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Large-System Performance of Iterative Multiuser
Decision-Feedback Detection

Michael L. Honig Fellow, IEEE,and Rapeepat Ratasudember, IEEE

Abstract—The large-system performance of iterative multiuser both tend to infinity with fixed ratiok/N. Large-system anal-
decision-feedback detectors (DFDs) is studied for synchronous ysis has been applied to linear and optimal multiuser receivers
c_oded direct-sequence code-dlwsmn multiple access. Both succesy, [7]-[11], and has been shown to predict accurately the perfor-
sive and parallel demodulation of users are considered. The filters . - .
are optimized according to the minimum mean-squared error Mance of f|n|te—5|ze systems of interest. Lar_ge-system analyses
criteria, assuming perfect feedback. We first consider Viterbi Of noniterative DFDs have been presented in [12] and [13].
decoding with hard decision feedback, and compute union bounds We first consider maximum-likelihood (ML), or Viterbi
on the large-system error rate. We then consider maximuna pos- decoding with hard decision feedback, and derive a union
teriori (MAP) decoding with soft decision feedback, and evaluate 1,,,nq on the large-system error rate for iterative DFDs with
the error rate semianalytically by assuming the log-likelihood both parallel and successive demodulation. We then consider
ratios computed by the MAP decoder are Gaussian random P . . - T
variables. Performance is studied numerically as a function of Symbol-by-symbol MAP decoding with soft decision feedback,
noise level, spectral efficiency, and code rate. Results show thatas proposed in [1]-[3]. The large-system analysis depends on
soft decision feedback gives substantial gains relative to hard the distribution of the soft feedback computed from the MAP
decision feedback. At moderate spectral efficiencies (users divided 4acoger outputs. It has been observed that the distribution
by bandwidth expansion less than 0.9), the iterative DFDs with o .
soft decision feedback based ora posteriori probabilities can of the Iog-l|kel|h00_d. ratlos_ (LLRs) f'ﬂ the_output of a MAP
achieve near-single-user performance at a5, /N, close to the decoder for an additive white Gaussian noise (AWGN) channel
large-system capacity bound. can be accurately approximated as Gaussian [5], [14]. A

Index Terms—Code-division multiple access (CDMA), decision Semlana}lytlcal approach is theref_ore used, in which t.he mean
feedback, large-system analysis, multiuser detection. and variance of the LLRs for aingle-usersystem with a
particular convolutional code are determined by simulation.
These estimates can then be used to compute the large-system
performance with different system parameters (i.e., background

OFT iterative interference cancellation with single-usetoise level and load). In all cases, a key assumption is that
S'naximuma posteriori (MAP) decoding can offer a dra- the feedback is independent across users. Strictly speaking,
matic performance improvement relative to linear multiuséhis is true only in the limit of an infinitely long block length,
receivers [1]-[3]. Related schemes in which the interferena@d when the feedback is based on extrinsic information. A
canceller is replaced by a multiuser decision-feedback deteatomparison with simulation results shows, however, that the
(DFD) optimized according to the minimum mean-squarezhalysis gives accurate performance predictions for finite block
error (MMSE) criterion have been proposed in [4] and [5]engths, and when the (soft) feedback is computed feom
When used in the reverse link of a cellular system, these igosterioriprobabilities (APPs).
ceivers can, in principle, suppress other-cell interference whileRelated work is presented in [15], where density evolution
cancelling intracell users. In addition, relatively low-complexitys combined with large-system analysis to determine the fixed
adaptive implementations are possible, which do not requipeints of iterative interference-cancellation techniques. The
side information about channels and user spreading codes [aussian approximation used here is also used in that paper

In this paper, we examine the large-system performancetofevaluate the asymptotic multiuser efficiency of soft parallel
iterative DFDs with randomly assigned signatures and convolterference-cancellation schemes. A prior analysis of iterative
tional codes. Specifically, we examine the error rate of the itesoft parallel interference cancellation has been presented in [1],
ative DFDs as the number of usek§ and processing gailv ~ where the variance of the soft decisions at the output of the

MAP decoder, and the variance of the interference at the input
to the MAP decoder are computed iteratively. The large-system
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lation. At moderate spectral efficiencies (i.&/N < 0.9), the
iterative receivers can achieve near-single-user performai

at anE, /Ny close to the lower bound corresponding to th
large-system capacity [9]. The receivers are still interferen 60
limited in the sense that in the absence of noise, the errorr 7777 "Dmder

tends to 1/2 for large loads (users divided by chips per symbol). , , _ _ o
The maximum achievable spectral efficiency is obtained ﬁgabg(:kfteratlve receiver with ML decoding and hard parallel decision
letting the code rate approach one, and is slightly greater than

two with soft decision feedback, and is approximately 1.53

with hard decision feedback. In contrast, the optimal multius rThe DFD filters are optimized according to the MMSE crite-
. . - ' P fion with perfect feedback. This is in contrast to the MMSE and
detector is not interference limited [9].

