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1 Introduction

One of the major features that distinguish modern wireless communication channels from
wireline channels is the significant amount of structured interference that must be contended
with in wireless channels. This interference is inherent in many wireless systems due to their
operation as multiple-access systems, in which multiple transmitter/receiver pairs commu-
nicate through the same physical channel using non-orthogonal multiplexing. Structured
interference also arises because of other non-systemic features of wireless systems, such as
the desire to share bandwidth with other, dissimilar, communication services.

Signal processing plays a central role in the suppression of the structured interference
arising in wireless communication systems. In particular, the use of appropriate signal
processing methods can make a significant difference in the performance of such systems.
Moreover, since many wireless systems operate under highly dynamic conditions due to the
mobility of the transceivers and to the random nature of the channel access, adaptive signal
processing is paramount in this context.

The study of adaptive processing techniques for interference suppression in wireless sys-
tems has been a very active area of research in recent years. The purpose of this chapter
is to introduce the reader both to the basic problems arising in this area, and to the key
methods that have been developed for dealing with these problems. This presentation will
focus primarily on the problem of suppressing multiple-access interference (MAI), which is
the limiting source of interference for the wireless systems being proposed for many emerging
applications areas such as third-generation mobile telephony [94, 125] and wireless personal
communications [19, 70]. However, we will also touch briefly on the related and important
problems of multipath mitigation and narrowband interference suppression.
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In treating the problem of MAI suppression, it is useful to consider a general multiple-
access signal model that arises in the context of a wireless digital communications network
operating with a coherent modulation format. The waveform received by a given terminal
in such a network can be modeled as consisting of a set of superimposed modulated data
signals observed in additive noise:

r(t) = Su(b) +n(t), —oo<t< oo, (1.1)

where S;(b) and n(t) represent the useful signal and the ambient channel noise, respectively.
The useful signal Si(b) in this model is comprised of the data signals of K active users
in the channel, and can be written as

St(b) = f: Ak f: bi,ksk(t - ’LT - Tk), (12)

where 2B + 1 is the number of symbols per user in the data frame of interest, 7" is the symbol
interval, and where A, 7%, {b;ix}, and {sk(t);0 < ¢t < T}, denote, respectively, the received
amplitude, delay, symbol stream, and normalized modulation waveform (or pulse shape) of
the kt* user. The matrix b denotes the K x (2B + 1) matrix whose k,i—th element is b; .
The data signals of the individual users may be asynchronous, in which case the relative
delays with which the various data signals arrive at the receiver are distinct. However, when
considering analytical properties, it is often sufficient to examine the synchronous case (i.e.,
T| = Ty = -+ = Tk ), since asynchronous problems can be viewed as large synchronous prob-
lems. It should be noted further that, although this model does not explicitly include effects
such as fading, multipath, intersymbol interference, or narrowband interference, such effects
can be included without loss of tractability, as will also be discussed further in the sequel.
A further generalization of this model allows for diversity at the receiver, in which multiple
waveforms are observed, each of which contains information about the data sequences. Such
a model arises when considering the use of antenna arrays for reception, as will be described
below.

The principal feature that distinguishes multiuser formats of the type described in (1.1)
- (1.2) from one another is the choice of the set of signaling waveforms (i.e., the signal
constellation, s1, s2,...,5x). We are interested here in problems in which these waveforms
are not orthogonal. The use of non-orthogonal waveforms has several advantages in certain
wireless channels, including a greater bandwidth utilization under the common conditions
of channel fading and bursty traffic. One of the most important formats of this type is
the direct-sequence spread-spectrum multiple-access format, which corresponds to a set of
signaling waveforms of the form

[ 22a4(t)sin(wet + ¢x) , te0,T]
%m_{o g0 T] (1.3)

where w, is a common carrier frequency, ¢ is the phase of the k** user relative to some
reference, and where the spreading waveforms ax(t) are of the form:

N-1

a(t) = Y aph(t — iT2) (1.4)
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Here, ako, a1, -.,akn—1 1s a signature sequence of +1’s and -1’s assigned to the kt* user,
and v is a normalized chip waveform of duration 7. (where NT, = T'). The signature se-
quences (or spreading codes) and chip waveform are typically chosen to have autocorrelation
and cross-correlation properties that reduce multipath, multiple-access interference, and un-
intended detectability, criteria that generally lead to signaling waveforms with nearly flat
spectral characteristics. Note that, in this type of signaling, the bandwidth of the underly-
ing data signal is spread by a factor of N. This particular model, which is sometimes termed
direct-sequence code-division multiple-access (DS-CDMA) signaling, will be discussed fur-
ther below.

It is the non-orthogonality of the signaling waveforms si, s, ..., sk, that gives rise to
the multiple-access interference with which the receiver must contend. In particular, if the
receiver wishes to infer the data stream of a given user, say user # 1, then the fact that the
other users’ signaling waveforms are not orthogonal to s; makes it impossible to isolate user
1’s signal without diminishing the detectability of user 1’s data. However, through proper
signal processing, the effects of the interfering signals can be minimized so that little is lost to
this source of error. The area of study that deals with such problems is multiuser detection,
and this chapter is primarily concerned with performing this task efficiently and adaptively.

This treatment is organized as follows. In Section 2, we provide a brief review of the
elements of multiuser detection, which provides a framework for the development of most
of the remainder of the chapter. In Section 3, we consider in more detail a specific class of
multiuser detectors - linear multiuser detectors - that contains many of the most promising
structures for introducing adaptivity into this problem. This treatment generalizes the model
(1.1) - (1.2) to include diversity and other effects. Section 4 discusses the particularization of
linear multiuser detection to the DS-CDMA format described above. Next, in Section 5 we
consider the adaptation of linear multiuser detectors. In particular, several basic adaptive
algorithms are discussed in the context of their complexity, convergence and performance
characteristics. Section 6 considers the implications of some non-ideal effects arising in wire-
less channels, and also discusses some systems issues impacting the application of adaptive
interference suppression in wireless systems. An extensive, but not exhaustive, bibliography
of key sources in this area is also included.

2 Elements of Multiuser Detection

Almost by definition, the performance characteristics of multiple-access channels featuring
traditional demodulation techniques are limited by multiple-access interference. It can be
shown, however, that such limitations are due largely to the use of non-optimal signal pro-
cessing in the demodulator, and are not due to fundamental characteristics of the channel.
Multiuser detection seeks to remove this MAI limitation by the use of appropriate signal pro-
cessing. Essentially, through the use of multiuser detection (or derivative signal processing
techniques), performance in multiple-access channels can be returned to that of correspond-
ing single-access channels, or at least to a situation in which performance is no longer MAI
limited. This property is obviously very desirable, even in radio networks using power control
or other protocols that seek to limit the effects of MAL

The basic problem of multiuser detection is that of inferring the data contained in one



or more signals embedded in a non-orthogonal multiplex, the entire multiplex of which
is received in ambient noise. Equations (1.1) - (1.2) describe a model of such a received
signal. Within this context, multiuser detection refers to the problem of detecting all or
part of the symbol matrix b from the multiplex (1.1) - (1.2) with non-orthogonal signalling
waveforms, such as those arising in DS-CDMA. In the demodulation of any given user in
such a multiplex, it is necessary to process the received signal in such a way as to minimize
two types of detrimental effects - the multiple-access interference caused by the remaining
K — 1 users in the channel, and the ambient channel noise. In order to focus on the multiple-
access interference, the great majority of research on this problem has ascribed the simplest
possible model to the ambient channel noise; namely, that the only ambient channel noise
is additive white Gaussian noise (AWGN) with fixed spectral height, say o?, and that this
noise is independent of the data signals. In the following paragraphs, we also assume this
model for the ambient noise.

Within the multiple-access signaling model there are two general scenarios of interest:
an uplink (or reverse link) scenario, in which all signaling waveforms and data timing are
known; and a downlink (or forward link) scenario, in which only a single user’s waveform
and data timing are known. In the uplink scenario, the general characteristics of optimal
demodulation schemes for (1.1) - (1.2) under an AWGN model can be inferred by examining
the likelihood function of the observed waveform (1.1), conditioned on the knowledge of all
data symbols (i.e., conditioned on b). On assuming that the received amplitudes are known,
this likelihood function can be written via the Cameron-Martin formula [76] as

£({r(t); —o0 < t < co}|b) = C exp{Q(b)/25%} (2.5)

where

smﬁzsza@ymﬁ—/msﬂmﬁ (2.6)

and where C is a constant. The part of (2.6) that depends on the received waveform can be

written as
K B

./;o:o Si(b)r(t)dt = z_: Ag _z: bi ki k (2.7)

where
[e o]

yﬁz/ su(t — 5T — 7 )r(4)dt (2.8)

is the output of a filter matched to the k** user’s signaling waveform shifted to the 7** symbol

interval of the k** user.
It follows from (2.5) - (2.8) that the matrix of matched filter outputs,

y={vir;k=1,...,K;2=—-B,...,B}, (2.9)

forms a sufficient statistic for the matrix b of data symbols; that is, all information in the
received waveform that is relevant to making inferences about b is contained in y. So, the
main job of optimal multiuser detection is to map the matrix y of observables to a matrix
b of symbol decisions. Thus, the general structure of optimal systems for determining the
data symbols from the received waveform consists of an analog front-end that extracts the
matched filter outputs, followed by a decision algorithm that infers optimal decisions from
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the collection of these outputs. The nature of the decision algorithm in this process depends
on the optimality criterion that one wishes to apply to the decision. If one adopts either a
mazimum-likelithood criterion,

mgxé({r(t); —00 < t < oo}|b) (2.10)

or a minimum-error-probability criterion,

min P(b;  # bik{r(t); —oo < t < co}), (2.11)
ik

then, assuming the signaling waveforms sp satisfy sg(t) = 0 for ¢ ¢ [0,7], this optimal
decision algorithm can be implemented as a dynamic program (i.e., a sequence detector)
having O(|A|¥) time complexity per binary decision (see [119]), where |A| is the size of the
symbol alphabet. In the case of synchronous signals, dynamic programming is unnecessary
and the optimal detectors essentially involve either exhaustive search over the |A|X symbol
choices in each symbol interval in the case of maximum-likelihood detection, or O(|A|¥)
computation of posterior probabilities in the case of minimume-error-probability detection.

Using these techniques it has been shown by Verdd (cf., [118]) that, for reasonably high
symbol-energy-to-ambient-noise ratios, performance very near that of single-user communi-
cations is possible with the optimal multiuser detector. This is a considerable performance
gain over conventional matched-filter detection (which demodulates b;; by simple scalar
quantization of y; ), which suffers from substantial performance losses in some multiple-
access situations. (Such situations include the “near-far” situation, in which interfering
users are received with much larger power than users of interest.) However, the much im-
proved performance afforded by optimal multiuser algorithms comes at the expense of both
computational complexity (i.e., the O(] A|¥) computational cost per binary decision); and in-
formational complexity due to the need for knowing all delays, amplitudes and modulation
waveforms to extract the matrix sufficient statistic y.

During the late 1980’s and early 1990’s, a significant amount of research addressed the
problem of reducing the computational complexity of multiuser detection. A key approach to
this problem is to restrict the optimal detector to be of the form of a linear multiuser detector,
in which the data is demodulated by scalar quantization of a linear mapping on the matrix
y. In view of the definition of y;x, this type of detector is effectively comprised of a linear
filter applied to the received waveform, followed by a scalar quantizer. (Of course the filter
may depend on both k and .) Two types of linear detectors of interest are the decorrelating
detector (or decorrelator), which chooses the linear filter to have zero output multiple-access
interference [49]; and the MMSE detector, which chooses the linear filter to have minimum
output energy within the constraint that the response of the filter to sg(t — ¢7" — 7%) is
fixed [31, 44, 51, 58, 82, 83, 93, 96, 133]. Such detectors can be shown to also satisfy other
optimality criteria. Although such detectors fall short of optimal (maximum-likelihood)
detection in terms of error probability, they are still far superior to conventional detection
in terms of their error-probability performance in interference-limited environments. Linear
detectors form the basis for the results described in the remainder of this chapter, and a
detailed description of their properties is found in Sections 3 and 4.

