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Maximizing the Output Energy of a 
Linear Channel with a Time- and 

Amplitude-Limited Input 
Michael L. Honig and Kenneth Steiglitz, Fellow, IEEE 

Abstract-The following problem is considered: Maximize the 
output energy of a linear time-invariant channel, given that the 
input signal is time and amplitude limited. It is shown that a 
necessary condition for an input U to be optimal, assuming a 
unity amplitude constraint, is that it satisfy the fixed-point 
equation U = sgn [F(u)], where the functional F is the convo- 
lution of U with the autocorrelation function of the channel 
impulse response. It is also shown that all solutions to this 
equation for which I U 1 = 1 almost everywhere correspond to 
local maxima of the output energy. Iteratively recomputing U 
from the fixed-point equation leads to an algorithm for finding 
local optima. Numerical results are given for the cases where the 
transfer function is ideal lowpass, and has two poles. These 
results support the conjecture that in the ideal low-pass case the 
optimal input signal is a single square pulse. Often, several local 
optima are found by the iterative algorithm, and the global 
optimization problem appears to be computationally in- 
tractable. A generalization of the preceding fixed-point condi- 
tion is also derived for the problem of maximally separating N 
outputs of a discrete-time, linear, time-invariant channel, as- 
suming the inputs are constrained in time and amplitude. 

Index Terms- Amplitude-constraint, maximum energy, signal 
design, fixed-point condition. 

I. INTRODUCTION 
HE FOLLOWING signal design problem was posed by T Wyner [l]: Maximize the output energy of a linear 

time-invariant channel, given that the input signal is time and 
amplitude limited. That is, 

..a 

subject to 

where 

y ( t )  = / ‘ h ( t  - .)U(.) ds, 
0 
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and h ( t )  is the channel impulse response, which is assumed 
to be in L,. One motivation for studying this problem is the 
design of signals for channels whose inputs must be limited 
in amplitude, such as the magnetic recording channel [2 ] .  
Also, in some situations the input to the channel may be 
constrained by the dynamic range of the transmitter electron- 
ics, which also leads to a peak power, or maximum ampli- 
tude constraint. If u(t) is a solution to (P1)-(Cl), then the 
channel outputs corresponding to k U( t) are maximally sepa- 
rated in L,, making them relatively easy to distinguish at the 
receiver. 

From Parseval’s relation, the energy in (Pl) can be rewrit- 
ten as 

where N ( j w )  and U( j w )  are the Fourier transforms of h( t )  
and U( t), respectively. Thus, the maximum energy criterion 
can be viewed as a measure of how well the input spectrum is 
matched to the channel spectrum. Problem (PI)-(Cl) is 
therefore closely related to the study of the spectra of signals 
limited in both duration and amplitude [I]. 

Our main result is a necessary condition for optimality, 
which will be derived in two ways: first using the Pontryagin 
maximum principle, and second, using a Lagrange multiplier 
to solve (PI)-(Cl) where the amplitude constraint (Cl) is 
replaced by an ,!,,-norm constraint, and then letting p go to 
infinity. The condition is that the optimal solution must 
satisfy the fixed-point equation U = sgn [ F( U)], where F is 
the convolution of U with the autocorrelation function of the 
channel impulse response. We then show that fixed points 
represent local maxima of the channel output energy. 

The fixed-point condition naturally suggests an iterative 
substitution algorithm, which is then applied to two interest- 
ing special cases: channels with two-pole transfer functions, 
and the ideal low-pass channel. In the two-pole case, the 
numerical results illustrate the spectrum-matching property of 
locally optimal solutions. In the ideal low-pass case, the 
numerical results support the conjecture that the optimal 
input is always a single pulse. This problem is one in a class 
of signal design problems whose global solution appears to be 
computationally intractable. 

Finally, we consider a generalization of the problem 
(P1)-(Cl) in discrete-time in which N inputs to the channel 
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are to be designed to maximize the minimum distance be- 
tween channel outputs. We derive an optimality condition, 
analogous to the fixed-point condition, which must be satis- 
fied by at least one globally optimal solution. 

LI. THE FIXED-POINT CONDITION v u  THE PONTRYAGIN 
MAXIMUM PRINCIPLE 

In this section, we apply Pontryagin’s maximum principle 
to a state-space formulation of the problem, and thereby 
derive a necessary condition for optimality. For the theory of 
the maximum principle, we follow [3], [4]. There is an 
important observation that makes it possible to carry out this 
plan: The particular cost criterion of maximizing the total 
channel output energy can be expressed as one of maximizing 
a state-variable at a single time instant. This follows from the 
assumption that the channel is linear. Throughout this sec- 
tion, we will assume that the channel can be represented by a 
finite-dimensional state-space model, which is equivalent to 
assuming that the channel transfer function is rational. We 
also assume that this transfer function is stable and causal. 

The state equations that describe the channel dynamics are 

x ( t )  = A x ( t )  + b U ( t ) ,  ( 1 4  
where x is an n-dimensional state vector, U is a scalar input 
signal, and A and b are constant n x n and n x 1 vectors, 
respectively. The scalar channel output y is assumed to be a 
linear function of the state variables, namely, 

y ( t )  = c ’ x ( t ) ,  ( 1b) 
where c is a fixed n-vector. 

According to (Pl), we wish to maximize 

E = i - x ’ ( ~ ) Q x ( ~ )  d7, ( 2 )  

where Q = cc‘. Actually, the following discussion is valid 
for any symmetric, positive definite matrix Q .  For 7 1 T 
the system is unforced, so we can write X ( T )  in this range as 

X ( T )  = eA(‘-‘)x(T), 7 2 T .  (3) 
The (generalized) energy can therefore be written as 

E = l T x t ( 7 ) Q x ( ~ )  dr  + x ’ ( T ) G x ( T ) ,  

where the constant symmetric matrix G is given by 

(4) 

G = iweATsQeAs ds . ( 5 )  

A word about notation: We have used the n-dimensional 
state vector x in the usual way, but to develop the application 
of the maximum principle we will append an (n + 1)th 
component x, + , to represent the cost criterion. Sometimes, 
as before, we will want to use the vector x ,  and sometimes 
the (n + 1)-dimensional vector with the extra component. 
We therefore introduce the ( n  + 1)-dimensional vector 
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= [x:,l 

to represent the new vector; of course z, = x i  for all 1 I i 
I n. 