The system model is described in the next section. Section{illcliapuve receivers proposed in [4]-{6] where the f||te_rs depend
on the soft decoder outputs. A large-system analysis of those

presents th? analysis with hard deC|§|on fegdback, and assplleivers appears to be quite difficult. Furthermore, numerical
ated numerical results are presented in Section IV. Soft deC'S%]mparisons (fol /N = 3/4) indicate that although an adap-
feedchk with MAP dgcodmg Is then analyzed in Section V, alle DFD performs significantly better than the fixed-coefficient
numerical results, which illustrate the effect of code rate on P&

. . X D for small systems [6], the performance gap diminishes as
formance, are presented in Section VI. Extensions to more reff_\F - Sy [6] P gap
the system size increases.

istic code-division multiple-access (CDMA) models are briefly Our objective is to seledf, andBj, to minimize
k k

discussed in Section VII.
_ NN O &
Il. SYSTEM MODEL AND RECEIVERS & =E Udk(l) =y (1) ] ~ 3

For simplicity, we consider an ideal synchr?nous CDMAy, what follows, we will sometimes omit the dependence on
system with perfect power control. Each user's sequence @frationsm and symboli for convenience. We refer to the set

information symbols {b,.(i)} for userk) is the input to @ of yncancelled users d%,, and the set of cancelled users as
convolutional coder, assumed to be the same for each user, gndror the successive (S)-DFD}, = {k, -+, K} andUj, =

the coder outputs are randomly interleaved before transmiss'nlqr]' ..,k — 1}, and for the parallel (P)-DFDY/, = {k} and
through the ideal synchronous direct-sequence (DS)-CD%’ ={1,--.k—1,k+1,---,K}. The vector&,(cm)(i) in (2)
channel. The number of chips per coded bivis= RN where has dimensiéfrﬁk|. i:urthe/rmoreBU — B,, whereB;, isthe

Itis th? code rate andV is t.he processing gain (bandv‘_"dthvector of elements i, with indexes inl/y, andBy, contains
expansion factor). The received vector 8f samples during only zeros

{y™(i)}[Tteration - ML |(b
Delay Deinterleaver Decoder

A (m=1)

{d

@}

symbol intervali is given by With perfect feedback, i.ed = d, the optimalF;, andB;,
r(i) = Pd(i) + n(3) (1) are given by [16], [17]
whereP = [py,---, px] is the N’ x K matrix of signatures, F.=Ry'pe  Br=P[ F, (4)

K is the number of usersl(7) is theith vector of interleaved
coded symbols across users, arid) is the vector of Gaussian
noise samples with covariance matsiXIy, wherel,, is the
M x M identity. mat_rix. The_ signature;_ are random with in- Ry, = PUkPI]A. + 02T (5)
dependent and identically distributed (i.i.d.) elements, and the
received power is normalized to one for all users. We assumsethe covariance matrix for the uncancelled users. That is,
binary information and coded symbols so that title element the feedforward filter is simply the linear MMSE receiver
of d(i), di(i) € {£1}. We refer toK/N = RK/N' as the for the uncancelled users, and the backward filter is selected
spectral efficiencyn bits per chip, since it is the normalized in-to cancel the interference from the remaining users. For the
formation rate summed over all users. single-cell case considered, it is straightforward to show
The received vectar(7) is the input to the DFD, consisting that the MMSE P-DFD reduces to the conventional (scaled)
of the N’ x K feedforward matridF, and thek x K feedback interference canceller, i.eF, = (1/(1 + o?))pr and
matrix B. The output of the DFD corresponding to ugeat Bj, = (1/(1+ ¢?))(Pg, )'pi. Thatis, the feedforward filter is
time ¢ and iterationm is a bank of matched filters.

where the columns of the matrR;, are the signatures of the
users inU, and

(M) _ oty ni 3(m=1)/.
yp (1) = Fypr(i) — Bpd,™ 7 (4). ) lIl. HARD DECISION FEEDBACK

where’ denotes complex conjugate transpdsé, is the kth A block diagram of the iterative parallel (IP)-DFD receiver
column of the matrixM, F;, andB,, are the feedforward and with hard decision feedback is shown in Fig. 1. Here, we
feedback filters, respectively, ardfcm)(z') is the input to the represent the feedforward filter & = Cpin(I + B), where
feedback filter, all corresponding to theth iteration for usek. Cpiy is the linear MMSE filter, andl + B can be inter-
The symbol estimatei;,(cm) are computed from the decoder outpreted as an error-estimation filter [16], [17]. Specifically,
puts. The feedback matrB contains the column{slf%k} padded Cpiy = R'P whereR = PP + 521/, which gives
with zeros, as will be explained. the sequence of outpufy (V) (i) = C] (i)} and the error
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sequence{ern(i) = d(i) — y()(i)}. The feedback filter whereP(™ = Pr{d, # d\"™} is the probability of error for the
B is selected to minimizeE{||(I + B)'erix||?}, where codedbits at iterationm.