Several useful nonlinear lower-complexity multiuser detectors also have been developed.
These are based primarily on various techniques for successive cancellation of interference.



Also, methods for combating fading, multipath, etc. have been combined with multiuser
detection as well. Some works in these areas include [17, 45, 68, 72, 111, 112, 113, 114,
115, 116, 135, 139, 140], although this list is hardly exhaustive. A survey of basic multiuser
detection methods, and a more complete bibliography up to 1993, can be found in [119].
(See, also the forthcoming textbook [121].)

The issue of informational complexity in multiuser detection has been addressed through
the use of adaptivity. This issue is particularly critical in the context of downlink demod-
ulation, in which the direct implementation of non-adaptive versions of the above-noted
detectors is neither practical nor desirable. However, uplink adaptivity is also of interest in
practice, due to the dynamic nature of practical multiple-access channels. (Some discussion
of this issue is found in Section 6.) Recent progress on adaptive multiuser detection is the
subject of the remainder of this chapter.

3 Linear Interference Suppression

In this section we look more carefully at linear multiuser detection, in which linear filtering
at the receiver can be used to suppress wideband multiple-access interference. This general
approach to interference suppression has its origins in the related problem of of linear equal-
ization in the presence of synchronous interfering data signals', and seems to have been first
studied nearly thirty years ago [24], [42]. There are several reasons why linear interference
suppression is attractive for wireless applications:

1. it can suppress both narrowband and wideband multiple-access interference;

2. it has modest complexity relative to other interference suppression and multiuser de-
tection techniques, as noted in the preceding section; and

3. the linear filter can be implemented as a digital filter, or tapped-delay line, making it
convenient for adaptation using conventional adaptive algorithms [23],[32].

To discuss this approach, it is convenient to view the multiple-access channel considered
in Section 1 as a many-input linear system, as shown in Figure 3.1. In this depiction, the
(linear) operations of modulation and transmission of the data sequences of the various
users are lumped into the linear time-invariant transfer functions ﬁl(f), ﬁz(f), . ,ﬁK(f)
In particular, (1.1) - (1.2) is realized by this model if we choose ﬁk(f) to be the system with
impulse response

Hk(t) = Aksk(t — Tk). (31)

In this context, we will first derive the optimal linear receiver for this type of channel, where
the optimality criterion is minimum Mean Squared Error (MSE). We will then discuss some
properties of this detector, such as the number of users that can be suppressed completely
versus available bandwidth, and the implementation of the detector as a fractionally-spaced
tapped-delay line. Application to the DS-CDMA model of (1.3) - (1.4) is discussed in Section
4.

!The multiuser signaling model of (1.1) - (1.2) includes as a special case the single-user intersymbol-
interference channel, which corresponds to the case K = 1 with s; nonzero over more than one symbol
interval.
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Figure 3.1: Multiple-access channel model.

3.1 Multi-input/Multi-output (MIMO) Minimum Mean Squared
Error (MMSE) Linear Detector

To examine the MMSE linear multiuser detector, we will generalize the above signaling
model slightly. First, in order to treat some nonideal effects later, we will allow the signaling
waveforms and received amplitudes to be complex. And, secondly, we will allow for M®h-
order reception diversity, in which we have M observation channels similar to that depicted
in Figure 3.1. Usually, these M channels correspond to the outputs of M elements in an
antenna array. In this situation, it is convenient to represent the multiple-access channel as
a special case of a K-input/M-output linear channel with M x K transfer function ﬂ(f)
Refering to Figure 3.2, the input to the channel ﬂ(f) is

s(t) = Y bié(t —iT) (3.2)

where b; is the K-vector of transmitted symbols at time i (that is, b; is the :** column
of the matrix b introduced in Section 1) and 1/T is the symbol rate, assumed to be the
same for all users. The kth component of b;, denoted as b, k, is the ith transmitted symbol
from user k. We assume that the signaling waveforms corresponding to each user, as well
as relative amplitudes and delays for each observation channel, are included in the channel
transfer function ﬂ(f) (We remark that this model is general enough to account for both
transmitter and receiver diversity.)

—

Figure 3.2: Multi-input/Multi-output (MIMO) channel and receiver model.

Both channel and receiver filters are illustrated in Figure 3.2. Let H(¢) and R(%) be the
impulse responses associated with the filters H(f) and R(f), respectively. The output of
the receiver filter R at time £7 is:

r(kT) = S {R * H[(k — i)T]}b; + R % n(kT) (3.3)
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where “4” denotes convolution and n(t) is a noise vector with M components. We wish to

find the receiver filter R that minimizes the MSE, E{|r(0) — b||*}. This filter has been
derived in [30] and [100], and is illustrated in Figure 3.3. It consists of a front-end matched
filter with K x M matrix transfer function I:I*(f)ST_Ll(f), where S,(f) is the noise spectral
density matrix, followed by a multi-input/multi-output discrete-time filter with K x K matrix
coefficients. The transfer function (i.e., z-transform) of this discrete-time filter is

C(2) = Su(2)[Su(2)Sul2) + 17" (3.4)

where Sg(z) is the equivalent discrete-time transfer function that maps the sequence of
input symbol vectors {b;} to the sequence of matched filter outputs {r(s7")}, and Sa(z) is
the spectrum of the data sequence. We can therefore write Sg(z) for z on the unit circle as
the aliased version of I:I*S;11:I, ie., for z = T

Sa(e™™T) ZH* (f - —) S,! (f - ;) f (f - ;) (3.5)

= Zz_lpi (3.6)

where p; = E{b,b}, ;}. In Figure 3.3, d; denotes the output of the MIMO discrete-time
filter C at symbol time 2.

and we have

AT
S(f) ' (f) o U oy [

Figure 3.3: MIMO MMSE linear equalizer.

y(t)

If the noise and data sequences are jointly timewise and componentwise uncorrelated,
then the matched filter becomes H*(f)/c2, where o2 is the noise variance per channel, and
the discrete-time filter becomes

1

C(z) = on[Su(z) + €1 (3.7)

with
Su(e) = g i (- 1) (- 1), (38

¢ =02/o}, and 02 is the data variance per channel. (Note that the only difference between Sg
and Sy is that Sg does not include the noise variance o2. This representation is convenlent
for what follows.) The minimum value of the MSE assoc1ated with the MMSE filter R i
then given by

1/(27)
MMSE = trace {T/
-1/(2T)

C(ejz"fT)df} (3.9)
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Figure 3.4: MMSE linear detector for the multiple-access channel. Only the detector for
user 1 is shown.

This form of the MMSE detector for the multiple-access channel is shown in Figure 3.4.
Only the detector for user 1 is shown, which consists of a bank of matched-filters, symbol-
rate samplers, and discrete-time filters. The MMSE transfer function C1 x(z) in Figure 3.4
is the (1, k)th component of the matrix C(z) given by (3.7).

In the remainder of this chapter we will assume that the sequences of noise and symbol
vectors are timewise and componentwise uncorrelated, in which case Figure 3.4 gives the
canonical linear MMSE detector structure.

3.2 Zero-Forcing ( Decorrelating) Detector
As the noise variance diminishes to zero, the MMSE linear filter approaches the matched
filter H*(f), followed by a symbol-rate sampler and a discrete-time matrix filter with transfer
function ) B
C.f(z) = [Su(z)] (3.10)
The resulting MSE is given by
1/(2T) .
MSE,; = o’trace {T / czf(eﬂ’ffT)df} (3.11)
—1/(2T)

Because the transfer function C,f(z) inverts the equivalent discrete-time transfer function
Sy, which maps the source symbols to the matched filter outputs, it eliminates all inter-
symbol and multiple-access interference (at the expense of enhancing the background noise).
For this reason the matched-filler H* followed by the transfer function C,f(z) is known

as the zero-forcing detector for the multiple—ian]/Evﬁ@l}iqﬂa&mﬁlpH(Q[ ).
When applied to the multiple-access channel in Figure 3.1, this detector is also known as
the decorrelating detector, or decorrelator, since it removes the correlation among users due

to nonorthogonal pulse shapes [49],[50].

It is apparent from (3.10) that the zero-forcing solution exists provided that the matrix
SH(z) is nonsingular for z on the dnfthesrcbmdition has a special interpretation for
the multiple-access channel. Specifically, in this case ﬂ(f) is a 1 x K row vector, so that

20f course, it is possible that Sg(z) is singular for some set of z on the unit circle, and that the MSE that
results from substituting (3.10) into (3.11) is finite. However, finite MSE requires that Sg(e/2™fT) cannot
be singular for f in some interval with positive length.



ﬂ*(f)ﬂ(f) is an outer product matrix, which has rank one. Sg(e/?™/T) in (3.8) is therefore
the sum of L rank-one matrices, where for each f € [—1/(27"),1/(2T)], L is the number of
Nyquist zones® where ﬂ(f) # 0. Since gH(ejz"fT) is a K x K matrix, a necessary condition
for Sg(e7™T) to be nonsingular for all f € [—1/(2T),1/(2T)] is that K < L for each f. This
implies that for the zero-forcing solution to exist, there must be at least K Nyquist zones
available to the users. This property was first observed by Petersen and Falconer [73] in the
context of wire (twisted-pair) channels with crosstalk. (See also [4].) Note that these Nyquist
zones can be spread among the users so that either (1) the users do not overlap in frequency
(namely, Frequency-Division Multiple-Access (FDMA)), (2) all of the users overlap at all
frequencies (CDMA or TDMA), or (3) some users overlap at some frequencies, but not at
other frequencies (combined FDMA/TDMA/CDMA).

For the multiple-access channel, the availability of K Nyquist zones for K users is nec-
essary but not sufficient to ensure the existence of the zero-forcing solution. That is, it may
happen that even with more than K Nyquist zones available, the zero-forcing solution does
not exist for f in some positive interval contained in [—1/(27),1/(2T)]. For sufficiency,
there must be at least K vectors ﬂ(f — k/T) appearing in the sum (3.8), that are linearly
independent at each f. (This set of K vectors may depend on f.)

Consider the case where the channels for each user shown in Figure 3.1 are the same,
ie., He(f) = H(f) for each k. The preceding discussion suggests that each additional
Nyquist zone in H(f) can be viewed as an additional “dimension”, or “degree of freedom”,
which can support an additional user without causing interference to existing users. This
“dimensionality” interpretation will be useful when the tapped-delay line implementation
of the linear MMSE detector is discussed in the next section. Note that for “orthogonal”
multiple-access systems such as FDMA and TDMA, this observation is equivalent to stating
that each user requires at least one Nyquist zone to ensure the existence of the zero-forcing
equalizer [46, Ch. 10].

We now examine the effect of receiver diversity on the preceding results. In this case each
channel Hi(f) in Figure 3.1 becomes a M X 1 column vector, where M is the order of the
receiver diversity, so that ﬂ(f) is an M x K matrix (K inputs, M outputs). Consequently, the
rank of ﬂ*(f)ﬂ(f) is at most M, and we conclude that a necessary condition for gH(ejz"fT)
to be nonsingular for all f € [—1/(2T"),1/(27")] is that the number of users K < LM, where L
is again the number of Nyquist zones available to the users. This upper bound can be achieved
if the matrices ﬂ(f—k/T) in the sum (3.8) contain LM linearly independent columns at each
f. The number of dimensions or degrees of freedom available to suppress users is therefore
given by the number of Nyquist zones times the number of antenna elements. (A similar
treatment of dimensionality in the frequency and spatial domains is given in [18].)