The new component to represent the cost criterion is 
defined as 

x,+,(t) = / o i x ‘ ( i ) Q x ( ~ )  d7 + x ‘ ( t ) G x ( t ) .  (6 )  

This is done so that x,+ , at time T is equal to the energy we 
want to maximize; that is, 

E = X n + l ( T ) *  (7) 

The derivative is 

X,+, = X’QX + x’(ATG + C A ) .  + b’(G + @ ) X U ,  

(8) 

where we have used the state equations (1). From now on, 
we will not explicitly indicate dependence on t when this 
cannot cause confusion; x and U are functions of time, while 
Q ,  A ,  G ,  and b are not. A well known theorem [5, 
Theorem 6, p. 1751 tells us that the first two terms in (8) 
cancel for all x ;  that is, G in (5) is the unique solution to the 
equation Q + ATG + CA = 0. Thus, the added state equa- 
tion is 

X,+, = ~ ~ ’ G x u ,  (9) 

since G is symmetric. The governing equations for the 
(n + 1)-dimensional system are therefore, 

i = f ( z , u ) ,  (10) 

where f is the (n + 1)-dimensional vector function having 
components 

f , ( z , u )  = [ A x ] , +  [ b ] , ~ ,  f o r k =  l ; . * , n  ( l l a )  

and 

f , + , ( Z ,  U )  = 2b’Gxu. (1 1b) 

The next step in the application of the maximum principle 
is the generation of the adjoint variables. Again, we use an 
n-dimensional vector p to represent the variables adjoint to 
the original n-dimensional x ;  and introduce the (n + 1)- 
dimensional vector 

= [P:+,]* 

The defining equations for the adjoint system are . 

The boundary conditions for the adjoint system are deter- 
mined by the cost function (see [3], [4]). More precisely, if 
the cost criterion is to maximize d’z(T) where d is an 
(n + 1)-vector, then 

q ( T )  = - d .  (13) 

The boundary conditions of the adjoint system are enforced at 
t = T-essentially the adjoint system runs backward in time. 
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Since we want to maximize x,+ 1( T), the fact that d = [0 0 
o. . .  0 11' and (13) imply that p,(T) = 0 when k I n ,  and 
pn + ,( T) = - 1. None of the functions fk( z ,  U) depends on 
x,+~, so (12) yields p,+,(t) = 0, which implies that 
~ , + ~ ( t )  = - 1 for 0 < t < T. 

We can now write the system dynamics in terms of the 
original n-dimensional state variable and its n-dimensional 
adjoint: 

k = AX + h, (144 

(14b) p = -ATp + 2Gbu,  

where (14b) is obtained by substituting (11) into (12). The 
component x,+,  does not appear in these equations, but 
simply determines the cost; and it has been shown that 

3 - 1. Furthermore, we have the 2 n  boundary con- 
ditions x(0) = p ( T )  = 0, which completely determine x 
and p. 

The Hamiltonian of the problem is 

H = flp 

= p ' A x -  [b1 (2Gx-p) ]u .  (15) 

The maximum principle then states that a necessary condition 
for optimality is that U be chosen to minimize this for any 
values of the variables x ,  p ,  and t ,  which yields the 
condition 

U = sgn [ b'(2Gx - p)] . (FP-1) 

This equation requires that an optimal U have the property 
that the sgn operation on the right-hand side reproduce the 
function U; we call this the jixed-point condition, and an 
equivalent form will be derived in the next section. Because 
both x and p in the bracketed quantity depend on the signal 
U, it appears quite difficult to obtain an analytical solution for 
U in general. Note that if p = 2Gx, then H, given values 
for x and p ,  is independent of U so that U from (FP-1) is 
ill-defined. The derivation in the next section implies that U 
must be zero when this occurs. It has been shown in [6], 
however, that there exists at least one global solution to 
(PI)-(Cl) for which I U 1 = 1 almost everywhere in [0, TI,  
in which case the sgn operation in (FP-1) is well defined 
almost everywhere. 

HI. AN EQUIVALENT CONDITION VIA A LAGRANGE 
MULTIPLIER 

We now use a different argument, characterizing the chan- 
nel by its impulse response, to arrive at a condition that will 
turn out to be equivalent to (FP-1). To enforce the amplitude 
constraint, we will constrain the L,-norm of the input signal 
U and then let p approach infinity. It is convenient to restrict 
p to even values. Thus, letting h ( t )  be the channel impulse 
response, we want to find a U that maximizes 

L[u ( t ) ]  = Im ( I T h ( t  - .)U(.) d7 
-03 0 

- X U P ( 7 ) d 7 .  (16) LIT 

The Lagrange multiplier X will be chosen to satisfy the 
constraint 

L T u p ( 7 )  dr = T. (17) 

This constraint is written with equality because if the L, 
norm of U is less than T, it can be scaled up to satisfy (17), 
and that can only increase the channel output energy. As ' 

p -+ 00 this becomes equivalent to the condition I U I = 1 
almost everywhere in [0, TI. A standard variational argu- 
ment leads to the necessary condition 

2LTm( t  - .)U(.) d7 - XpuP-'(t) = 0, (18) 

where 
03 

@(t - 7) = 1 h(s  - r ) h ( s  - t )  ds, (19) 

which is the autocorrelation function of the channel impulse 
response. The convolution of @ with U is an important 
quantity, which we denote by q ( t ) :  

--m 

q ( t )  = / '@(t - .)U(.) d r .  (20) 
0 

Solving (18) for U yields 

For each value of p this yields a solution U that depends on 
A, and X is determined by (17). Substituting (21) in (17) 
gives 

? J T q ( t ) u ( t )  dt  = T 
XP 0 

It is not hard to show that the integral in (22) is the channel 
output energy. Assuming U is optimal implies that 

2EP X p = - ,  
T 

where E, is the maximum channel output energy subject to 
the L, constraint (17), for fixed p. It is shown in the 
appendix that E, + E, as p -, 00, provided that 

sup 1'1 @(t - s) I ds < 00, 

where E, is the maximum energy in (Pl) subject to the 
amplitude constraint (Cl). Therefore Xp + 2 E, / T as p -+ 