Br., = 0if m € Uyg. This representation is equivalent to The SINR at the input to the ML decoder at iterationis,
the preceding expression (4), and appears in Fig. 1 since therefore
linear MMSE filter is used for the first iteration. That is, the
sequencéy V) (i)} is deinterleaved and decoded via the Viterbi
algorithm, which gives a sequence of hard decisifisd) (i)} .
These are reencoded and interleaved to produce the sequ
of estimated coded symbofsl)}, which are used for feed-
back cancellation. The sequence of inp{itéi)} and symbol
estimatesd(V)} are then filtered according to (2) with = d
to produce the sequenég(? (i)}, which is deinterleaved and

(m) 1
Pip-pEp = PR 4 o7 ©)

G\*H{'eefollowing analysis is consistent with the error independence
assumption wher?(™~1 s the error probability associated
with an ML decoder, which uses only extrinsic information. Be-
cause the performance with a standard ML decoder is of pri-
) i ) . mary interest, we will instead use the standard union bound to
input to the ML decoder. Trll.zf_r%cess is then iterated. evaluate the coded error rate. Strictly speaking, the error inde-
Forthe IP-DFD, the vectat,”  does notdepend oni.e., nendence assumption is no longer valid; however, comparisons
decisions from the preceding iteration are used for parallel capi, simulation results indicate that it still gives accurate per-

cellation. For the iterative successive (IS)-DFD, the most rec&gimance predictions. Since the large-system interference plus
decisions are used for cancellation. That is, for the first iterggise is Gaussian. the union bound is given by

tion, the S-DFD is used, in which users are successively demod-
ulated and cancelled. The filters for ugeare given by (4). In plm) — Z w P (/B(m) 'l>
succeeding iterations, the users are reordered, and the feedback IP—DFD>
filter B, cancelsall demodulated users. That is, the filters are

P-DFD filters, but the users are successively demodulated. Fere w, is the number of information bits corresponding to
the IS'DFD, the decision VeCtOI‘, which is fed back for Cance"%'rror paths of We|ght, dfree is the minimum free distance of

tion, is denoted ad{"™, where the firsk; — 1 elements (with the the code, andP(3; 1) is the pairwise error probability for a path
new ordering) are from the current iteration, and the remainigg weight/ at SNR3.
decisions are from the preceding iteration. For the first iteration, the large-system error rate is computed

In what follows, we will assume that the error events are ifor the linear MMSE receiver by computing the corresponding
dependent across users. This is true provided the following ty¢ege-system output SINR [8]

conditions are satisfied: 1) the block length tends to infinity, and
each user has a random interleaver, which is independent of the
interleavers for the other users; 2) the symbol estimate, which is
fed back for cancellation, does not depend on the current input
r(z). In the case of the ML decoder, the second condition re;
quires that the contribution from the current input be subtract erference-plus-noise covariance matrix for uséfhe output
from the decision metrics. Even without this modification, NUs terference plus noise becomes Gaussiakas- oo [18]
merical examples, which follow, indicate that the errorindepeg- that the error rate for the coded bits can again be boyunded
denc_e assumption Ie_ads to an_alytica_l results, which accuratg%éording to (10), whergip_prn is replaced bydy ix.
predict performance in the region of interest. The procedure for computing the large-system error rate for
the IP-DFD follows.

(10)
{>dree

1
= Im b R-'p —

Pun = lim p R, "py = R 11)

1+8uin

ich is independent of user, whelRg,- = R — pkpz is the

A. IP-DFD 1) Form = 1, compute the large-system output SINR for
For the IP-DFD, we have the linear MMSE receiver from (11).

2) Compute the union bound on coded bit-error probability

y;(cm)(i) _ [dk(i) + djém + Pln(i)] (6) from (10). Alternatively, this can be obtained by simu-

lating a single-user system.
where the elements op; are ii.d. random variables, 3) Compute the SINR atthe output of the P-DFD from (9).

E[||lpx||?] = 1, n is a constant, and 4) lterate steps 2 and 3. Compute the bit-error probability at
the final iteration from the corresponding union bound, or
m . S(m—1),. by simulation.
o =3 (o) [ - d" V@) @
7 B. IS-DFD

is the feedback error term. Léf = K/N’ denote the normal- ~ The analysis for the IS-DFD is more complicated than that for
ized load. Assuming that the error events are independent actss|P-DFD, since the performance of a particular user depends
users, a{ — oo with fixed K, the feedback error term be-on the ordering. To equalize the performance over the user pop-
comes Gaussian with mean zero and variance given by ulation, we reverse the order of the users from iteration to itera-
tion. For the first iteration, the S-DFD is used, which has output