A final remark about the zero-forcing detector is that even when it does not exist (i.e.,
S (e??™fT) is singular), the MMSE detector is still well defined. Namely, it is always possible
to select a filter to minimize output MSE. Consequently, the zero-forcing detector can be
viewed more generally as the limit of the MMSE detector as the level of background noise
tends to zero. This limit always exists even though the zero-forcing solution may not exist.
This representation for the zero-forcing detector is useful in situations where the number of

3In this context, a Nyquist zone is a translate of the basic Nyquist interval, [-1/(2T), 1/(2T)] by an
integral multiple of 1/T.
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interferers exceeds the available dimensions that the detector has to supress multiple-access
interference. Although the zero-forcing solution technically does not exist in this situation,
the more general representation may still offer a substantial performance improvement rela-
tive to a simpler (e.g., matched-filter) detector.

3.3 Implementation as a Tapped-Delay Line (TDL)

The preceding formulation of the MMSE and zero-forcing detectors assumes knowledge of the
user signaling waveforms along with relative timing and phase, the channel characteristics
for each user, and the noise spectral density. In Section 5 we show that the MMSE detector
can be implemented without this knowledge. This depends on an alternative representation
of the MIMO MMSE linear filter as a bank of fractionally-spaced tapped-delay lines or
discrete-time filters, which we now develop.

A classical result for single-user channels is that the optimal (MMSE) linear equalizer
can be implemented as a fractionally-spaced tapped-delay line (TDL) [41, Ch. 10],[91]. To
see this, let W denote the two-sided bandwidth of the received data signal. Referring to
Figure 3.4, the combination of the matched-filter H;(f), 1/T sampler, and discrete-time
filter Ck(z) in each branch of the MMSE detector can be replaced by a lowpass filter B(f)
with two-sided bandwidth W, a sampler at rate W, and a discrete-time filter é’k(z) with
frequency response that has period W. Stated another way, each front-end continuous-time
matched-filter in the MMSE linear equalizer can be moved to the associated discrete-time
filter, provided that the sampling rate is increased from 1/T to at least W.

The preceding discussion implies that each branch of the MMSE detector shown in Fig-
ure 3.4 can be replaced by a low-pass filter B( f) followed a rate W sampler and fractionally-
spaced TDL, where the tap spacing is 1/W. Choosing B(f) to be the same for each branch
allows the K branches shown in Figure 3.4 to be collapsed into a single branch consisting of
B(f) a rate W sampler, and discrete-time filter with transfer function given by the sum of
the transfer functions for each branch.

To summarize, the MMSE multiuser linear detector for the multiple-access channel can be
replaced by the bank of fractionally-spaced TDLs as shown in Figure 3.5. The filter Ci(2),
1 < k < K, is selected to minimize MSE for user k. The sampling rate, or tap spacing
in the discrete-time filters thus depends on the bandwidth of the received signal. If the
zero-forcing solution exists, then the bandwidth W must be at least K /T where 1/T is the
symbol rate for the users. To interpret this result another way, observe that to distinguish K
symbols transmitted by K (noncooperative) users, the receiver must sample at least K times
per symbol. Furthermore, these K samples must be linearly independent. From Nyquist
sampling theory, this implies that the bandwidth of the received signal must be greater than
or equal to the sampling rate K/T'.

With spatial diversity at the receiver, it is straightforward to show that the MMSE
receiver can be implemented by summing the outputs of fractionally-spaced TDLs associated
with each antenna. This is illustrated in Figure 3.6 for the case of two antennas. Figure 3.6
shows the MMSE detector for user 1, which contains two TDLs. Given M antennas, the
MMSE detector has M TDLs for each user (indicating an M-fold increase in computational
complexity associated with computing the filter outputs).

In general, the discrete-time impulse response associated with the MMSE filter C(z)
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Figure 3.5: Implementation of the linear multiuser detector as a bank of fractionally-spaced

TDLs.

W
Antenna 1 LPF d
< o [V ct (6

W
Antenna 2 LPF %
Lt |f | <W/2 1 ® CZ,l(Z)

Figure 3.6: MMSE linear filter for user 1 with two-branch diversity.

in Figure 3.5 can be of infinite length. This is a problem since an infinite-length impulse
response (IIR) filter cannot be implemented as a TDL, and is difficult to optimize when
channel and interference parameters are changing. However, it is always possible to approx-
imate each Ci(z) with a finite-length impulse response (FIR) filter. Of course, there is some
performance degradation associated with this truncation, which will depend on how fast the
filter impulse response associated with Cx(z) decays to zero.

Finally, we remark that an important benefit of the fractionally-spaced TDL implemen-
tation is that it eases timing recovery. That is, it is well known that for single-user channels
a fractionally-spaced adaptive equalizer (with taps spaced at T'/k, & > 1) is more robust
with respect to timing offset than an adaptive equalizer with T-spaced taps. For DS-CDMA
signals, timing recovery can be combined with interference suppression by using the adaptive
algorithms discussed in Section 5 [52], [102], [129].

4 Application to DS-CDMA

We now apply the developments of Section 3 to the DS-CDMA model of (1.3) - (1.4). It is

convenient to write this signal using a complex baseband model, in which case the received
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signal can be written as

y(t) = Z Ak Z bi,kpk(t —T — 'Tk) + n(t) (41)

k=1 7
where the pulse shape pg for user k is given by

N-1

Pi(t) = z_: kb (t — nle); (4.2)

that is pg is sx from (1.3) with w, = ¢ = 0. Here, as before, 7. is the chip duration
and 9 (t) is the normalized chip waveform, which are assumed to be the same for all users,
and Ag, 7k, {bix}, and {arn} are the received amplitude, delay, bit stream, and spreading
sequence of user k. In order to represent the phase differences between signals, we will
allow the amplitudes Ay to be complex. The noise n(t), representing noise in the complex
baseband, is also assumed to be complex. For generality, we also allow 1 to be complex.
For the purposes of exposition, in what follows we will assume that the desired user to be
demodulated is user # 1, and that A; =1 and 7, = 0.

Roughly speaking, the bandwidth spreading factor for DS-CDMA is the processing gain N
(assuming non-rectangular bandwidth-efficient chip waveforms). That is, each user spreads
the transmitted bandwidth across N Nyquist bands, so that the receiver has N dimensions
available with which to suppress interferers. We therefore conclude that the zero-forcing
solution exists provided that K < N, and that the received pulse shapes are linearly inde-
pendent.

For the TDL implementation of the MMSE detector, the front-end analog filter must
cover the signal bandwidth, which is approximately N/T where T is the symbol duration.
(This assumes a bandwidth-efficient chip waveform. If rectangular chips are used, then the
bandwidth is approximately 2N/T'.) The sampling rate is then N/7T', and the TDL has taps
spaced at T'/N. If the TDL is of infinite length, then in principle, it can effectively suppress
N — 1 strong interferers. In what follows we will assume that the front-end analog filter is
a chip-matched filter with impulse response ¥*(—t), which maximizes the Signal-to-Noise
Ratio at the output of this filter in the absence of interference.

4.1 Discrete-Time Representation

We first specify the TDL coeflicients in term of the received samples at the output of the chip
matched-filter. Define the vector of received samples at the output of the chip matched-filter
during the 7** symbol as

v = {r[iT),7iT + T, ...,r[iT + (N — 1)T.]} (4.3)

where

()= [ ylt— )" (~s)ds, (4.4)

and y(¢) is the channel output given by (4.1). If 4(¢) is confined to [0, 7¢], then the integral
is from ¢t to t 4+ 7. For the time being we assume that all users are both chip- and symbol-
synchronous. That is, referring to (4.3), 7« = 0, 1 < k < K. Combining (4.1), (4.2), and
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(4.4), we can write the vector r; as a linear combination of vectors contributed by each of
the users plus noise

L
r, = Z bz,kAkpk + n; (45)

k=1
where the upper index L depends on whether the multiuser data signal is synchronous or
asynchronous. For synchronous CDMA, we have L = K and pg is the vector of samples at
the output of the chip matched-filter in response to the kth user’s input waveform. The mth
component of p in this case is therefore

Prkm = /o:o pe(mT, — s)p*(—s)ds. (4.6)

Assuming zero inter-chip interference (i.e., ¥x(t —27.) are orthogonal waveforms for different
1), then this integral becomes

Pem = ‘/_ a'k,m|¢(s - mTc)|2dS = Qk,m (47)

since 9(t) is a unit energy pulse, and where ay ,, is the mth spreading coefficient for user k.
Consequently, for the case of synchronous DS-CDMA, we have

K
r, = Z bi,kAkak + n; (48)
k=1
where ay, is the vector of spreading coefficients assigned to user k.
To specify the received samples for asynchronous DS-CDMA, the delay associated with
user k is expressed as

Tk = (k + O&)Tc (4.9)

where ¢ is an integer between 0 and N — 1, and & = 7%x/T. — « lies in the interval [0, 1).
The delay ¢, specifies the number of whole chips by which user k is shifted relative to
user 1, and & represents the additional partial chip delay. (In chip-synchronous DS-CDMA,
8r = 0, although ¢ # 0 in general.) The computation of pg ., for asynchronous DS-CDMA is
illustrated in Figure 4.1. First note that user k£ transmits two symbols, b,_; ; and b; 5, within
the time window (2 — 1)7T to ¢T" associated with b; ;. This implies that user k contributes two
vectors to the sum (4.5), associated with the left and right parts of pg(t —¢7" — 7¢) within
(2 — 1)T to ¢T. We therefore rewrite (4.8) as

K
r; = b1 A1p1 + Z Ag(b;_1 kPy + bixpl ) + n; (4.10)
k=2

where p, and p; are the sampled outputs of the matched filter during symbol 4 in response
to pe[t + (T — 7)] and pe(t — 7% ), respectively. (This assumes that intersymbol interference
is negligible.) The m® components of p; and p; are then

Pl = [ me(@)’lo — (mT. - u) + 6 T.Jdo

Qfm—1p—1 ¢2 + Ak m—uy, ¢1 for m > g
= ako0P1 for m = (4.11a)
0 for m <
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o0

Pim = [ @’z — (m+ N — w)T. + &T)]da

QkmtN—u, 1 + QkmiN 162 for m <y
= ak,N-1P2 for m = (4.11b)
0 for m >

where

b= [ W0 (s + GT)ds,  da= [ $(s)'ls — (1 - &)T.]ds (4.12)
and where we are accounting only for the contribution of the two chips from pg(t — 7%) (or
pe[t + (T — 7)]) centered next to the mth chip of p;(¢).

Tk

|
| bi—o | LUET |
|
|
|
|
|

bi,k {

\ bi_11 | bi 1 | Dis1.1

f—

" one symbol interal (T)

Figure 4.1: Illustration of interference from asynchronous user k. The dashed lines designate
the time window spanned by the detector c.

As an example, suppose that ¥%(t) = 1/ T, for 0v& t < T., and is zero elsewhere
(rectangular chips). Then we have that

a'k,m—l.k—15k + a'k,m—l.k(]- - 6k) for m > U

p,‘:m =1 aro(l — &) for m = i (4.13a)
0 for m <
and
U, N—(1a—m+1)0k + QU N—(1p—m)(1 — O) for m <y
p;‘l:—,m = a’k,N—15k fOI‘ m = U (413b)

0 for m >

Note that except for m = ¢, if p,':,m # 0 then p; . = 0, and vice versa.