00. Furthermore, for h ( - )  EL*, as p -+ 00, any sequence of 
solutions to (21), {U,), lies in a compact set, and therefore 
has a convergent subsequence. Also, (21) implies that u(t) 
= 0 for any t such that q ( t )  = 0. Since this holds for all p ,  
we conclude, by letting p -+ m in (21), that there exists a 
solution to (P1)-(Cl) that satisfies the fixed-point condition 

f€[O, TI 0 

u( t )  = s g n [ q ( t ) ] ,  (FP-2) 
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where where p,, is the largest eigenvalue p in (28). For finite T, 
the number of solutions to (28) is countably infinite in 
general. Whether or not this is also true for (FP-2) is 

We now verify that the two conditions (FP-1) and (FP-2) 

the initial condition x(0) = 0 we can write x explicitly as 
are equivalent. From the forward system equation (14a) and 

1,  if x >  0, 
s g n x =  0, if x = 0, (24) 

-1 ,  i f x <  0. unknown. I 
substituting (FP-2) into the expression for channel output 
energy gives 

It was pointed out to the authors by A. Friedman that the 
preceding argument shows only that there exists at least one 
solution to (P1)-(Cl) that satisfies (FP-2). We now show that 

Similarly, from the adjoint system equation (14b) and the fact 
that p ( T )  = O' 

most everywhere. The following argument is similar to that 
any solution to problem (P1)-(Cl) must satisfy (FP-2) al- 

used in Lemma 1.2 of [7]. Namely, suppose that u*(t)  is a 
solution to (P1)-(Cl). Consider the problem 

P ( t )  = -JI' e-A' (s -  t )  2Gbu( r )  d7. (31) 

Substituting (30) and (31) in (FP-1) gives 

Since the system output is c'x, where c is a fixed n-vector, 
- ~ = [ u ( t )  - u * ( t ) l 2  d t }  ( ~ 2 )  the impulse response is 

L T [ E ( t )  - u*( t ) ] 'd t  = 0. 

We can again write the Lagrangian for (P2), where (Cl) is 
replaced by an L, constraint, derive an associated optimality 
condition, and let p + 00. This leads to the following opti- 
mality condition for (P2)- (C 1) , 

T 

E, - L'qtjpqt) - u*(t)j  dt 

\ 

E ( t )  = sgn 

. [ !P(t)  - i i ( t )  + ~ * ( t ) ]  . (27) 1 
Now (26) implies that 2( t )  = u*(t)  almost everywhere, so 
that this and the optimality condition (27) imply that u*(t) 
must satisfy (FP-2) almost everywhere. 

It is interesting to observe analogies with problem (Pl) 
where the input is constrained in energy, i.e., L2-norm, 
rather than amplitude. In that case, the optimality condition 
analogous to (FP-2) is the eigenfunction equation 

u ( t )  = P * ( t ) ,  (28) 

(29) 

and the maximum channel output energy is 

T 

(34) 

IV. LOCAL BEHAVIOR AT A FIXED-POINT 
In this section, we study the local behavior of the channel 

output energy with respect to variations around solutions to 
(FP-2). The condition (FP-2) implies that I u( t )  I is either 
one or zero for all t. One approach is therefore to study the 
channel output energy as a function of the times at which 
u ( t )  changes value (i.e., the switching times). We first 
compute the derivative of the channel output energy with 
respect to a switching time, and show that if the input 
satisfies (FP-2), then perturbing a single switching time de- 
creases the output energy. We then examine the behavior of 
the channel output energy with respect to arbitrary variations 
around any solution to (FP-2), and thereby show that solu- 
tions to (FP-2) for which 1 u( t )  I = 1 almost everywhere are 
local maxima. 

In order to examine the behavior of the output energy with 
respect. to switching times, we will assume that solutions to 
(FP-2) switch a finite number of times in CO, TI. This is 
supported by our numerical experience, but conditions on 
h( t) under which this can be proved are not known. There is 
also the possibility that u( t )  = 0 on a set of positive mea- 
sure. However, if the channel transfer function H ( j w )  is 
rational, then !P(t) can be expressed as the sum of a finite 
number of complex exponentials, and therefore cannot vanish 
on any interval of length greater than zero. We therefore 
assume that 1 U( t) 1 = 1 almost everywhere, and characterize 
a particular u by its switching times. 
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An arbitrary candidate solution u with (m - 1) switching 
points T~ in the open interval (0, 1) can be written as 

m 

= ykS(t - 7 k ) 7  (35) 
k=O 

where S ( t )  is the unit step function, y k  = (- l)k if k = 0 or 
m, and y k  = 2( - l)k otherwise. The first and last switching 
points are fixed; 70 = 0 and 7, = T. We refer to such a 
solution as having m pulses. 

We will need the derivative of u with respect to the 
location of a switching point T;, which in terms of a 6-func- 
tion is 

-- a w  - -y;a(t - 7;). 
a 

The channel output energy is 

E = I-:( i T h ( t  - .)U(.) d7 d t .  (37) 

The derivative of the energy with respect to a particular 
switching instant 7; is therefore 

l 2  
aE 
- = 2/-:( i T h ( t  - .)U(.) dr 
a 

ds) dt  

We now show that if u( t )  satisfies (FP-2), then E is a 
local maximum with respect to each switching time. Suppose 
that, without loss of generality, q(0)  > 0, so that u(0) > 0. 
Consider the first zero crossing of P, that is, the first 
switchingpoint T ~ .  Since y1 = -2,  (38) impliesthat a E / a r l  
changes from positive to negative, which shows that the 
energy is a local maximum with respect to T ~ .  At the next 
switching point 72, P goes from negative to positive, but 
y2 = +2, so that the energy is a local maximum with respect 
to r 2 ,  and so forth for all remaining switching times. In the 
singular case when P is tangent to the time axis, we ignore 
the point of tangency as a potential switching point, which 
concludes the proof. 

The preceding argument establishes that E is a local 
maximum with respect to an individual switching time; 
however, it does not show that E is a local maximum with 
respect to the set of switching times T ~ ,  r 2 ;  e ,  7,. A 
straightforward computation shows that the ijth element of 

the Hessian matrix in this case is 

(39) 

where 6;, = 1 if i = j, and is zero, otherwise. The output 
energy is a local maximum with respect to the set of switch- 
ing times if this Hessian matrix is negative definite when U( t) 
satisfies (FP-2). It is not obvious, however, that this is the 
case, and we therefore resort to an alternative argument to 
show that solutions to (FP-2) are local maxima in a different 
sense. We add that the Hessian matrix given by (39) can be 
useful if gradient search techniques are used to find solutions 
to (FP-2) [8, Section 8.51. 