m || _  pm=1)
E U% } =4r K ® yr(i) = rrdi(i) + Y + U5 + PLRG!n() (12)
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wherexy = kaR[_/:pk where the expectation is with respect to both the random signa-
tures and the data symbol\") = Pr{d; # d\"}, and we have
Yr = Z (pLRE:pj) d; (i) (13) usedthe factthas,; isindependent dRy, andpy. ASK — oo,
JEU we have
is the interference from undetected users, and 02 B K
<‘¢ ) ‘ ) — Mk “(k) / PO(2)dz  (22)
vl = (plRg'p) [0 - dVG)]  (4) 4
leU,

where~*(k) is given by (17), andP(M)(z) for z € (0,1) is

is the feedback error term for iteration = 1, all for userk. the limit of the sequencePl(l)7 el PI((I)} asK — oo, where

We define the normalized user indéx= k/K.As K — oo, [/K — .

the set of values, which can assume is dense in the interval The large-system error rate for the S-DFD can be evaluated
(0,1). With perfect cancellation, the “effective” load for uger numerically by integrating (15) and (22) across users. Specifi-
is (K — k +1)/N’, which has large-system limit (1 — k). In  cally, letG(3) denote the large-system error probability for the
what follows, we will always show the large-system user indecoded bits at the output of the ML decoder as a function of input

k as a function argument. SNR 3, assuming a single-user AWGN channel. Then
Referring to (12), with random signatures, Es— oo, kg /7 _
converges in probability to a constant [8], atg;, becomes PY(k) =G [ﬂSfDFD(k')] (23)

a zero-mean Gaussian random variable [18]. Assundirand  where
d( ) are independent af,, andd'V for 1 # n, which is rea-

[+ (k)]
sonable for sufficiently Iarge interleaving deptldé,lk also be- *(k) + €O (k= A) 4 o2y*(k)
comes zero-mean Gaussian. We can then evaluate the large-

system error rate by evaluating the large-system limit of ttie the large-system output SINR of the S-DFD for user

2

Bs_prp(k) = (24)

output SINR and can be computed from (16)—(18) and (22), ands the
integration step size. The new vali"V (k) is then used to
- K7 computeé (k) from (22), which is used in (24) to compute
Bs—prp(k) =

PM(0) = G[BLin(0)], wherepix(0) is the SINR for the
(15) linear MMSE receiver with loadk’, which corresponds to
wherevy, = p;, R “P, and the expectations are over the datl = 0.

lim
K 2 Bs_prp(k + A), and so forth. The boundary condition is
EQWM?+E(W&J)+UW

symbols only. In the large-system limit, the error rate for the S-DFD de-
As K — oo, we show in the Appendix that creases monotonically with user index, provided that the initial
B SINR for user indext = 0 is sufficiently high. In subsequent
o 1 (F) = Prix (k) (16) iterationsm > 1, the S-DFD is replaced by the IS-DFD, where
14 Brin (k) the order of the users is reversed at each iteration. The corre-
e 1 sponding feedback error term for a finite system is
: o =3 (plw) [ - di )] @)
X Puan(k) a7) Ik
o2 [1+2Bu(k)] + K(1-k) -1
; B B () B and depends oh. As K — oo
B({ral?) =9 (h) = — 2 o2y (k) (18) ) o
[1+ﬂLIN(k)] B < l/}{(‘:w;;:)‘ > _ f(m)(k‘) — 4K
where convergence is in probability. We emphasize that the 1
function argumenk denotes user index, and the corresponding P("’ o + plm=1) )da (26)
load isK (1 — k).
0 k

To evaluate the variance of the feedback error term (14), we
agaln assume thay andd," are each independent df and The two integrals on the right represent the contribution of users

1) for [ # n, so that I < kandl > k to the feedback error variance, respectively,
assuming the new ordering. The output SINR for user
m|? (1) i
E ’l/fs;k =4 Z PR ’PkRUA Pl‘ (19) 3(m) (k) = 1 @7)
E /[IS DFD g(m( )+0_2
= ﬁ Z P, Vg (PkREfpk> (20)  and the procedure for computing the error rates across users is
€Uy, the same as for the S-DFD where the SINR is given by (27), and

ical computation of the error rate requires that the integrals in
(22) and (26) be approximated as sums.