We therefore conclude that for both synchronous and asynchronous DS-CDMA, the re-
ceived vector of chip matched-filter outputs during time ¢ can be written as (4.5). For
synchronous DS-CDMA, L = K, and the vectors in the sum (4.5) are the spreading se-
quences assigned to the users. For asynchronous DS-CDMA, L < 2K — 1, and the vectors
in the sum (4.5) are given by p; and pj.
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4.2 Computation of MMSE Coefficients

As noted in Section 3, the optimal discrete-time filter for MMSE detection is not necessarily
an FIR filter. Thus, in order to limit the complexity of the MMSE detector in this setting, it
is desirable to truncate the number of taps in the TDL. To consider this issue, let us define
an “extended” received vector

ITiI = [r::—M7r::—M+17‘“Jr::)"‘?r::-}—M] (414)
where 2M + 1 is the width of the truncated processing window to be considered. That is,
r; consists of the vectors r;_ps,...,r;1p stacked on top of each other, and has dimension
N(2M +1). Letting ¢ denote the vector of TDL coefficients, the output of the TDL at time
1T can written as

di = CTf‘i (4'15)
where “” denotes complex conjugate transpose. The estimate of the transmitted symbol
b;1 can then be obtained by quantizing this output. In the case of binary transmissions
(bir € {£1}), the detected (uncoded) symbol is b; ; = sgn(d;).

For the MMSE detector, the TDL coeflicient vector is selected to minimize

MSE = E{|c'F; — b;1|'} = 1 + c'Rc — 2Re{c'p;} (4.16)
where
Bl =[0-0p}0 - 0] (4.17)
with the number of zeros that precede/succeed p} equal to NM,

R = E{T;t|}, (4.18)
the noise samples at the output of the chip matched filter are white with variance o2, we
normalize E{|b; 1|’} = 1, and the transmitted symbols are assumed to be uncorrelated.

Selecting ¢ to minimize the MSE gives

Crmmse — R_ll_)l (4:19)

and
MMSE=1-c! __p,=1-p/R!p; (4.20)

For synchronous DS-CDMA, we note that R is a block-diagonal matrix, where each N x N
diagonal block is given by

K
Ry =Y Aipwp; + 02l (4.21)
k=1

Consequently, the MMSE TDL coeflicient vector, specified by (4.19), has the form
Crumse = [0 -+- 0¢'0 --- 0] (4.22)

where N M zeros precede/succeed the N-vector & = Ry'p;. We therefore conclude that for
synchronous DS-CDMA, the MMSE detector consists of a chip-matched filter followed by a
finite-length TDL that spans only one symbol (i.e., we can set M = 0 in (4.14)).
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For asynchronous DS-CDMA, the MMSE TDL is no longer finite in general; however, we
can still consider a truncated version that spans one symbol. This detector, assuming 7-
spaced taps and a front-end chip matched-filter, is shown in Figure 4.2. The only difference
between this “N-tap MMSE detector” and the conventional matched-filter detector is the
way in which the TDL coeflicients are selected. For the matched-filter detector ¢ = a; (the
spreading coefficients for user 1), whereas for the MMSE detector,

Crmmse — R_lpl (4:23)

where R = Ry in (4.21). Note that in the absence of background noise, R is singular if
L < N. However, it is easily shown that any c that satisfies Rc = p; minimizes MSE even
in this singular case.

1T,
YO | chip Matched Filtep— Do 35"k | nlap BT

spans one symbol intealv

Figure 4.2: N-tap MMSE Detector for user k.

4.3 Geometric Interpretation

Throughout the rest of this section we focus on the N-tap detector shown in Figure 4.2.
This is for simplicity. The following discussion is easily generalized to account for a TDL
that spans multiple symbol intervals. The vectors pi,..., pr that appear in the sum (4.21)
are illustrated in Figure 4.3. The space spanned by these vectors is the signal subspace,
denoted as S. The interference subspace, denoted as Sy, is the space spanned by pg, ..., PpL.
(We continue to assume that user # 1 is the user of interest.) If ps,...,pr are linearly
independent, then S has dimension L, and S; has dimension L — 1.
We first observe that the MMSE solution ¢ must lie in S. Otherwise, we can write

c=c,+cy (4.24)

where ¢, € S and ¢} is orthogonal to S. We then have that p;rccgL =0foreachk=1,...,K,
and (c})fr; = (¢ )n;. We therefore conclude that the component ¢l in (4.24) adds a noise
term to the filter output d;, which increases the MSE. To minimize MSE, we must take

1
c; =0.
Because the MMSE solution Cpmse € S, we can express Cpmse as a linear combination
of the signal vectors. Let P denote the N x L matrix with columns p4,...,pr. Then from

(4.5) we can write the received vector as

where A = diag[A; Ay --- Ag] and b, = [b;1b;2 --- b;x]. Now define the N x K matrix
C, where the kth column of C is the vector of TDL coefficients used to demodulate user k.
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Figure 4.3: Geometric representation of desired signal and interference vectors. p! is the
projection of p; onto the interference subspace Sj.

The first column of C is therefore the vector ¢ used in (4.15) to demodulate user 1. From
the previous discussion it follows that each column of C,,. can be expressed as a linear
combination of the signal vectors. We therefore write C = PT', where I' is a K x K matrix,
and note that C, = PI'y, where the subscript k& denotes the kth column of the matrix. The
total MMSE summed over all K users is

MSE = E{||Cr; — b;||*} = trace{(T"'P'PA — I)(A'P'PT — 1) + o2I''P'PT'}  (4.26)
and selecting I' to minimize this expression gives (cf., [129])
I' = A[AP'PA + 021" (4.27)

The matrix PP is the cross-correlation matrix for the set of signal vectors p1,...,pPx-
Since ¢ = PT'y, this relation gives an alternative method to (4.23) for computing the MMSE
solution Cpmse- When K < N, and the background noise is small, it is better to compute
Cmmse Via (4.27) since the matrix Ry defined by (4.21) is likely to be ill-conditioned. Finally,
we note that this expression is analogous to the expression (3.7) for the matrix (multiuser)
discrete-time transfer function with a bank of front-end matched filters.

4.4 Zero-Forcing (Decorrelating) Solution

In analogy with the zero-forcing solution for the MIMO MMSE detector discussed in Sec-
tion 3.2, it may be possible to choose the N-vector ¢ to completely remove multiple-access
interference. From Figure 4.3 it is apparent that this zero-forcing, or decorrelating solution is
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proportional to the orthogonal projection of the desired user vector p; onto the interference
subspace S;. Denoting the zero-forcing solution for c as c.¢, the filter output is given by

d; = clfri = clf(bi,lpl + n,) (4.28)

Namely, the output of the zero-forcing filter has only two components, one due to the desired
signal and one due to background noise. Let P; denote the N x (K —1) matrix with columns
given by pa,...,Px. The orthogonal projection of p; onto S; is denoted as

-1
pi = p: — P(PIP;)  (Plpy), (4.29)

and the zero-forcing solution is
c:f =Pi /1 (4.30)

where the scale factor 1/7 is selected so that |clfp1| = |b1| = 1. (The quantity 5 is known
as the “near-far resistance”, and has special significance, which will be explained later.) It
is easily shown that (pf)fpl = ||p1l||27 so that n = ||p1L||2

It is apparent from Figure 4.3 that the zero-forcing solution for c exists provided that
p1 is not contained in S;. In that case the dimension of the signal subspace S must be
no greater than N. If the vectors py,...,pr are linearly independent, then we must have
L < N. For synchronous DS-CDMA this implies that the number of users K < N, and for
asynchronous DS-CDMA, 2K —1 < N. Of course, even if this latter condition does not hold
(as in a heavily loaded cellular system), the MMSE solution is still well defined. (Also, the
addition of receiver diversity allows one to increase K beyong this bound, as is discussed
below.) As K increases, the performance of the MMSE detector improves relative to the
zero-forcing solution.

4.5 Asymptotic Behavior of the MMSE Solution

Here we examine the behavior of the MMSE solution as (i) the noise level diminishes to zero,
and (ii) the interferers increase in energy. If the noise variance o2 = 0, then we observe that
the zero-forcing solution, assuming it exists, gives zero MSE. We therefore conclude that the
MMSE solution converges to the zero-forcing solution as o> — 0. It can be shown by matrix
manipulations that the zero-forcing solution (4.30) is equivalent to the preceding expressions
(4.23) and (4.27) where the noise variance o2 = 0.

Now consider what happens as user k’s amplitude Ay — oo. It is easily seen that
¢l meePr — 0. Otherwise, we would have (c:fmmepk)2 > ¢ > 0, which implies (Akc:fmmepk)2 >
eA;. As Ay — oo, (4.16) implies that MSE — oo, which contradicts the fact that MMSE < 1
(i.e., ¢ = 0 gives MSE = 1). In fact it can be shown that

lim (Age!,,,.Px) =0, (4.31)

Ap—o00

which implies that as Ay — oo, the contribution to the MSE from user k& diminishes to zero
(see [51],[82]).

To generalize (4.31), if Ay — oo for k in some subset K, then (4.31) applies for each
k € K, (assuming c has enough degrees of freedom to suppress these interferers). If the
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set K, contains all K — 1 interferers, then clearly cpmse — /ﬁpf, where k 1s a constant.
Substituting for Cpmse in (4.28), and selecting « to minimize MSE gives k = 1/(n +02). We
therefore conclude that as the interfering amplitudes Ay — oo, k # 1,

1 2
b1 MMSE — — 2

— T o>
n+oh n+on

(4.32)

Cmmae

Note that the filter c,mse gives a biased estimate of b; ;.

4.6 Performance Measures

In addition to MMSE, two other performance measures of interest are Signal-to-Interference-
Plus-Noise Ratio (SINR) and error probability. The SINR is defined to be the ratio of the
desired signal power to the sum of the powers due to noise and multiple-access interference
at the output of the filter c. That is,

(ch1)2
iy A(ctpr)’ + o2||c|

It can be shown that the MMSE solution ¢ also maximizes the SINR, and that this maximum
SINR is

SINR =

(4.33)

Clnmsepl _ 1
1 — clumsepr  MMSE
To study the error probability, we restrict attention to the case in which all users transmit

binary, equiprobable symbols. In this case, we have Pr{?)l # b} = Pr{?)l # b|by = 1}.

Conditioning on all users’ symbols, and assuming white Gaussian noise gives

ctp, + 3K, bkAk(CTpk)>

anllcll

MSIR =

1 (4.34)

Pyp(b) = P(by # bbby = 1) = Q ( (4.35)

where Q(z) = (2%)_% [ e ¥/2dt. The average error probability is then obtained by averag-
ing (4.35) over the distribution for the bit vectors b, i.e., P, = E{Pep}.

Two additional performance measures that are related to the asymptotic performance
discussed in the preceding section are asymptotic efficiency and near-far resistance. Let
P.(0,) denote the average error probability for a specific detector as a function of the noise
variance 2. The asymptotic efficiency of the detector is then defined in [119], [120] as

v =sup {x: lim P.(02)/Q(/xAs/e) > 0} (4.36)

and is a limiting measure, as the noise tends to zero, of how well the detector performs in

the presence of multiple-access interference relative to optimal performance in the absence

of multiple-access interference. The near-far resistance of the detector is defined in [119] as
= inf ~. 4.

n=inf 7 (4.37)

That is, the near-far resistance is the asymptotic efficiency evaluated for worst case interfer-

ence energies, and is a measure of the robustness of the detector with respect to variations
in the received interference energies.
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As 0, — 0, the error probability for the MMSE TDL detector satisfies

. Pe(an) . Il'liIlb Pe|b(0n)
lm ————— = 1llm ———mMMMM~2 =1 4.38
A QUi on) =% QlpE | /ow) (4.38)

The asymptotic efficiency of the MMSE detector is therefore ||p7 Since this quantity is
independent of the energies of the interference vectors, we also have that

2
[

n= et (4.39)
That is, the near-far resistance of the MMSE detector considered is the squared norm of
the component of the desired signal vector that is orthogonal to the space spanned by the
interference vectors. From (4.39), it is clear that if » > 0, then the desired vector is not
contained in the interference subspace S;, which in turn implies that the number of vectors
contributed by the users L < N.