To show that solutions to (FP-2) for which I u ( t )  1 = 1 
almost everywhere for t E [0, TI correspond to local maxima 
of the output energy, we consider perturbations to a fixed 
point of the form 

u * ( t )  +  EA(^) 
i i( t)  = 

Ib *  + EAII, ’ 

where u*(t) is any solution to (FP-2), A(t) is an arbitrary 
perturbation, E is a small positive constant, and 11 f 1 1 -  is the 
L, norm of f(*). For convenience, we will assume that A(t) 
is continuous. (This is primarily to avoid the use of “essen- 
tial” suprema and infima in what follows.) We wish to show 
that if E is small enough, then E(u*) - E(ii) > 0, where 
E(u) is the channel output energy as a functional of the input 
U. The following discussion applies to solutions to (FP-2) 
which may be zero on a set of positive measure. 

We first write 

+ ~ A ( t ) ] % ( t  - s)[u*(s) + ~ A ( s ) ] d s d t  

-2cLTA( t )P*( f )  dt + O(E*),  (41) 

where q*(t)  denotes q ( t )  given by (20) in which u is 
replaced by U*. 

I 
Define the sets 

I =  { t :  u * ( t )  > o ) ,  I =  { t :  u* ( t )  < o}, 
and 

Io = { t :  u * ( t )  = 0) (42) 

and the quantities 

MI = supA(t),  M f  = - infA(t) ,  
tEI &I 

(43) 
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Then, we have that 

IIu* + EAII, = max(1 + EM,,  1 + EMJ,  EM,,) 

= max (1 + EM,, 1 + EM!) (44) 
provided that E is small enough so that EIIAI~, < 1 and 
 EM,^ < max (1 + EM,, 1 + EM!). We can now rewrite (41) 
as 

E, - E(i i )  = 2 ~ m a x ( M , ,  MJ)E,  

- 2 ~ 1 ~ A ( t ) P * ( t )  dt + O(E*) 

Of course, (FP-1) can also be used as the basis for this 
algorithm, in which case we would, given U, integrate the 
system equations (14) to get the required x and p. In 
practice, the algorithm is run several times from initial 
solutions uo that are chosen pseudorandomly. The method of 
choosing these is not critical, so long as a wide variety of 
different initial solutions is sampled. The particular algorithm 
used was the following: Choose a pseudorandom integer m 
uniformly between 1 and mmx = 10. Then choose the 
switching points 70 = 0, 7i pseudorandomly and uniformly 
inthe interval [ ( i  - l ) /m ,  i / m ) ,  i = 1, 2;-- ,  m - 1, and 
7, = 1. The computationally intensive step is the determina- 
tion of the zero crossings of the argument of the sgn function 

T in (A), which requires repeated evaluations of the convolu- 

One interpretation of (A) is that it is a gradient algorithm 
with a very large step-size, followed by a projection onto the 

= '€1 (max ( M I ?  Mi) sgn [**<'>I tion integral. 

- A (  t))**( t)  dt + O ( E ~ ) ,  (45) 
feasibility region. Specifically, consider perturbing the input 

where E is small. Letting 
E[ U( t ) ]  denote the channel output energy as a functional of 

where (25) has been used. From (FP-2) and the definitions of 
I ,  7, and Io, it follows that (45) can be rewritten as 

by some function 

E, - E(ii)  the input, it is easily shown that 

= 2 r (  [max(M,, M J )  - A(t)]**(t) dt 

- L [ m a x ( M , , M ? )  +A(t)]**(t)  dt + O ( c 2 ) .  1 
(46) 

The corresponding integral over the set Io is zero, since 
* * ( t )  = 0 for teZ0. By definition, for ~ E Z ,  max ( M I ,  
MI)  L MI 2 A ( t ) .  Also, since u*(t )  = sgn [**( t ) ] ,  * * ( t )  
> 0 for t E I ,  so that the first integral on the right must be 
nonnegative. Similarly, for t E I, max (M, ,  M!) 2 MJ 2 
- A(t), and **( t )  < 0, so that the second integral is less 
than or equal to zero, which implies that the term multiplying 
E in (46) is nonnegative. Now the two integrals in (46) can 
both be zero, if and only if A( t) = MI = MJ for all t E Zu I. 
If this is the case, then (40), (42), and (43) imply that 
ii( t )  = U*( t) for t E Z UI. Consequently, we conclude that if 
there exists a solution to (FP-2) in which meas Io > 0, then 
there exist perturbations A( t) for which the local behavior of 
the output energy E is determined by higher-order terms in 
E. However, if meas Io = 0, then the preceding argument 
implies that E, - E( ii) > 0 for sufficiently small E.  

aE[ U( t )  + €ii( t)] 
aE  = * ( t ) .  

Consequently, one version of a fixed step-size gradient algo- 
rithm is to let u'+ ' ( t )  = u' ( t )  - P * ( t )  for all t such that 
I u'( t )  - P * ( t )  I 5 1. If I u i ( t )  - P * ( t )  1 > 1, then pro- 

jecting onto the constraint region gives ~ " ' ( t )  = sgn [ u i ( t )  
- O*(t)]. For very large p, this algorithm becomes (A). 
Observe that if the gradient algorithm just described con- 
verges, then it also must converge to a solution of (FP-2). 

VI. NUMERICAL RESULTS 

A .  Upper Bound and Normalization 

that the channel output energy E is upper bounded by 
It is easily shown using the Cauchy-Schwarz inequality 

01 

E I T 2 / - , h 2 ( t )  d t .  (47) 

All energies reported in the numerical results are normalized 
by dividing by the upper bound in (47). It is assumed 
throughout that T = 1. 

B. The Two-Pole Case 
V. A FIXED-POINT ALGORITHM In this section, we consider the two-pole channel impulse 

(48) 

The fixed-point condition (FP-2) suggests the following response 

h ( t )  = e-"'cos (27r.ft + $1. numerical algorithm for computing solutions to (P1)-(C 1): 
\ ,  \ -  . ,  

Choose an initial input uo with I uo 1 = 1 in the inter- 
val [o, T ]  and 
Compute a new input ui+' from ui by 

elsewhere, but otherwise In this case the iterative algorithm described in Section IV 
can be made quite fast because the integrals required to 
compute * and the energy can be evaluated in closed form in _ _  

T terms of elementary functions. 
= 'gn (J, ' ( t  - 7 ) u i ( T )  d 7 )  (A) The first example is typical of the results obtained when 

\ U  I the channel is bandpass. It corresponds to the parameters 
U = 1, f = 5, and C$ = 0. The fixed-point algorithm was run 
100 times, each with a random starting input U'. A limit of 

until the switching points of U'+' and ui are sufficiently 
close. 
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lo00 iterations was set for each trial; if convergence was not 
obtained by then, the trial was abandoned. Out of 100 
random starts, the program converged 57 times to a particu- 
lar solution with 11 pulses, once to a solution with 10 pulses, 
and failed to converge within lo00 iterations for the remain- 
ing 42 trials. The two distinct solutions found are very 
similar, having normalized energy E, = 0.29887 and 
0.29771, respectively. Fig. 1 shows the time waveform and 
spectrum of the best solution found. 