—4KE (p;R;]fpk) (% S Y

the feedback error variance is given by (26). Of course, numer-
(21)
leUy
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Fig. 2. Large-system error rate for the IP-DFD with hard decision feedbadkig. 3. Large-system error rate versus spectral efficieRgd\ with hard
Discrete points are from simulation withh = 120: “*”, “x”, and “0” decision feedback for very large, / No.

correspond to the linear, P-DFD, and IP-DFD with two iterations, respectively,
Cgrr;lg;;te H Deinterleaver H Dl;iﬁcl;r H(Pr(d (i)——: D)

with R = 1/2.
Compute
Interleaver Soft Decisions

TABLE |
CONVOLUTIONAL CODES FROM [19] USED TO GENERATE NUMERICAL
REsuLTS ACG IS ASYMPTOTIC CODING GAIN. THE RATE 7/8 CODE IS A

PUNCTURED RATE 1/8 CODE WITH 256 SATES Fig. 4. lterative receiver with MAP decoding and soft decision feedback.
R | # states | diee | ACG [dB]
1/41 64 |20 7.0 been selected from [19] on the basis of similar constraint
;;Z 23 160 gg lengths and performance. (See Table 1) The vertical curve
7/8| 256 | 4 5.4 associated with each code is specified by a load threshold,
below which the union bound does not converge. Above the

threshold, the interference is perfectly cancelled, and since
IV.-NUMERICAL RESULTS HARD DECISION FEEDBACK the noise is negligible, the error rate is essentially zero. The

In this section, we show large-system performance results foeximum spectral efficiency is achieved by lettiiy — 1,
the IP-DFD with hard decision feedback. Additional numeric#&ind is approximately 1.52. We remark that with coding, the
results show that the error rates for both the IP- and IS-DFDgniterative P-DFD achieves nearly the same performance
converge to the same value with sufficient iterations. We defag the IP-DFD, and the corresponding error-rate curves are
a comparison of IP- and IS-DFD performance to Section VI-Aearly vertical. Approximately ten iterations are needed for the
which presents results with soft decision feedback. IP-DFD to converge with? — 1.

Fig. 2 shows plots of large-system bit-error rate (BER) versus
E, /N, for the IP-DFD with hard decision feedback with spec- V. SOFT DECISION FEEDBACK
tral efficiency K/N = RK = 0.75 and code raté? = 1/2.  \yg now refer to Fig. 4, in which a MAP decoder computes
Properties of the convolut.|onal codes used to generate all M= Prldy(i) = 1] for eachk = 1,...,K andi. The soft
merical results are shown in Table |. Also shown are plots COMggyimate off, at iterationm, which is fed back for cancellation,
spondmg ta? — 1, and simulation results for the coded P-DF D Jé:m) — E[dy] = 2 — 1. For the IP-DFD, theth input to the
W!th K = 12_0. Theformerp!ots as_sumethﬁt—> 1 from below 'MAP decoder for usek is
with perfect interleaving. With coding we note that only three it-
erations are needed for the error rate to converge. (The first tpfg)(i) =7
iterations correspond to the linear and noniterative P-DFD, re-
spectively.) The rate 1/2 code improves performance only whe ; T A _ gm-1) Tors
Ey /Ny is relatively high. This is because for the rate 1/2 code,r1< dk(LHl#Zk (p’“pl) [dlm 4 (L)} +ppn(i)| . (28)

there aréV/2 chips per bit, and hence, fewer degrees of freedom
are available for interference suppression thanifors 1. The In analogy with the error independence assumption for hard de-

input SINR for the code must exceed a sufficient threshold besion feedback, we will assume that the terms in the sum (feed-
fore the benefit of the coding gain is realized. back error terms) are independent across users. This assumption
Fig. 3 shows large-system error rate versus spectral effi-valid provided that the users have independent random inter-
ciency K/N when the background noise is negligible. (Wéeavers, and that each soft feedback estir@’ﬂ% is obtained
choseE;, /Ny = 100 dB.) Curves for different convolutional from extrinsic information. Legapp (i) denote the full APP
code rates are shown, including — 1. The codes have computed by the MAP decoder for théh symbol, and let
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qexr(i) denote the corresponding probability based on extrinsic *
information. Then the LLRlog[gexT(4)/(1 — qext(4))] = 18f
log[gapp(i)/(1 — qup(i))% log[g()/(1 — ¢(i))], where

g9(1) = Prldp(z) = 1|y,(c (7)] is the APP computed from
the current input. Strictly speaking, the error independence 1.4}
assumption is not true when APPs are used to compute the sc s
feedback. However, a comparison with simulation results show:

that the following analysis accurately predicts performance 1}
(with APPs) over a wide region of interest. o

Letting K = KN — oo, the second term in the bracket
(feedback error term) becomes Gaussian with mean zero arosf

variance given by 0al

¢m) Z | / (L= dFynn (o) (29) o2

. o . “(m) - -1 -oia -ojé -of;;w -oz tl) 0.2 0.4 0.6 0.8
(™4, _,(z) is the distribution ofd;”™’ given that the Soft output from MAP dacoder

coded Symbo‘ik = 1. Given¢(™ ando, the large-system de- Fig. 5. Probability density functions (30) for different iterationsfat/ Ny, =
coded error rate is the same as that feirgleuser transmitting 4 dB.

over an AWGN channel, where the SNRLE (™) + 02). This
error rate can be obtained by simulating the single-user syst
or can be estimated via a union bound.