From the discussion in Section 4.4, we observe that the near-far resistance is closely
related to the zero-forcing solution. Specifically, the zero-forcing solution is given by (4.30),
which includes 7 has a scale factor. Also, it is easily shown that the MSE corresponding to

the zero-forcing solution is

0_2

MSE,; = -2, (4.40)
U

so that the noise enhancement associated with the zero-forcing detector is 1/5. Note that
0 <75 <1 implies that 02 < MSE,; < co. In particular, if p; lies in the space spanned by
the interferers (i.e., if rank(S;) > N), then n = 0 and MSE,; = occ.

4.7 Space-Time Filtering

It is conceptually straightforward to extend the preceding discussion to combined space-time
filtering. Given multiple antennas, the MMSE linear filter for user k is shown in Figure 3.6
(for two antennas), and consists of a chip matched-filter and TDL for each antenna. The
TDL outputs are simply added together to form the symbol estimate. To compute the TDL
coeflicients in terms of the received samples on each branch, we define rgm) as the N x 1
received vector of chip matched filter outputs for symbol 2 on branch m. Then r; is the
(MN) x 1 vector consisting of rgl), . .,rEM) stacked on top of each other. (This assumes
1/T. sampling, and that each TDL spans a single symbol. The generalizations to other
sampling rates and to multi-symbol TDLs are straightforward.)
Let c(®) be the vector of TDL coefficients associated with the kth branch. As before, the
filter output can be expressed as
d; = &'y (4.41)
where € is the (M N) x 1 vector of TDL coefficient vectors ¢(), ..., c¢™) stacked on top of
each other. The preceding expressions for the MMSE coefficients, zero-forcing solution, and
performance measures can therefore be directly applied to this situation. Note, in particular,

that with M antennas, a necessary condition for the existence of the zero-forcing solution is

that the number of “effective” users L < M N. For asynchronous DS-CDMA (L = 2K — 1)
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adding an additional antenna therefore increases the number of strong interferers that can
be (completely) suppressed by approximately N/2.

Increasing the amount of spatial diversity leads to a substantial increase in system ca-
pacity, but at the expense of additional complexity. Specifically, analog front-end filtering,
as well as conversion to baseband (if necessary), is needed for each antenna element. The
number of TDL coefficients also increases from N to M N, which can adversely affect the
performance of the adaptive algorithms discussed in the next section.

4.8 Effect of Multipath

Multipath will be discussed in more detail in Section 6. For now we note that reflections of
the transmitted signal off of surrounding objects cause the received signal to consist of the
sum of weighted and delayed versions of the transmitted signals:

K M,

'r‘(t) = Z Z Oék,mAkbkpk(t — 1 — Tk,m) + ’)’L(t) (442)

k=1 m=1

where M}, is the number of paths associated with user k, and 74, and o, are respectively
the delay and the (complex) coeflicient associated with path m for user k. (Without loss
of generality, we assume that 74, >0, m=1,...,M; k=1,2,...,K.) We can write the
sampled received vector r; defined earlier as

K M,
r, = Z Ag Z Qkm (bi,kp;{(m) + bi_l,kp,;(m)) + n; (4.43)
k=1 m=1

where p,"c",m and py ,, contain the chip matched-filter output samples within the time window
spanned by r; in response to the inputs pr(t — Tkm) and pe(t + T — 7km), respectively.
According to the discussion in Section 4.1, the vectors p,‘c",m and pg, can be computed
according to (4.11) where 7% ,, replaces 7.

Note that we can rewrite (4.43) as

K
=) A (bi,kPZ + bi—1,kP;Z) + n; (4.44)
k=1
where
M
Pr = Y akmpi(m). (4.45)
m=1

Consequently, the received vector can once again be expressed as (4.5), where the vectors
in the sum are computed according to (4.11) and (4.45). The MMSE and zero-forcing
solutions for ¢, and performance measures previously discussed can then be directly applied.
For DS-CDMA applications, it is typically assumed that the path delays for user 1, 7,
m =1,..., My, span at most a few chips. The intersymbol interference due to the multipath
vectors p; (m) is then quite small, and is typically ignored.*

“In high-data-rate systems, such as arise in some indoor wireless applications, ISI can be significant.
Linear detection techniques for dealing jointly with IST and MAI in such situations are developed in [89] and
[128].
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To summarize the preceding discussion, when multipath is present the geometric inter-
pretation represented by Figure 4.3 applies, where the signal vectors are the received vectors,
including the effect of multipath. We therefore conclude that the MMSE solution coherently
combines all multipath within the window spanned by the filter c. Of course, this interpreta-
tion applies in practice only when the MMSE solution can be accurately estimated. That
is, the estimation algorithm must be able to compensate for the changing multipath ampli-
tudes and phases of all strong users. Techniques for performing combined linear multiuser
detection and channel tracking are developed in [85], [126] and [127]. These methods will be
discussed briefly in the sequel.

5 Adaptive Algorithms

The expressions for the MMSE vector ¢ given in the preceding section, (4.19) and (4.27),
seem to indicate that the MMSE receiver requires explicit knowledge of all user and channel
parameters (i.e., spreading sequences, relative timing, phase, amplitudes, and multipath
parameters). In this section we show that the MMSE solution for ¢ can be accurately
estimated without this knowledge. In fact, if the user and channel parameters are time-
invariant, then the algorithms in this section can estimate Cpymse to arbitrary accuracy (given
a sufficient number of received vectors r;).

The adaptive algorithms in this section require either (i) a training sequence of transmit-
ted symbols, which are known to the receiver for initial adaptation, or (ii) accurate knowledge
of the received vector corresponding to the desired user (p;1) and associated timing. In the
absence of multipath, the latter knowledge, which is simply the spreading code of the desired
user and associated timing, is also required by the matched filter receiver. When multipath
is present, the received vector can be estimated with a RAKE receiver [90, Ch. T7].

Three categories of adaptive algorithms are presented herein. The first category consists
of the conventional stochastic gradient and least squares algorithms well known in adaptive
filtering [23],[32]. These have been applied to obtain MMSE symbol estimates for DS-CDMA
in [5], [58] and [92]. (Prior to that, MMSE estimation applied to DS-CDMA was considered
in [133].) Application of these techniques to narrowband TDMA systems with co- and
adjacent-channel intereference is reported in [47],[48]. The algorithms in the second category
are “blind” in the sense that a training sequence is not required. Instead, knowledge of the
received vector p; and associated timing is assumed. Finally, the algorithms in the third
category are “subspace” algorithms, in which each received vector r; is projected onto a
lower dimensional subspace. These techniques are potentially useful when the dimension of
the received vectors is much greater than the dimension of the signal subspace. This may
be the case when (i) the processing gain is very large relative to the number of users, (ii)
an adaptive antenna array is available with TDLs on each branch, or (iii) the filter ¢ spans
multiple symbol intervals.

5.1 Stochastic Gradient (LMS) Algorithm

The stochastic gradient or LMS (Least Mean Squares) algorithm has been successfully ap-
plied to many signal processing applications such as noise cancellation, equalization, echo
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cancellation, and adaptive beamforming [23],[32]. The approach to adaptive interference
suppression presented here is in fact analogous to adaptive equalization for single-user chan-
nels. The main difference between the two applications is that for adaptive equalization, the
TDL must span multiple symbols to suppress intersymbol interference (ISI), but can have
as few as one tap per symbol. In contrast, for interference suppression, the TDL must have
multiple taps per symbol, but can span a single symbol interval. Of course, a TDL that spans
multiple symbols with multiple taps per symbol can suppress both ISI and multiple-access
interference.
Let c; denote the TDL vector at symbol time z. The LMS algorithm for updating c; is
given by
C, =¢C;_1+ ,ue:-‘ri (51)

where
e; = by — ¢l (5.2)

is the estimation error at time 2, and p is a constant step size, which controls the tradeoff
between convergence speed and excess MSE due to random coefficient fluctuations about
the mean. Because the LMS algorithm (5.1) assumes knowledge of the symbols b;,, it
must be implemented as a supervised or decision-directed algorithm. In practice, b;; must be
generated via a training sequence for initial adaptation (supervision), after which the symbol
estimates ?)1-,1 are used (decision direction).

There have been numerous analyses of the convergence properties of the LMS algorithm
(e.g., see [23],[32]). A detailed analysis of this algorithm for the DS-CDMA interference
suppression application considered here is given in [59] (see also [31]). A summary of the
main results, given a stationary set of interferers and channels, are as follows.

1. Assuming that the received vector r; is statistically independent® from past vectors ry,,
m < 1, for each 7, it can be shown that

5Ci = (I - MR)5Ci_1 (53)

where éc; = E{c;} — Cmmse-The mean coefficient vector therefore converges exponen-
tially to Cmmse according to N normal modes. The time constant associated with the
nth mode is 1 — p),, where A, is the nth eigenvalue of R.

2. An approximate analysis shows that the MSE remains bounded provided that the

step-size
2
< — 5.4
. (R) (54)
If R is given by (4.21), then
K
trace (R) = > A} + No2. (5.5)
k=1

5This independence assumption holds for synchronous DS-CDMA but not for asynchronous DS-CDMA.
Nevertheless, even for asynchronous DS-CDMA it gives substantial insight.
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3. The asymptotic MSE achieved with the LMS algorithm is greater than the MMSE due
to random coefficient fluctuations about the mean. Denoting the MMSE as &,,;,, the
ezcess MSE due to these fluctuations can be approximated as

% trace R

1— % trace R

(5.6)

gez = €min

where trace R is given by (5.5).

To interpret the preceding results, suppose that the vectors p1,...,px in the sum (4.5)
are orthonormal. In that case each of these vectors pg is an eigenvector of R with associated
eigenvalue A2 +o2. The remaining eigenvectors of R form a basis for the N — K dimensional
subspace that is orthogonal to the signal space. Each of these eigenvectors is associated with
eigenvalue o2. If L < K, then there are N — K modes of convergence for E{c;} associated
with exponential decay factor 1 — po2. Typically, o2 is very small, so that convergence
associated with these modes is very slow. If ¢; is in (or close to) the signal space, then this
is no problem, since the dominant modes of convergence lie in the signal space. However, if
c; lies outside the signal space (such as when the filter has converged to a set of users, and
a user subsequently departs), then the excess MSE due to the component of ¢; outside the
signal space can take a very long time to disappear.

We also note from the preceding discussion that the LMS algorithm is adversely affected
by a near-far situation in which Ay is very large. Namely, there will be a slow mode corre-
sponding to an exponential decay factor approximately equal to 1 — u/A;. Also, note that
according to (5.4) and (5.5), the larger the interfering amplitudes, the smaller x must be for
stability. To ensure that p satisfies the stability condition (5.4) in the presence of a changing
interference environment, it is useful to normalize the step size by an estimate of the input
power. Specifically, ¢ in (5.1) can be replaced by z = ,u/é(z), where

€(1) = wé(i — 1) + (1 — w)|r:]|” (5.7)

is a moving average estimate of the input energy, and w is the averaging constant.

5.2 Least Squares (LS) Algorithm

An alternative to the stochastic gradient method is to choose the vector ¢; to minimize the
least squares (LS) cost function

- : i—n 7 2
e1s(2) = > w' | dy — bn (5.8)
n=0
where d,, = ctr,,, and 0 < w < 1 is an exponential weighting factor that discounts past data.