Fig. 2 shows the best locally optimal solution obtained in a 
lowpass case, with the same parameters as before, except 
f = 0.75. This case turns out to be much less demanding 
computationally. A thousand random initial solutions were 
tried and the program converged within 2000 iterations every 
time. Again, two distinct local optima were found; one with 
2 distinct pulses (900 times) and the other with 3 (100 times). 
In this case the two solutions are appreciably different, with 
normalized costs of 0.36964 and 0.24566, respectively. Fig. 
3 shows the second-best solution. 

We mention one property shared by all the local optima 
found numerically in the two-pole case: the switching points 
are symmetrically located in the interval [0, TI. That is, for 
every switching point at r there is another at T - r .  For 
example, the solution shown in Fig. 1 has the switching 
points 

0 0.00000 
1 0.05165 
2 0.15123 
3 0.25086 
4 0.35052 
5 0.45019 
6 0.54987 
7 0.64954 
8 0.749 19 
9 0.84882 

10 0.94840 
11  1 .m. 
We conjecture that all local optima have this property in the 
two-pole case. Counterexamples to this conjecture have been 
found in the ideal low-pass case, considered next. 

C. The Ideal Low-pass Case 

The result of extensive computation in the ideal lowpass 
case is that the single pulse is always optimal, which we 
leave as a second conjecture. It is easily verified that in this 
case u(t) = 1, 0 < t < T, is always a solution to the 
fixed-point condition (FP-2). Table I shows a summary of the 
best and second-best locally optimal solutions obtained for 
bandwidths in the range B = 0.1 to 11, for the impulse 
response 

h(t) = sin (2?~BI)/(2?rBt).  (49) 

As B -, 00, this channel approaches the identity channel, so 
that the output energies corresponding to all unit-modulus 
input functions become equal. Consequently, the energies of 
the best and second-best local optima shown in Table I 
become very close for large B. The empirical probability of 

1 

0.5 

0 

-0.5 

-1 
0 0 3  1 1.5 2 

time 

-1 
0.8 4 

I 
0.6 4 

I 
0.4 J 

I 

:hannel Spectrum 
111\ ,, ,~ InputSpecmm 

o.2L=.4J 0 
0 2 4 6 8 1 0  

frequency (Hz) 

Fig. 1. Best locally optimal solution obtained for the two-pole, bandpass 
case with U = 1 ,  f =  5, and r$ = 0. Channel input and output time wave- 
forms are shown at the top, and the channel and input spectra at the bottom. 
Spectra are normalized so that their peak values are unity. 

0.5 l /  -! 

time 

0 2 4 6 8 1 0  
frequency (Hz) 

Fig. 2. Same as Fig. 1 except for the low-pass case with f = 0.75 

obtaining the best local optimum declines from 100% in the 
narrow-band cases ( B  = 0.1 and 0.5) to about 13% for the 
wide-band cases ( B  = 10 and 11).  The second-best solutions 
have 2 pulses instead of one (except for the case B = 2, 
which has 3 pulses). 

D. Comment on Energy Calculation 
Some care was taken in the numerical implementation to 

check the energy calculation. For maximal computational 
efficiency, the formula 

E = L ‘ . ( r ) u ( ~ )  dr 
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I 
I 

0.5 A 
I 
I 

0 - J  

I 
-0.5 4 

I 

time 

0 2 4 6 8 1 0  
frequency (Hz) 

Fig. 3. Same as Fig. 2, but for the second-best locally optimal solution. 

TABLE I 
NORMALIZED MAXIMUM ENERGY OBTAINED FROM THE 

FIXED-POINT ALGORITHM, vs. BANDWIDTH B IN Hz., IN THE 

IDEAL ~ W - P A S S  CASE* 

B max E m % Second-Best E m % 

0.1 
0.5 
1 .o 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
11.0 

0.9860 
0.7724 
0.4514 
0.2375 
0.1611 
0.1218 
0.0980 
0.0819 
0.0704 
0.0617 
0.0549 
0.0495 
0.0450 

1 100 
1 100 
1 98t 
1 32 
1 20 
1 16 
1 16 
1 16 
1 15 
1 14 
1 14 
1 13 
1 13 

(none) 
(none) 
(none) 
0.2053 
0.1510 
0.1163 
0.0945 
0.0795 
0.0686 
0.0604 
0.0539 
0.0486 
0.0443 

3 37 
2 21 
2 10 
2 8  
2 7  
2 7  
2 12 
2 12 
2 13 
2 4  

* For each bandwidth B ,  the table shows the best locally optimal energy 
obtained, the corresponding number of pulses m, and the number of times 
obtained out of 100. This is followed by the same information for the 
second-best locally optimal solution. 

t Two cases failed to converge within the allowed number of iterations, 
which was 1OOO. 

is best, because when combined with (35) it entails only 
O( m) evaluations of the indefinite integral of \k, where m is 
the number of pulses in the solution. The energy can also be 
computed by numerical integration of the squared channel 
output in the time domain, or in the frequency domain using 
Parseval's relation. The time-domain numerical integration 
was used to check the energy calculation for the two-pole 
case, and all three methods were compared in the ideal 
low-pass case. 

subject to the constraint 

1 u[k ]  1 I 1, k = 1 ; * * ,  K ,  

and (c3)  
u [ k ]  = 0 ,  f o r k c  l a n d k > K .  

Here we assume that h [ k ]  = 0 for k < 0 and k > M - 1 
(that is, the channel is FIR). It will be convenient to define 
the following vectors of channel inputs and outputs: 

U = [u [ l ]  u[2] . - -  u [ K ] ] ,  (504 

Y = [ Y [ l ]  Y [ 2 ]  y [ K + M -  111, (5Ob) 

where M is the length of the impulse response h[ k]. We can 
therefore write 

y = Hu, (51) 

where H is the (K + M - 1) x K matrix of impulse re- 
sponse coefficients that maps inputs to outputs. Note that 
E = y'y = u ' H H u .  