To obtainFa(m)‘d ( ), we use the approximation that the

LLR log[q1 /(1 - @)l Whereq1 is the random variable com-
puted by the MAP decoder conditioned dp(i) = 1, is a

whereF

§8%e feedback error term, and again assumingdhahdci(l)

are each independent df, and dV for 1 # n, we have, in
analogy with (21)

Gaussian random variable with meany r and variance?; z o)
[14], [20]. The corresponding density is given by <"/’ > N’ Z E (kaLkpk) b (32)
el
2 1
fag””\dkﬂ(x) = w0l o l— a2 whered, = E(|d; — @l)md, = 1) is given by (29) and (30),

1 and the expectation is with respect to both the random signatures
X exp <_ 2tanh™ () — “LLR> (30) and the data symbols. A§ — co, we have

2
207 1r

wheretanh™"' denotes inverse hyperbolic tangent. Examples
corresponding to different iterations at £,/No = 4 dB are E <‘1/](1) ‘2> . f(l)(ﬁ) — K" (k)
shown in Fig. 5. The quantitigs; g ando?; 5, as a function Eik

of SNR, are obtained by simulating the equivalent single-user
AWGN system.

o(z)dx (33)

o.\..?r‘l

) here~y* (k) is given by (17), and(z ) for € (0,1) is the
The large-system error rate for the IP-DFD with soft feedba 5rge _system limit of the sequeng&, - - -, 6x }, wherel /K —
can be computed according to the following procedure. - L

1) For the first iteration, compute the large-system output The |arge-system error rate for the soft S-DFD is evaluated
SINR for the linear MMSE receiver from (11) along withpy numerically integrating (33) across users according to the
the corresponding error rate. _ following procedure, wherg is the integration step-size.

2) ;Sfelfjuaﬁl:a?p?;geodﬁ;g ;Sez flug(r:t:lgon of the SINR com- 1) Fork = 0, the output SINR, error rate, and corresponding

. (1)

3) Compute the variance of the feedback error tefff K?Lu;}sh;&éLER; e(Z:IéLi\]}é randf (0), are evaluated for the
fromt g[zgt)h arlljle(F?(()j), WZ'Ch determines the SINR at the 2) The large-system SINR at the input to the MAP decoder
inputto the ecoader. for userk + A is computed from (24), (16)—(18) and (33).

4) Compute or look up the single-user decoded error rate. 3) ¢ (k+ A) is computed from (29) and (30) using values

5) lterate steps 2, 3, and 4. ;
. . for upr andorr corresponding to the SINR from the
The analysis for the soft IS-DFD is analogous to that for the preceding step.

hard IS-DFD. Namely, for the first iteration the output SINR for s -
the S-DFD is again given by (15) whesg, £(|¢r. k|2) andh, 4) ;Peerlé;i!tg((jjek is replaced by: + A, and steps 2 and 3

have the large-system limits in (16), (17), and (18), respectlvely
In this case In this way, the large-system output SINR and corresponding

error rate can be evaluated for= nA, n =0,1,---, AL,
p =3 (pZRg:pl) [dl(i) - ng)(i)] (31)  In succeeding iterations, the S-DFD is replaced by the
1€, IS-DFD, where the order of the users is reversed at each
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iteration. The output SINR for usér at iterationm is then 10’
given by (27) where the feedback error term

&B=3 (el [dm @ -0 64y
1#£k

linear MMSE i
*_ %
* ¥ * x .

depends o, anda?}m) contains estimates from both the currents

and preceding iterations. A8 — oo

5 k

E<¢§’,rllc)’ > _)g(m)(];,):K /6(m)(‘1’)d'r+/5(m_l)(‘1’)dl’ 107 single-user
) J

(35)

where§(™)(z) is the variance of the feedback error term for "°f
userz at iterationm. The procedure for computing the error
rates across users is then the same as for the S-DFD, where 4+ . . s . L
SINR is given by (27), and the feedback error variance is give EN, (¢8)

by (35). @

1 4its. 4-\

Probability of En

VI. NUMERICAL RESULTS SOFT DECISION FEEDBACK
A. Comparison of IP- and 1IS-DFDs

Fig. 6 shows plots of large-system BER verdig N, for the
IP-DFD with spectral efficiency /N = RK = 0.75 and code ]
rate R = 1/2. Simulated points corresponding 6= 120 are  _ °
also shown. The results in Fig. 6(a) and (b) assume soft fee_S
back based on extrinsic information and APPs, respectively. Tlz 10
single-user coded error rate as a function of SNR was dete¢
mined by simulation for error rates greater tHaT 3, and by
computing the union bound for error rates less than?. For
this example, thd’, /N, corresponding to the large-system ca:
pacity at a spectral efficiency of 0.75 bit/chip is approximatel 10°¢
3.2dB. Comparisons with simulation results for smaller systen
shows that the large system requires relatively few iterations . ,
converge even at afi, /Ny close to the steep part of the curve. 2 8 4 s Eb,Nj(dB,