This weighting is important in nonstationary environments where the vector c; is computed
at each iteration 7. The LS solution for c; is

C; = ].:A{Z-_lf)i,l (59)
where _
R, = > w T, (5.10)
n=0



and

Pii= Y w b rn. (5.11)
n=0

Note that R; and Pi1 are estimates of R and pi, respectively. In the absence of noise, it
is possible for R, to be singular. In that case any solution to the set of linear equations
R;c; = P:,1 minimizes the LS cost function g,(2).

The LS criterion is deterministic, as opposed to the stochastic gradient cost criterion
(MSE), which is defined in terms of a statistical expectation. In general, LS algorithms con-
verge much faster than stochastic gradient algorithms, but are more complex to implement.
Specifically, if the signal vectors pi,...,pr are linearly independent, and L < N, then in
the absence of noise, the LS solution for the vector c; gives €;,(z) = 0 for 2 > L, provided
that the received vectors ro, ..., rz_; used to compute c from (5.9) are linearly independent.
(This implies that the MSE is zero as well.)

A precise analysis of the convergence properties of the LS algorithm in the presence of
noise is quite difficult; however, a useful rule of thumb is that it typically takes approximately
2N iterations for the LS algorithm to converge (again assuming stationary noise and inter-
ference), where N is the filter order. In contrast, the stochastic gradient algorithm typically
takes between 5 to 10 times longer to reach steady-state performance, assuming the spread
in eigenvalues of the matrix R is relatively small. Because the convergence rate of the LS
algorithm is insensitive to this eigenvalue spread, a large eigenvalue spread, corresponding
to a near-far situation, will lead to a more dramatic difference in performance. Some nu-
merical examples that compare the performance of LS and LMS adaptive algorithms will be
presented in Section 5.5.

A “Recursive” LS (RLS) algorithm computes the LS solution ¢; for each 7. In this case,
the matrix inverse f{i_l can be propagated in time by using the matrix inversion lemma:

of
Ri'=R - —B5 (5.12)
1+ (rig:)
where w = 1 and
g = R (5.13)
The vector p; ;1 can also be updated recursively as
Pi1 = wPi—1,1 + b;:lri (5.14)

Although the matrix inversion lemma substantially reduces the complexity of a recursive
LS (RLS) algorithm, the update (5.12) is sensitive to numerical roundoff errors, and must
therefore be closely monitored or stabilized in some manner. Also, the basic complexity per
update is O(N?) for RLS, as compared with O(N) for LMS. (The complexity of RLS can be
mitigated through parallelization, as is discussed below.) As with the LMS algorithm, the
RLS algorithm defined by (5.9), (5.12)-(5.14) requires estimates of the symbols {b;1}. This
can be accomplished initially through a training sequence, and subsequently by switching to
decision-directed mode.

Rather than compute c; for each 7, it is also possible to update c; periodically using
the most recent received data vectors. Specifically, a block LS algorithm computes c; every
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B iterations using the data vectors r;_pi1,...,r;. An iterative method for obtaining the
estimates b; ; in decision-directed mode is described in [29]. The results in [29] indicate that
this type of block decision-directed algorithm can sometimes perform significantly better
than the RLS algorithm with exponential weighting.

5.3 Orthogonally-Anchored (Blind) Algorithms

The decision-directed algorithms presented in the preceding section generally require reliable
symbol estimates. Numerical results indicate that the performance of these algorithms begins
to degrade when the error rate exceeds 10% [29], [33]. Much higher error rates sustained
over many symbols can potentially cause the algorithm to lose track of the desired user.
For a mobile wireless channel this situation can occur when the desired user experiences a
deep fade, or when a strong interferer suddenly appears. It is therefore desirable to have an
adaptive algorithm that does not require symbol estimates. We refer to such an algorithm
as a “blind” adaptive algorithm.

An approach to blind adaptation, which was presented in [31], is illustrated in Figure 5.1.
The vector ¢ at time 7 is expressed as

C;, =Pp1+W; (5.15)

where w; is constrained to be orthogonal to p; for all :. The filter output is then

L
d; = clr; = bip+ Y Arlpr + w,]'pr + (c'ny) (5.16)

k=2

where it is assumed that A1||p1||2 = 1. Note that w; affects only the interference and noise
at the output. Selecting w; to minimize the output variance E{|d;|’} therefore minimizes
the output interference plus noise energy. In fact, the output MSE is (again, we normalize

E{[bia*} =1)

E{|bis —di|"’} = 1+ E{|di["} —2 Re{(p1 + w:)'p1}
= E{|d]’} -1 (5.17)

since
(p1+wi)lpr=clp1 =1 (5.18)

We therefore conclude that selecting w; to minimize the output variance E{|d;|’} also mini-
mizes output MSE. Minimizing the output variance does not require knowledge of the symbol
estimates b; 1, although it does require knowledge of the desired user’s vector p; (and as-
sociated timing). We remark that this minimum variance technique is analogous to the
minimum variance technique in adaptive beamforming where the direction of arrival of the
desired signal is known [41].

The minimum variance vector ¢,,, can be derived by defining the Lagrangian

L(c) = E{|d;|"} — ¢ c'py, (5.19)
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Figure 5.1: Orthogonally-anchored adaptive filter.

where ¢ is the Lagrange multiplier, and setting the gradient with respect to ¢ equal to zero.
This gives

Cmy :E R_lpl = 5 Crmmse (520)
where
=Bl nff= o1 (5.21)
™" plR7lps
is the constrained minimum output variance. If the signal vectors p1, ..., pr are orthogonal,

and L < N, then the mean output energy is { =1 + 2.

Both stochastic gradient and LS adaptive algorithms can be derived based on the pre-
ceding minimum variance approach. Before deriving the stochastic gradient algorithm, we
note that the constrained minimum variance cost function is the intersection of the quadratic
form |chp1|2 with the hyperplane defined by (5.18). This cost function has a unique global
minimum, which can be found by gradient search.

Taking the gradient of the output energy with respect to w; gives

Vo, (B{|d:’}) = 2 Re{E{d;r}}. (5.22)

To obtain the stochastic gradient algorithm, we drop the expectation, and take the orthogonal
projection with respect to p;, which gives

d; (rz’ - z;f(i)pl) (5.23)
where
Zms(i) = pir; (5.24)

is the matched-filter output. The orthogonally-anchored stochastic gradient algorithm is
therefore

W, = W; 1 — pd][r; — zfnf(i)Pl] (5.25)

The convergence properties of the algorithm (5.25) are analyzed in [31]. The main results,
which parallel the results for the LMS algorithm in Section 3.1, are summarized as follows.

1. Defining
bcr = ¢; — Cpmo (5.26)
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and assuming that the received vector r; is statistically independent from past vectors
I'm, m < 1, for each 1, it can be shown that

5Ci = (I — ,u'er)(sCi—l (527)
where
v, =(I- plpl)ri (5.28)
and
Ror = E{virl} = (1 - pipDR (5.29)

The mean coefficient vector therefore converges exponentially to c,,, according to N
normal modes, associated with the eigenvalues of R,,.

2. An approximate analysis shows that the MSE remains bounded provided that the
step-size satisfies (5.4).

3. The excess MSE, defined as the asymptotic MSE minus the MSE associated with ¢,

can be approximated as
£ trace R,

ex — Gmin 5.30
¢ ¢ 1 — % trace Ry, ( )
where
K
trace R,, = Z A1 — |p1k|2) + (N —1)o2 (5.31)
k=1
and p1x = plps.
If the vectors pi,...,pr in the sum (4.5) are orthonormal, then each of these vectors

is an eigenvector of R,,. The eigenvalue associated with p; is zero, whereas the eigenvalue
associated with pg, £ > 1, is A2 + 02. The remaining eigenvectors of R form a basis for
the N — K dimensional subspace that is orthogonal to the signal space. Each of these
2

Given orthogonal signal vectors, the eigenvalues of R,, are nearly the same as those for
R. The convergence of the mean coefficient vector should therefore be similar for both the
minimum variance and standard LMS algorithms, given the same step-size u. However, the
excess MSE given by (5.30) is substantially larger than the corresponding MSE for the LMS
algorithm (5.6). Specifically,

eigenvectors is associated with eigenvalue o

e(z;’w) gmin
£~ e (5:32)
When the signal vectors are approximately orthogonal, it is easily shown that
Em'in 2 1+ ol
~ (1 . ~ 5.33
() (5.3

which can be quite large. Consequently, the blind algorithm (5.25) is quite “noisy”, and it is
best to switch to a decision-directed algorithm once reliable symbol estimates are available.
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An LS minimum variance adaptive algorithm is obtained by selecting c¢; to minimize the
cost function

=Y weln|’ (5.34)
n=0
subject to the constraint cj-pl = 1. The solution is given by
c; = &R py (5.35)

where R,; is given by (5.10), and

1

¢ = (Plﬁflpl)_ (5.36)

The LS solution for c; therefore has the same form as (5.20), where expectations are replaced
by time averages.

It is interesting to compare the minimum variance LS solution (5.35) with the decision-
directed LS solution (5.9). The only differences are: (i) The scale factor {; appears in (5.35),
and (ii) p; in (5.9) is replaced by p; in (5.35). If the magnitude of b;; is constant for each
1, which corresponds to phase modulation, then the scale factor é, in (5.35) is irrelevant.
That is, omitting EAZ does not affect the error rate. In that case, replacing p; by p; is the
only real difference between the minimum variance and decision-directed LS algorithms. As
a first-order approximation, the minimum variance LS algorithm performs the same as the
decision-directed LS algorithm.

Both block and RLS versions of the minimum variance LS algorithm are possible, de-
pending on how often the matrix f{i_l is updated. The matrix inversion lemma can again be
applied to the RLS version to reduce the amount of computation.

A potential problem with the minimum variance approach is that the vector p; that
appears in the adaptive algorithm may not be exactly equal to the received vector contributed
by user 1. This may be due to unknown multipath or other types of distortion. This type
of receiver mismatch can cause a substantial degradation in performance due to suppression
of the desired signal.

To illustrate the mismatch problem, suppose that the actual received vector contributed
by user 1 is p;, but that the receiver uses the mismatched estimate p;. These two vectors
are shown in Figure 5.2. According to Figure 5.2, it is possible to choose a vector w, which
is orthogonal to p;, and such that p; +w is orthogonal to p;. Consequently, with mismatch,
the minimum variance approach attempts to suppress the desired signal down to the level
of the interference.

Figure 5.2 indicates that the closer p; is to p;, the longer w must be to suppress the
desired signal. Consequently, one way to mitigate the effect of mismatch is to constrain the
length of the vector w. Referring to Figure 5.2, let 8 denote the angle between p; and ps,
and let 8 denote the angle between p; and p;. Typlcally, we expect that 8 > 6. As shown
in Figure 5.2, ||w| corresponding to the w needed to suppress px is much less than ||w||
corresponding to the w needed to suppress the desired signal. We can therefore mitigate the
effect of mismatch by incorporating the constraint

I < x (5.37)

| w:
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Figure 5.2: Illustration of desired signal suppression with mismatch. (a) shows the vector
w needed to suppress the desired signal, and (b) shows the vector w needed to suppress an

interfering signal py.

where x is a constant, into the adaptive algorithm. From the preceding discussion, a rea-
sonable choice for x is the length of w needed to suppress the user k£ corresponding to the
smallest value of 8. Further discussion and numerical results illustrating how the choice of
x affects the performance of the minimum variance approach is given in [31].