Pontryagin's maximum principle, outlined in Section 11, 
does not readily apply to discrete-time systems where the 
complete set of system equations are nonlinear [4]. This is 
true for the case considered when the channel state equations 
are augmented by a variable representing the cost function in 
(P3), as was done in Section 11. However, we can again 
replace the maximum amplitude constraint by the 1,-con- 
straint 

derive a necessary condition for an optimal input via the 
Lagrange multiplier technique, and let p -+ 00. This leads to 
the discrete-time fixed-point condition 

U = sgn(+u) ,  (FP-3) 

where + = H H  and sgn x is again defined by (24). This 
condition suggests a discrete-time version of the continuous- 
time fixed-point algorithm (A), which can be used to search 
for local optima. Also in analogy with the continuous-time 
case, it can be shown that all solutions to (FP-3) for which 
each component of U is f. 1 correspond to local maxima of 
the output energy. 

The discrete-time problem (P3) - (C3) has the following 
geometric interpretation. Any feasible input to the channel is 
a point contained in a cube in RK, with sides of length two, 
centered at the origin. Any channel output corresponding to a 
feasible input therefore lies within a parallelepiped P in 
wK+M- 1 , which is spanned by the column vectors of H, and 
translated so that its center is at the origin. Problem (P3)-(C3) 
is therefore equivalent to finding a point in P farthest from 
the origin. 

Note that VUE = +U = H' y. That is, starting at any point 
in P, moving incrementally in the direction of H y gives 
the largest increase in distance from the origin. If a point on 
the boundary of P is moved in the direction of H' y, then it 
moves outside of P. Although written in terms of the input 
U, (FP-3) simply states that an output point y E P is a local 

VII. DISCRETE-TIME PROBLEM 

impulse response h[ k], consider the problem 
Given a discrete-time, linear, shift-invariant channel with 

(p3) 
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optimum if, after moving incrementally in the direction of the 
gradient and projecting onto P, the result is again y. 

Any solution y in the output space must be a vertex of P. 
Otherwise, starting at a solution point, one could move along 
the boundary of P in a direction which increases the distance 
from the origin. This is because P is constructed from the 
intersection of hyperplanes, and it is always possible to move 
along a hyperplane away from the origin. Furthermore, the 
sphere of radius centered at the origin, where 
E,, = max E in (P3), can intersect P only at the vertices 
of P farthest from the origin. Since every vertex of P 
corresponds to a comer of the cube in which the input points 
must lie, any solution u to the discrete-time maximum 
energy problem satisfies I U[ k ]  I = 1 for k = 1 ,  , K .  This 
implies that the global solution to (P3)-(C3) can be obtained 
by an exhaustive search through all 2 K  vectors U for which 

In general, given an arbitrary convex polytope, the prob- 
lem of finding a vertex farthest from the origin is an NP-hard 
quadratic programming problem [9] .  A related problem, 
which arises in the context of maximum-likelihood detection 
of data at the output of a multiuser channel, and shown in 
[ lo]  to be NP-hard, is 

1 u[k] l  = 1 .  

max u' Au 
U 

subject to 

where A can be any nonnegative definite K x K matrix 
with rational elements. This problem becomes (P3)-(C3) 
when A = 9, and (QPC) is replaced by (C3). The previous 
discussion shows, however, that any solution to (QP) subject 
to (C3) must satisfy the constraint (QPC). Consequently, 
(QP) subject to the constraint (C3) is also NP-hard. For the 
maximum energy problem considered here, A = H'H is 
confined to the class of real-symmetric, Toeplitz matrices. 
Whether or not (QP)-(C3) remains NP-hard when A is 
constrained to be in this class is an open question [ 101. 

A .  Asymptotic Fixed-point Condition 
Consider, for the moment, (P3) where the input amplitude 

constraint is replaced by an input energy (I,) constraint. A 
necessary condition for the optimal input is then the eigenvec- 
tor equation 

u = M u .  (53) 

Rather than restrict U[ k] to be zero outside the interval [ 1, 
K ] ,  we now assume that u [ k ]  is zero outside the interval 
[ - K ,  K ] .  Note that (41) still holds, although H, and 
therefore a, must be modified accordingly. 

We now consider the problem of maximizing the output 
energy per unit time (power) as K --* 00. Since h [ k ]  has 
finite length M, the solution u [ k ]  for I k 1 I K - M is 
independent of the boundary condition U[ k] = 0 for I k 1 > 
K .  The "steady-state" solution that maximizes output power 

as K + 00 therefore satisfies 
m 

+ j - k u [  k ]  = Xu[i] , (54) 
k =  - m 

M -  1 

k=O 
for all i ,  where +i = 1 h [ k ] h [ k  + i ] .  Solutions to (54) 

are sinusoidal sequences 

u [ k ]  = Asin (kw + e), (55)  

where A and 8 are arbitrary constants, and X = 
I H(e-j") I ', the squared magnitude of the frequency re- 
sponse of the channel evaluated at a. The solution to the 
maximum energy problem as K -+ 00 is simply the sinusoidal 
sequence u [ k ]  at the frequency a for which I H(e-j") I 
assumes its maximum value. 

Returning to (P3)-(C3), as K + 00, the condition (FP-3) 
becomes, in analogy with (54), 

m 

sgn ( + j - k u [  k]) = u[i]. ( ~ p - 4 )  
k =  - m  

As an example, consider the 1 - D channel for which h[O] 
= 1 ,  h [ l ]  = - 1 ,  and. h [ k ]  = 0, k # 0,  1 .  Then (FP-4) 
becomes 

sgn ( 2 u [  k ]  - U[ k - 11 - U[ k + 1 1 )  = U[ k ] .  (56) 

Assuming 1 u [ k ]  I = 1 for all k, then solutions to (56) are 
all doubly infinite sequences containing elements 1 and - 1 
for which any three successive elements u[k  - 1 1 ,  u [ k ] ,  
u[k + 13 cannot all be the same. It can be easily verified by 
inspection that the sequence - - - , 1 ,  - 1 ,  1 ,  - 1 ,  * * maxi- 
mizes the output power, and that other solutions to (56) may 
result in strictly less output power. 

