brick packing I,” Discr. Math., vol. 

[SI -, “Algebraic theory of brick packing 11,” Discr. Math., vol. 42, 
pp. 129-144, 1982. 

[6] P. Erdos and R. L. Graham, “On packing squares with equal squares,” 
J.  Comb. Theory (A), vol. 19, pp. 119-123, 1975. 

[7] K. F. Roth and R. C. Vaughan, “Inefficiency in packing squares with 
unit squares,” J. Comb. Theory, A, vol. 24, pp. 170-186, 1978. 

[8] M. L. Honig, K. Steiglitz, and S. Norman, “Optimization of signal 
sets for partial response channels-Part I: Numerical techniques,” IEEE 

[9] S. Verdli, “Computational complexity of optimum multiuser detection,” 
Algorithmica, vol. 4, pp. 303-312, 1989. 

[IO] M. L. Honig and K. Steiglitz, “Maximizing the output energy of a linear 
channel with a time- and amplitude-limited input,” IEEE Trans. Inform. 
Theory, vol. 38, no. 3, pp. 1041-1052, May 1992. 

42, pp. 7-26, 1982. 

‘Trans. Inform. Theory, vol. 37, no. 5 ,  pp. 1327-1341, Sept. 1991. 