The constraint (5.37) is easily incorporated into the minimum variance approach, and
results in a vector c,,, that again has the form (5.20). The only difference is that the noise
variance o2, which appears in the definition of R (4.21), is replaced by o2 + v, where v
is a Lagrange multiplier selected to satisfy (5.37). The constraint (5.37) therefore has the
same effect on c,,, as increasing the background noise variance. Similarly, incorporating the
constraint (5.37) into the LS optimization results in the solution (5.35) where

R, = ) wrr! 4 01 (5.38)
n=0

Finally, incorporating this constraint into the stochastic gradient algorithm (5.25) results in
the algorithm

wi = (1 — pv)wiy — pdi[r; — zp, ¢ (2)p1] (5.39)
which is analogous to the tap-leakage algorithm introduced in [21].

Another possible solution to the mismatch problem, presented in [28], is to combine the
orthogonally-anchored approach with the decision-directed cost function E{|d; — sgn(d;)[*}
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(assuming b; 1 € {£1}). This cost function eliminates the problem of desired signal suppres-
sion; however, it can introduce local optima. The stochastic gradient algorithm based on
this approach has been observed to perform somewhat better than the analogous minimum
variance algorithm in the presence of mismatch.

5.4 Projection-Based Approaches

The discussion in preceding sections indicates that the performance (convergence speed)
of the adaptive algorithms discussed degrades as the number of filter coefficients increases.
Furthermore, increasing the number of filter coefficients generally increases the complexity of
the adaptive algorithms. In some situations, it may be desirable to have a TDL ¢ with high
dimensionality. For example, ¢ may include TDLs on multiple antennas and/or may span
many symbols. Also, some military applications require a very large processing gain N for
covertness. In these situations it is desirable to reduce the number of adaptive coefficients.

One way to reduce the number of adaptive coefficients is to project the received vectors
onto a lower dimensional subspace. Specifically, let Sp be the N x D matrix with columns
vectors that are the basis vectors for a D-dimensional subspace, where D < N. We wish to
restrict ¢ to lie in this subspace, so we can write

c=Spa (5.40)

where a is a D x 1 vector of coeflicients that must be estimated. Given Sp, it is straight-
forward to derive stochastic gradient and LS algorithms for estimating a. (Note that
ctr; = alr;, where ¥; = SEI‘Z- is the projected received vector.)

A few different suggestions for the lower dimensional subspace represented by Sp have
been proposed [51], [101], [104] and [129]. For example, in [101] the columns of Sp are taken
to be nonoverlapping segments of the desired spreading sequence, where each segment is of
length N/D. (The interpretation is that partial despreading is performed before the adaptive
filtering.) Specifically,

[Splly = [0+ 0B4(m)0 - 0 (5.41)
where 1 <m < D,
Iall(m) = [pl,(m—l)N/D-}—l; s 7p1,mN/D]7 (542)

(m — 1)N/D zeros precede pj, (D — m)N/D zeros succeed p;, and N/D is assumed to be
an integer. Note that D = N corresponds to the MMSE detector previously discussed (N
adaptive coefficients), and D = 1 corresponds to the matched-filter detector. Choosing D
between 1 and N therefore trades off complexity (D adaptive coeflicients) with performance
(which is between that of the matched-filter and that of MMSE detectors).

If the dimension of the signal space S is less than the dimension of ¢, then projecting
the received vectors onto the signal space reduces the number of adaptive coefficients with-
out sacrificing optimality (cf., [129]). Generally, this reduction in the number of adaptive
components will improve convergence and tracking. Signal subspace methods have received
considerable attention in the array processing literature (see [41] and the references within).
If the dimension of the signal space is known to be L, then an orthogonal basis for the signal
space is given by the L eigenvectors of R that correspond to the L largest eigenvalues. In
practice, a basis for the signal space can be estimated by forming an eigen-decomposition
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of the matrix R; given by (5.10). The columns of Sp in (5.40) are then the eigenvectors
corresponding to the D largest eigenvalues.

The dimension of the signal space is typically unknown a priori, so that D can either be
fixed in advance, or be selected as a consequence of the threshold rule

~

M(R;) > A, — include vg

2 5.43
Me(Ri) < A, — discard vg (5.43)

where vi is the eigenvector associated with Mg, and A is a constant. More sophisticated
alternative dimension estimation techniques can also be used [129].

Interference suppression based on a subspace decomposition is discussed in several works,
including [22], [29], [35], [109], and [129].Timing estimation for DS-CDMA based on an anal-
ogous type of subspace decomposition is presented in [8], [105] and [129]. From the viewpoint
of adaptivity the eigen-decomposition needed to estimate the signal space nominally defeats
any reduction in complexity achieved by reducing the number of adaptive coefficients. How-
ever, very recent work in [129] has shown that a low-complexity subspace tracking algorithms
of O(K N) complexity per update can be used to provide subspace-based adaptivity with
practical levels of complexity.

5.5 Numerical Examples

In this section we present simulation results that illustrate the performance of some of the
adaptive interference suppression algorithms discussed in the preceding subsections. We first
present some convergence results assuming a stationary environment and synchronous users.
Figure 5.3 shows averaged Signal-to-Interference Plus Noise Ratio (SINR) as a function of
time for each of the following algorithms: (i) decision-directed LMS, (ii) decision-directed
Recursive Least Squares (RLS), and (iii) orthogonally-anchored (blind) stochastic gradient.
(The performance of the orthogonally-anchored RLS algorithm is nearly the same as the
decision-directed algorithm.) The curve for the blind algorithm assumes perfect knowledge
of the received pulse shape from the desired user (no mismatch). The convergence curves are
obtained by averaging 400 simulation runs, assuming that the spreading codes assigned to
all users are fixed. The received amplitudes corresponding to the interferers are twice that of
the desired signal. The processing gain is N = 10, there are 7 users, and the Signal-to-Noise
Ratio is 12 dB. In each case the filter is initialized as the matched filter.

This example shows that the LS algorithm converges much faster than the stochastic
gradient algorithms. Specifically, the LS algorithm converges in approximately 50 iterations,
whereas the stochastic gradient algorithms require approximately 700 iterations to converge
within 1 dB of the steady-state SINR. The step-sizes for both the blind stochastic gradient
and LMS algorithms are the same, so that the steady-state SINR for the blind algorithm
is somewhat lower than the steady-state SINR for the decision-directed LMS algorithm.
This difference in steady-state SINR becomes more significant as the power of the interferers
increases [31]. It is therefore desirable to switch to decision-directed mode whenever decisions
are reliable.

Figure 5.4 shows convergence plots for the blind stochastic gradient and LS algorithms
in the presence of mismatch. The mismatch was created by adding a single multipath
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Figure 5.3: Averaged SINR vs. time for the decision-directed LMS, decision-directed RLS,
and orthogonally-anchored (blind) stochastic gradient algorithms.

component offset by one chip, and attenuated by 3 dB relative to the main component. The
blind algorithms are anchored to the strongest path. In each case, the algorithm switches to
decision-directed mode after a fixed number of iterations (100 for the LS algorithm and 300
for the stochastic gradient algorithm). The blind algorithms are able to improve the SINR
initially, but then subsequently suppress the signal. (Figure 5.4 does not show this, since
the algorithms switch to decision-directed mode before the SINR starts to decrease.) The
relatively slow convergence of the LS algorithm is due to the large term added to the diagonal
of the matrix f{i, given by (5.38), which constrains the length of the adaptive filter vector.
(Referring to (5.38), for this example v = 50.) Note that the additional multipath component
in this example improves the asymptotic SINR relative to that shown in Figure 5.3.

Figure 5.5 shows the how the arrival of a new strong interferer affects the performance of
the decision-directed RLS algorithm. The scenario used to generate Figure 5.5 is the same
as that used to generate Figure 5.3, except that there are only 6 users initially, and the new
(7th) user appears at iteration 200. The power of the new user is 18 dB above the desired
user, representing a severe near-far situation.

This example shows that the performance (average SINR) of the LS algorithm is tem-
porarily degraded by the appearance of the new user. This degradation in performance is
largely due to the sudden transient created by allowing the new user to begin transmitting
with full power. Also shown in Figure 5.5 is the performance curve corresponding to the sit-
uation where the new user gradually increases the transmitted power (linearly in dB) to the
power limit within 50 iterations. Although this mitigates the transient performance degra-
dation, it does add overhead in the form of additional training. (In a packet data system
this additional overhead must be included in each packet.) Adaptive techniques that detect
the appearance of a new user are discussed in [34] and [64]. In principle, this additional in-
formation can be used to mitigate the degradation in performance caused by the associated
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Figure 5.4: Averaged SINR vs. time for the orthogonally-anchored (blind) LS and stochastic

gradient algorithms with a mismatched anchor. The blind LS and stochastic gradient algo-

rithms switch to decision-directed mode at times 100 and 300, respectively. Also shown is

SINR vs. time for the decision-directed RLS algorithm.

transient without additional overhead.

Finally, Figure 5.6 shows a comparison of the subspace tracking algorithm of [129] with
RLS. This algorithms makes use of the Projection Approximation Subspace Tracking - di-
lation (PASTd) of [134]. Note that this simulation illustrates the potential gain in SINR
that can be obtained by reducing the number of dimensions to be adapted from N to K. (In
this example, we have increased the dimension of the received signal to N = 31, while keep-

ing the number of users small to illustrate the dimension-reduction advantages of subspace
methods.)

6 Further Issues and Refinements

In the preceding three sections, we have considered basic elements of adaptive linear multiuser
detection. The actual application of these methods requires consideration of a number of
further issues, on which we touch in this section. In particular, we discuss briefly some
salient features of the mobile wireless communications environment and some additional
issues arising with adaptive interference suppression and multiuser detection in this context.
Many of these issues apply to multiuser detection in general, although the focus of our
discussion is on adaptive linear interference suppression.
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Figure 5.5: Averaged SINR vs. time for the RLS algorithm. A new user appears at time
200. The curve marked “ramp” corresponds to the situation where the new user increases
the transmitted power in equal increments (in dB) for a period of 50 iterations.

6.1 The Mobile Wireless Environment

In the preceding sections, we have treated the adaptive multiuser detection problem primarily
for the situation in which the parameters of the environment are essentially stable. (An
exception is the discussion concerning Figure 5.5, in which the user population changes with
time.) One of the primary challenges to multiuser detection offered by the mobile wireless
environment is that essentially all user parameters, such as received pulse shapes, amplitudes,
relative carrier phase, timing, and whether or not a particular user is active, are time-varying.
Consequently, these parameters must be estimated, either directly or indirectly, and the
detector must be robust with respect to inaccurate estimates. Also, the ideal model (1.1)
- (1.2) of a multiple-access data signal observed in white Gaussian noise is not necessarily
accurate for many situations. Thus, for the practical use of adaptive interference suppression
methods, many aspects of channel behavior beyond those described in the preceding sections
must be considered. In this section we briefly describe some of these impairments present
in mobile wireless channels. The purpose of this discussion is just to present the models of
channel impairments that are commonly used in the literature. More detailed treatments of
propagation along with justification for the channel models can be found, for example, in

[40] or [94].

6.1.1 Distance-Related Attenuation and Shadowing

For terrestrial wireless communications, the received signal strength associated with a par-
ticular user in general depends on (1) the transmitted power, (2) the distance between the
transmitter and receiver, (3) the presence of large objects, such as buildings, foliage, or
vehicles, that lie between the transmitter and receiver line-of-sight, and (4) the relative am-
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Figure 5.6: Comparison of SINR vs. time for the subspace-tracking and RLS algorithms
(N = 31 and K = 6). Here there are four MAI’s 10dB above the intended user, and one
MAT 20dB above the intended user. The post-despreading SNR of the intended user is 20dB.

plitudes and phases of received paths associated with scattering off of surrounding objects.
The dynamic variation in signal strength due to the motion of the transmitter relative to
the receiver (or vice versa) is called fading. The fade rate is the rate at which the signal
experiences fades, and depends on the speed of the mobile.