From this example, we see that there can be an uncount- 
ably infinite number of solutions to (FP-4) (the same applies 
to (54)). In contrast to solutions to (54), solutions to (FP-4) 
need not be periodic. The problem of further characterizing 
solutions to (FP-3) and (FP-4) remains open. 

VILI. OPTIMALITY CONDITION FOR 1, /I, SIGNAL 
DESIGN WITH MANY INPUTS 

Given a linear, shift-invariant channel with impulse re- 
sponse h[ k ] ,  suppose that we wish to find N 1 2 time-limited 
inputs that maximize the minimum Euclidean distance be- 
tween channel outputs. That is, we wish to find u l ,  * * -, uN 
to 

max dmin = min 11 H ( u i  - u j )  11)  (P4) I i#j 

subject to 

I u i [ k ]  I I 1, k = l ; . . ,  K ,  i = l ; . . ,  N ,  

(c4)  

where u, [k ]  is the kth component of ui.  This problem 
reduces to (P3)-(C3) when N = 2. 

A further generalization of this signal design problem is to 
require the channel outputs to be separated in I,,- norm, and 
the inputs to be constrained in I, norm, for arbitrary p and 
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q.  This I, / I ,  signal design problem is considered in [ll] for 
the case p = q = 00 (that is, the outputs are to be separated 
in amplitude, and the inputs are constrained in amplitude),' 
and in [12], for the case p = q = 2. The case considered 
here assumes p = 2 and q = 03. Problem (P3)-(C3) is 
therefore the I ,  / I, signal design problem for N = 2. 

The 1, / I ,  signal design problem has the geometric inter- 
to 

maximize minimum /,-distance between the points. The I, / I ,  
problem considered in [ 121 is equivalent to packing N points 
in an ellipsoid to maximize minimum Euclidean distance. 
The I ,  / I, problem is equivalent to packing N points in the 
parallelopiped P, defined earlier, again to maximize mini- 
mum Euclidean distance. Here we derive a local optimality 
condition for this problem, which is a generalization of the 
fixed point condition (FP-3). 

We again replace the amplitude constraint in (C4) by the 
I,-constraints 

pretation of packing N points in some region in R K + M -  

1 K  

However, the objective function d,, is not a differentiable 
function of U', , uN, so that we cannot immediately de- 
rive a necessary condition for optimality. We can, however, 
replace d,, by another function, called the potential func- 
tion, which is smooth, and closely approximates dmin. This 
technique was used in [12] to obtain numerical solutions to 
the I, / I ,  signal design problem via gradient search. For 
example, one candidate for the potential function is 

where d;, = (1 H( U ;  - U,) 11, and W is some large constant. 
For any signal set, as W -+ 00, f converges to 

For fixed K and N, define the Lagrangian as 

where the Xi's are chosen to satisfy the constraints (57). 
Taking the gradient of L with respect to U; gives 

AJ 

where 

assuming p is even. 
We now take limits as W -+ 00 and p -+ 00. The order in 

which these limits are taken is inconsequential. The left-hand 

' A continu6us-time channel is assumed throughout most of [ll], which 
leads to the L, / L ,  signal design problem. 

1 
-+ - @(U, - U,) as W-+ 03, (61) 

jeJi 

where J; = { j :  1) H( U; - U,) 11 = dmin}, and M =  I Ji I , 
where I J; 1 is the cardinality of J;. Note that we can always 
assume that 1 Jjl  2 1 for each i .  Otherwise, there exists a 
point which is at distance d > dmin from all other points. 
This point can always be moved so that it is at distance dmin 
from some other point without decreasing dmin. 

The Lagrange multipliers, A,; - -, A,, are determined by 
taking the inner product of both sides of (60a) with U;, which 
after letting W -+ 03 gives 

If the constraint (57) is satisfied with equality for particular i ,  
then Xjp/2  = E,,, u;CP(uj - U,). Otherwise, if strict in- 
equality holds for particular i, then X i  = 0, and as W + 03, 

(60a) becomes 

(U; - U,) = 0, (oc-1) 
j c  Ji 

assuming that CP is nonsingular. In this case, the sum of 
vectors from nearest neighbor points to U; is therefore zero. 
This is intuitively satisfying, since the assumption that (57) is 
satisfied with strict inequality implies that ui (y i )  is in the 
interior of the input (output) region determined by (57). It 
therefore makes sense that there is no direction in which this 
point can be moved so that its minimum distance to other 
points increases, which is implied by (OC-1). On the other 
hand, when (57) is satisfied with equality, U; is on the 
boundary of the constraint set, so that the distance between 
this point and its nearest neighbors can be increased by 
moving away from the constraint region. Note that summing 
both sides of (62) over i gives 1; Xi = 2yd;, / p ,  where 
N' is the number of points for which (57) is satisfied with 
equality, and y is the number of pairs of inputs that are 
separated by dmin. (When N = 2, y = 1.) 

The limit p -+ 03 can now be taken in much the same way 
as when N = 2, giving the condition 

(oc-2) 
j e  J, 

for points U; that satisfy the amplitude constraint (C4) with 
equality in at least one component (i.e., the I,-norm of U;, 
)Iu;II, = 1). If ) (ui( l0.  < 1 ,  then the condition (OC-1) ap- 
plies. Observe that (OC-2) implies that if U; satisfies (C4) 
with equality, then the components of U; can only be 1 ,  - 1 ,  
or 0. The analogous condition for l2 / I 2  signal design, i.e., 



when p = 2 in (57), is [12] (see also [13]), 

c *(U, - Uj) = xu,, (63) 
k J, 

for all U, such that 11 uill * = K, and is (OC-1) for all U, such 
that 11 U, 11 c K. The constant X is selected to satisfy (57). 
This condition (63) has the geometric interpretation that the 
sum of the vectors from nearest neighbor points to U, is 
colinear with iP-'ui. 

It is pointed out in [12] that the condition (63) is not a 
necessary condition for local optimality in the sense of (P4). 
That is, for given and N it may be possible to construct a 
set of points ul, - * , U,,, for which (63) is not satisfied for a 
particular point ui, but there is no direction in which U, can 
be moved to increase the minimum distance to nearest neigh- 
bors. This is because the objective function d,,, is not 
differentiable. However, it is shown in the appendix that 
there exists at least one (globally optimal) solution to (P4-C4) 
for which (OC-1) or (OC-2) is satisfied for every U,. (This 
proof also implies that there exists a global solution to the 
I, /I, signal design problem for which every input satisfies 
(OC-1) or (63).) A numerical gradient search algorithm 
based on maximizing the potential function (58) for fixed W 
is used in [12] to design energy constrained signal sets, and 
can be easily modified to use the amplitude constraint (C4) 
instead. 