Fig. 6 shows that the large-system results accurately predict ®)
the simulated results for the number of iterations shown. This ,

s true for both extrnsic feedback and feedback based on APPE, 5 ,Lge-syster eror e verefh ¥ 1o the IDED wiy <ot

For the case of APP feedback, increasing the number of itega— 1/2 and the spectral efficienci/N = 3/4. (a) The soft feedback
tions beyond five shifts the large-system “drop-off” point by apsymbols are computed from extrinsic information. (b) The soft feedback
proximately one dB to the left, whereas the simulated drop-g#MPo!s are computed from APPs.

point does not change. This inaccuracy may be caused in part by

the dependence among soft feedback decisions, as pointedtbetadditional information provided by the current symbol. We
earlier. However, further investigation indicates that the maemphasize that this performance gain depends on the assump-
reason for this inaccuracy is that after a few iterations, the d&ns of a large system and optimized P-DFD filters assuming
coder decisions begin to harden, and introduce errors into fherfect feedback. Further simulations indicate that the gap be-
feedback filter, which are not accounted for in the large-systemeen the “waterfall” regions shown in Figs. 6(a) and 6(b) di-
analysis. In other words, after a few iterations, the distributianinishes when the system size is reduced, and when the fil-
for the LLRs at the output of the MAP decoder become skeweys are estimated from the received data [21]. (Furthermore,
thereby violating the Gaussian assumption. (This appears todxérinsic feedback can slightly outperform APP feedback.) Fi-
less of a problem with extrinsic feedback since only five itemally, comparing Fig. 6(b) with Fig. 2, for the particular code
ations are needed for convergence.) We find, however, thataad parameters chosen, iterative soft decision feedback with
higher loads, the large-system analysis with APP feedback AR Ps offers a gain of nearly 5 dB relative to hard decision feed-
mains accurate for a larger number of iterations. back.

Comparing Fig. 6(a) and (b), we see that large-system perBecause of the improved large-system performance of APP
formance with soft decision feedback based on APPs providegdback relative to extrinsic feedback, and the accuracy of the
a substantial performance gain relative to extrinsic feedbadkige-system analysis, as shown in Fig. 6(b), in what follows
The degradation in performance due to biased interference we-restrict our attention to APP feedback. Fig. 7 shows large-
timates, associated with APPs [15], is therefore outweighed bystem error rate versus normalized user indfor the IS-DFD

linear MMSE

Probabi

single-user
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Fig. 7. Large-system error rate versus normalized user index for the IS-DRBy. 9. Large-system error rate versHs /N, for different code rates with

Simulated results witl{ = 150 are also shown. K/N = 1.25.
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Fig. 8. Large-system error rate verskis/ Ny for IP- and IS-DFDs. Fig. 10. Large-system error rate versus spectral efficiency with EkgeV, .

with APP feedback. The indexés= 0 andk = 1 refer to the
user decoded first and last, respectively, in the first iteration. Tﬁé
spectral efficiencyK/N = 0.75 and E, /Ny = 4.5 dB. Also Fig. 9 shows large-system error rate verduyg N, for the
shown are the corresponding simulated resultgfor 150. A IP-DFD with spectral efficiency /N = 1.25 and code rates
fixed number of runs was used to generate the simulated results= 1/2, 3/4, and 7/8. Curves are shown for five and ten itera-
so that the variance increases as the error rate decreases.tibhe. For the relatively high spectral efficiency considered, the
error rates for all users converge to the single-user bound witlgher code rates give substantial performance improvements
fewer iterations than those required by the IP-DFD. relative to the rate 1/2 code. Fig. 10 shows large-system error
Fig. 8 compares large-system error rates veiSpSV, for  rate versus spectral efficiendy/ N with very largeE;, / Ny (100
the IP- and IS-DFDs. The parameters are the same as those uldfor different code rates. Curves corresponding to one and
to generate Fig. 6. The IS-DFD curves for iterations 1-4 corrien iterations are shown with coding. The curveRor 1 again
spond tok = 0, 1, 0, 1, respectively. The first iteration, thereassumes thaR — 1 from below with perfect interleaving. In
fore, corresponds to linear MMSE performance, and coincidtésat case, 20 iterations are needed for convergence. These plots
with the P-DFD. These results show that the number of iterdemonstrate that the iterative receivers considered are interfer-
tions required by the IS-DFD for convergence (for any user) @&ce limited. That is, for a given code, the maximum Idad
less than that required by the IP-DFD. Still, both the IS- arttiat can be supported is finite even in the absence of noise. This
IP-DFDs converge to the same error rates given sufficient itermaximum load is shown to increase with code rate, and tends to
tions. the loadK = 2.01 as the code rat® — 1. In contrast, it has

Effect of Code Rate
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aor Our results also show that with limited iterations, the IS-DFD

can perform significantly better than the IP-DFD, although with
sufficient iterations, both perform the same for the cases consid-
, ered. Examples with coded hard decision feedback show that the
14 | Rt IP-DFD requires only one or two additional iterations for con-
L vergence.