IX. CONCLUSION 
We have derived a necessary fixed-point condition for 

solutions to the problem of maximizing the output energy of a 
linear, time-invariant channel subject to a time- and ampli- 
tude-constrained input, and have shown that it leads to a 
practical numerical algorithm for finding locally optimal solu- 
tions. For the continuous-time problem the fixed-point condi- 
tion was derived in two ways: using the Pontryagin maxi- 
mum principle starting with a finite-dimensional state-space 
description of the channel, and using a Lagrange multiplier 
argument starting with the channel impulse response. We 
also showed that fixed points which are + 1  almost every- 
where must be local maxima. 

The results presented here lead to a number of open 
questions, some of which are now listed. 

Is it possible to characterize the solutions to (FP- 
1)-(FP4) for any impulse response? How many solu- 
tions can there be? 
What restrictions on the impulse response are necessary 
to guarantee that the solution to (FP-2) switches a finite 
number of times? 
Are all solutions to (FP-2) for two-pole channels sym- 
metric about T/2? 
Is the single square pulse always the solution to 
(Pl)-(Cl) for the ideal lowpass channel? 
Is the discrete-time problem (P3)-(C3) for an arbitrary 
impulse response NP-hard? 

Another direction that can be explored is how to construct 
amplitude-limited signal sets that satisfy the optimality condi- 
tions. (OC-1), (OC-2). A related problem is the asymptotic 
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. -  

relationship between N and the maximum dmin for lm/12  
signal design as K --f 00. That is, for a fixed information rate 
R = log N / K ,  how does the maximum dmin increase with 
K a s  K + a ?  

An anonymous reviewer has pointed out that optimization 
of the transmitted pulse in digital communications must take 
into account the effect of intersymbol interference, which has 
been ignored here. A signal design problem related to those 
considered here, which does take intersymbol interference 
into account, is the following (see [14]): Assuming binary 
pulse amplitude modulation through a known dispersive 
channel, design an amplitude-limited transmitted pulse to 
maximize the minimum distance between sequences of re- 
ceived samples. Of course, other variations exist, and pro- 
vide interesting possibilities for future investigation. 
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APPENDIX 
We first show that l imp+- Ep = E,, where E,, is the maximum 

energy in (Pl) given that the input satisfies the L, constraint (17). 
Let up denote an optimal input. E, is then the maximum energy 
when the input is constrained in amplitude (L,) ,  and U, is an 
optimal input in this case. Note that E, 2 E, for any p 2 0, since 
an input that satisfies the amplitude constraint also satisfies the 
L,-constraint. 

We first rewrite (18) and (23) as 

for even p .  Let U, = sup 
t e [O,  TI 

I u,(t) 1 .  Then 

where 

Since this holds for all t ,  it follows that 

or 

where a is a constant that depends only on T and h ( - ) ,  and is finite 
provided that K < 03. It is easily shown that a 2 1 .  As p -+ 03, the 
maximum magnitude of the maximizing functions U, therefore 
tends to one. 
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Since any optimal input up satisfies (A.5), E, is less than the 
maximum energy at the output of the channel with impulse response 
h( e ) ,  subject to the constraint that the input is bounded in magnitude 

input a 1 / ( p - 2 ) ~ , ,  where U, is any solution to (P1)-(Cl), achieves 
this maximum energy, so that 

satisfies the amplitude constraint (C4) (p  = w). Combining this 
with (A.8) and (A. 10) gives 

by on [0, TI. Denote this energy by F,. Note that the f d ( w ;  W )  I f m a x ( w ;  W )  5 P ;  W )  

(A.ll) 5 K ’IPdiax (a) . 
2 __ 

E, 5 E, 5 Fp = O ~ ~ - ~ E , ,  (‘4.6) 

and letting p + 

U], 
(5% 

shows that E, + E,. 
We now show that there exists at least one solution to (P4)-(C4), 

e ,  U,,,, that satisfies the conditions (OC-1), (OC-2). From 

di,”, (‘4.7) 

since e-  w ( d i ~ - d 2 1 n )  = 1 for at least one ( i ,  j )  pair. Note that (A.7) 
is independent of the input constraint. 

For fixed p ,  W, and N, let fma,(p; W) be the maximum 
achievable value of f, assuming that the inputs satisfy the I,-con- 
straint (57), and let df be the corresponding minimum distance of 
any signal set which achieves f,, . Also, let d,,( p )  = max d,,, 
over all signal sets, assuming the constraint (57), and let fd( p; W) 
be. the value of the potential function (58) evaluated for any particu- 
lar signal set that achieves d,,,. Then (A.7) implies that for all p 
and W, 

f d ( P ;  W )  ( f , , ( p ;  W )  I d ? ( p )  5 diaX(p). (A .8 )  

For any signal set that satisfies the I,-constraint (57), we have that 

k = 1;**,  K.  (A .9 )  

Clearly, all solutions to (P4) subject to constraint (A.9) can be 
generated by scaling solutions to (P4) with constraint (C4) by K ‘ I p .  
The maximized minimum distance, subject to (A.9), is therefore 
K1/Pd,,(w), where d,(p) was defined earlier. The same scal- 
ing also applies when the objective function d,,, is replaced by the 
potential function f. Since all signal sets that achieve fmax(p ;  W) 
also satisfy (A.9), we have from (A.8), 

f,,(p; W )  I K 2 / p f m a , ( w ;  W )  5 K 2 / p d i , , ( w ) .  (A.lO) 

Finally, we use the fact that f , , , (p; W) 1 fmax(w; W), since any 
signal set that satisfies the constraint (57) for 0 < p < 03 also 

I U,[ k ]  I 5 K 1 I P ,  i = 1,. . . , N ,  

Now f d ( w ;  W) + d L ( w )  as W +  00, so that letting both p + 

and W + 03 shows that f,,(p; W) + di,(w). Furthermore, 
signal sets that maximize f satisfy (OC-1), (OC-2) as W + 00 and 
p + 00, so that (OC-1), (OC-2) must be satisfied for some (perhaps 
not all) solutions to (P4)-(C4). 

[31 

[41 
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