The analysis presented here can be extended to account for
unequal received powers, asynchronous users, and multipath.
Unequal received powers can be taken into account by using the
formula for large-system SINR for the linear MMSE receiver
with an arbitrary received power distribution presented in [8].
The analysis then proceeds as before, where the variance of the
‘ — feedback error term must include an average over the power
2F distribution of the cancelled users. For the S- and IS-DFD, this

o2

minimum E_/N
3

®

capacity bound

. ‘ ‘ ‘ . , , term depends on the user and the order in which the users are
%.2 0.4 0.6 0.8 1 12 14 16 1.8 2 2.2 Cance”ed-

Spectral Efficiency (K/N) . . .
The extension to asynchronous CDMA is more difficult, but

Fig. 11. MinimumE, /N, required to achieve either the single-user bounccan be accomplished using techniques developed for the linear
or an error rate ofl0~° with different code rates. The minimuf;/No  raceiver in [23] and [18]. The feedback error terms must, of
corresponding to large-system capacity is aiso shown. course, be averaged over the random delays. The effect of mul-
tipath can be taken into account for a particular user by con-
been shown in [22] that the optimal (ML) receiver is not interditioning on the user's channel, as in [24]. With small delay
ference limited. spreads (i.e., ignoring the intersymbol interference), the vari-
Fig. 11 shows the minimurk, /Ny required by the IP-DFD ance of the large-system multiple-access interference can be es-
to achieve either the single-user bound or an error ral®of timated as in [24] and [25].
(whichever is larger) as a function of spectral efficiedCyN . Finally, we remark that the CDMA model analyzed here is
Curves are shown for code rates 1/4 and 1/2 with five iteratioregjuivalent to a single-user flat fading channel with multiple
code rates 3/4 and 7/8 with ten iterations, d@d- 1 with 20 transmit and receiver antennas (e.g., see [26]). If the channel co-
iterations. The choice of iterations is based on the observatigfficients arei.i.d., then the large-system analysis presented here
that more iterations are needed for convergence at higher loagtn be applied directly to a multiple-antenna system where the
Also shown is the lower bound on minimuff / N based onthe CDMA parameterss’ and N’ become the number of transmit
large-system sum capacity with random spreading [9]. Lettirsgnd receiver antennas, respectively.
C(Ey/Ny; p) denote this large-system capacity as a function of

E,/Noy andp = K/N in bits per chip, the latter curve is the APPENDIX
E, /Ny which satisfiesC (E, /No; p) = p, wherep is the target
spectral efficiency. This corresponds to binary signaling. These DERIVATION OF (16)—(18)

results show that the iterative receivers perform quite close tojt is sufficient to derive these relationships By, = R.

the capacity bound for spectral efficienci&N < 0.9, but The first relation (16) follows directly from (11) and the matrix
diverge from the capacity bound as thg' N increases. As ex- inversion lemma. To derive (17), we again apply the matrix in-
pected, low-rate codes perform better than high-rate codes/atsion lemma

low spectral efficiencies, and the reverse is true at high spectral

efficiencies. p,R?p), =pLR; *ps
tn-1_ )’
[Ritpe  (PiRPy)
VII. CONCLUSIONS AND EXTENSIONS o« |1 2PrRy-pr PrT-Pr
L : 1+p,R; "pr 1+piR!
Large-system performance of iterative DFDs with parallel ; T PRy Pk
and successive demodulation has been studied. Soft decision P
feedback gives a substantial improvement in performance rel- - PR, Pk (36)
. . _ 2
ative to hard decision feedback (e.g., nearly 5 dB WithV = (1 + pLR,}lpk)

3/4). In addition, our results show that APP feedback gives a

substantial performance improvement relative to extrinsic feed- N ) ) )
back. With APP feedback at moderate spectral efficiencies, f8€reRx- = R — Pipy 1S the interference-plus-noise covari-
soft iterative DFDs can achieve near-single-user performanc@af€ matrix. Nowp; R, _pj. — friv and
Ey/Ny's close to the capacity limit. However, the iterative re-

: : L : : 0
ceivers are interference limited, in the sense that there is a max- pLR;}pk = - 907 (pLR;}pk) (37)
imum loadK that can be supported even in the absence of noise.
For a large system, this maximum load increases with code rate B ABLIN (38)

to a value slightly greater than two &— 1. - 9(0?)
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in probability asK — oo. Computing the derivative and com- [19]
bining with (36) gives (17).

The multiple-access interference term (18) can be obtaine 0]
by observing that the large-system SINR for the linear MMSE
receiver is

[21]
2

()

Brix(k) = m

(39) 221

Solving fory* and combining with (16) and (17) gives (18).
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