The second and third items listed above are considered large-scale effects, whereas item
(4) is a small-scale effect [94]. Large-scale effects determine the mean signal strength averaged
over a region spanning a few wavelengths in each direction. These cause relatively slow
variations in the (mean) signal strength as a mobile moves through space. Small-scale
effects cause large swings in signal strength over just a fraction of a wavelength, and are
superimposed on top of the large-scale effects. As a transmitter moves relative to the receiver,
the mean received signal strength therefore varies relatively slowly, but the actual signal
strength may experience large rapid variations (i.e., 20 to 40 dB) around the mean.

Given an isolated transmitter and receiver in free space separated by distance d, the
received signal power is inversely proportional to d®. Although the presence of buildings and
other objects greatly complicates the modes of radio wave propagation, both analysis and
measurements indicate that the loss in signal strength, or path loss, is proportional to d”,
where n is an integer. The value of n is typically chosen between 2 and 5, depending on the
environment considered. In general, the denser the urban environment, the greater the path
loss exponent. The value n = 4 is typically assumed for modeling urban cellular systems.

In addition to the deterministic path loss due to distance, there is a random component
due to the location-dependent spatial distribution of objects relative to the mobile. That is,
the path loss experienced by the mobile depends on both the separation from the transmit-
ter and on the particular placement of surrounding objects that may prevent line-of-sight
communications. This latter effect is called shadowing. Measurements have shown that the
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random variations in path loss around the distance-dependent mean can be modeled as a
log-normal random variable. That is, the received strength, measured in dB, has a Gaussian
distribution with mean specified by the distance-dependent path loss, and standard deviation
o also given in dB. A typical value of ¢ for urban cellular environments is 8 dB.

Based on the preceding discussion, we can write the received power, taking into account
distance-based attenuation and shadow fading, as

P(d) = Py¢ (%’)n (6.1)

where P, is the benchmark received power at distance dp, and ¢ is a log-normal Gaussian
variable with probability density
pe(z) = 107°/1°, (6.2)

6.1.2 Multipath

As noted in Section 4.8, multipath is caused by scattering and/or reflections of the trans-
mitted signal off of surrounding objects. Given a complex baseband transmitted signal s(t),
the effect of multipath is to produce the sum of many delayed and weighted versions of the
transmitted signal. Specifically, the received signal (in the absence of noise) is given by

y(t) = 2_:1 U S(t — Vm) (6.3)

where each term in the sum corresponds to a different path, M is the total number of paths,
and a,, and v, are the the path weight and delay associated with path m. Given a complex
baseband transmitted signal s(t), the path weights a,, are also complex in general. (Note
that the multiuser multipath signal of (4.42) consists of the superposition of K such signals,
in which for the k** signal we have M = M, a,, = Ok mAk, and Vpy, = Tem.)

If the delays vy, in (6.3) are sufficiently large, then the paths represented by the terms
in the sum in (6.3) are said to be resolvable. That is, the receiver is able to distinguish the
different paths, and possibly combine them. For two paths to be resolvable, the relative time
delay between them, v,,, must be greater than 1/W, where W is the signal bandwidth. In
urban environments where significant scattering occurs, each path in (6.3) generally repre-
sents the sum of many “micro-paths”, which arrive within the resolution time. The relative
phases of these scattered paths cause the path weight a,, to fluctuate randomly. If there is no
line-of-sight path, as is often the case in an urban environment, then the real and imaginary
parts of a,, are typically modeled as Gaussian random variables. In this case, the magnitude
of a,, has the Rayleigh probability density

LZB—TZ/(20'??') r>0
r) = R - 64:
pr(r) { d =0 (6.4)

where 0% determines the mean and variance. The phase of a,, is uniformly distributed.
Adding a line-of-sight component to the received path results in an envelope that has a
Ricean distribution.
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From (6.3), the transfer function of a single-user multipath channel can be written as

M
H(f) = X_: N (6.5)

If there is only a single resolvable path, then the magnitude of H(f) is the magnitude of a,,
which is independent of frequency. This type of channel is called a “flat fading” channel,
since the fading occurs uniformly across the entire signal bandwidth. If there is more than
one resolvable path, then the magnitude of H(f) depends on f, so that this type of channel
is called a “frequency-selective” fading channel.

The average received power corresponding to each path specifies the multipath power delay
profile of the multipath channel. This power delay profile can vary considerably, depending
on the mobile environment (e.g., rural, urban, hilly, etc.). An assumption that is sometimes
made for transmission of DS-CDMA signals is that the power delay profile is continuous and
decays exponentially. If the received signal is sampled at the chip rate, then the channel is
modeled by (6.5) where the delays are integer multiples of the chip duration.

It remains to describe how the multipath channel varies with time. The resolvable paths,
associated with the delays v,,, tend to change slowly in comparison with the coefficients a,,.
Consequently, it is reasonable to assume that the paths are fixed, but that the coefficients
@, are time-varying. The time-variation in the coefficient a,, is due to Doppler shift, which
causes the phases associated with all of the unresolvable paths contributing to path z to
vary with time. If the mobile is receiving a carrier with wavelength A, and is traveling with
velocity v at an angle 6 relative to the transmitter, the change in frequency, or Doppler shift,
is fa = (v/A)cosé.

The effect of the Doppler shift is to cause each coeflicient a,, to rotate. This assumes,
however, that the mobile receives a single path coming from a specific direction. If the
mobile receives many such paths, arriving at different angles, then the time variations of
the multipath coefficients becomes more complicated. In that case, an,(t) is modeled as a
random process. For urban mobile cellular systems, uniform scattering is often assumed,
which means that the received spatial power density is a constant function of angle. In that
case it can be shown that the power spectral density associated with a,,(t) is given by

So(f) = e (6.6)

for |f| < fa, where K is a constant that determines the power of the random process, and
fa = v/ is the maximum Doppler shift.
For the case of uniform scattering, the coefficients a,,(¢) can therefore be modeled as the

output of a filter with frequency response /Sp(f) in response to a complex white Gaussian
noise input [94]. An alternative, known as Jake’s model [40], is to generate a,(t) by sum-
ming complex sinusoids at different frequencies between — f; and f;, each weighted by the
associated value of /Sp. An example of a Rayleigh fading process, which was generated
according to the first method, is shown in Figure 6.1.

Consider a wireless multiple access channel in which each user is subject to flat fading. In
principle, the MMSE solution for the time-varying linear filter (for a desired user) must take
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Figure 6.1: Sample path of the magnitude of a Rayleigh fading process.

into account the channels associated with all users. However, if the number of users is much
less than the processing gain, and the background Signal-to-Noise Ratio is very high, then
the MMSE solution can be approximated by the zero-forcing solution, which does not depend
on the channel coefficients. That is, the space spanned by the interferers does not depend on
the complex channel coefficients. The adaptive algorithm is therefore relieved from the task
of tracking the channels associated with the interferers. Furthermore, the adaptive algorithm
does not need to track the flat fading channel associated with the desired user when either
differential detection or a pilot signal is used. Consequently, we conclude that for flat fading
channels, when the number of users is small relative to the processing gain, the performance
of adaptive algorithms should be insensitive to the fade rate (provided that the desired user’s
channel can be tracked). Simulation results that support this observation are presented in
[33].

Now consider the case where each user experiences frequency selective fading. Recall that
the received signal vector contributed by user k£ after chip-matched filtering and sampling
is given by (4.45), and depends on the time-varying complex coefficients associated with
each path. If each path fades independently, then the interference space is time-varying,
so that the adaptive algorithm attempts to track the time-varying multipath coefficients
associated with all users. If the fade rate is sufficiently fast, then the adaptive algorithm
is unable to track the combined set of paths for each user, and attempts to suppress each
path individually. This, however, degrades the performance of the adaptive filter, since
it effectively treats each path as a separate interferer. In the worst case, the multipath
contributed by the interferers exceeds the number of available dimensions (e.g., the processing
gain) that the filter has to suppress interferers, and the performance becomes equivalent to
the matched filter. Tracking is therefore a critical issue for frequency-selective fast fading
channels.

Results showing the performance of adaptive interference suppression algorithms in the
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context of DS-CDMA with Rayleigh fading channels are presented in [33], [60], [85], [126], and
[127]. In [60] a phase predictor is combine with differential coding and detection, whereas in
[85], [126] and [127] phase prediction is combined with coherent detection by using a training
sequence that must be transmitted periodically. A differential LS algorithm that does not
rely on phase prediction is described in [33], which also shows performance results for a
cellular type of model with flat Rayleigh fading channels.

6.1.3 Delay

Another time variation associated with mobile wireless channels is caused by propagation
delay. As the mobiles move, the arrival times of the transmitted signals change, which
changes the crosscorrelations between received signals. However, this change in delay occurs
very slowly relative to the chip duration for chip rates and mobile speeds of interest. (For
example, assuming a chip rate of 107 chips/s, and that the mobile is approaching the base
station at a speed of 65 mph, the propagation delay changes by less than one chip/s.)

6.1.4 Power Control

Power control is a technique used in currently implemented DS-CDMA mobile telephony
systems to alleviate the near-far problem. The basic idea of power control is to provide feed-
back to mobile transmitters to control their transmitted power levels to yield equal power
at the receiver from all mobile transmitters. Since interference suppression techniques can
potentially alleviate the near-far problem in DS-CDMA, their use can loosen the require-
ments on power control. However, power control can still be beneficial performance, with
or without interference suppression, and can also reduce the power dissipated by mobile
handsets, thereby extending battery life. For the matched-filter detector, the objective of
power control for the reverse link is to ensure that all users detected at the base station
are received with equal power. For mobile cellular systems, effective power control requires
a feedback channel with which the receiver informs the transmitter to raise or lower the
transmitted power in small increments (e.g., 1 dB). The effectiveness of the power control
depends, of course, on how frequent the power updates are transmitted over the feedback
channel, and the probability of power control errors (i.e., a “raise” command is received as
a “lower” command, or vice versa).

For mobile cellular, it is generally assumed that a practical power control algorithm can
respond quickly enough to compensate for shadowing and distance-related attenuation, but
that it cannot compensate for fast Rayleigh fading due to multipath. Consequently, the
received power of a signal that experiences flat Rayleigh fading will experience large short-
term variations in power, but the power averaged over these short-term fades can be set at
some target value. It is observed in [123] that for the type of closed-loop adaptive power
control previously described, the distribution of the average received power due to variations
caused by updates and power control errors is log-normal. The variance (in dB) of the
received power reflects how “tight” the power control is. For the matched filter receiver very
tight power control is required for adequate performance, which means that the standard
deviation of the received signal power must be approximately 1 to 1.5 dB.

To optimize performance, the power control algorithm should ensure that the error rate
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for each user is at the maximum acceptable value. For the matched filter receiver, this is
the same as equalizing received powers; however, this is no longer true for receivers with
interference suppression.

6.1.5 Time-Varying User Population

In addition to time-varying channels, in a mobile cellular environment the set of interferers
is also time-varying. The interference suppression algorithm must be able to compensate for
the appearance of new users, as well as for the disappearance of existing users. “Users” may
be associated with calls, in the case of circuit-switched traffic, or with individual packets,
in the case of packet-switched traffic. Note that in the latter case, packets may arrive
and depart frequently, causing frequent transients in the interference environment that an
adaptive algorithm must track. Even in the case of circuit-switched voice traffic, an adaptive
algorithm must adapt to the set of users currently speaking in order to obtain the potential
gains in capacity due to voice inactivity. (In practice, when a user is silent, the power of the
transmitted signal is not set to zero, but is significantly reduced so that synchronization and
channel tracking can be maintained.)

The rate at which users arrive and depart determines the average traffic load, measured
in Erlangs per cell [124]. Specifically, assuming Poisson arrivals at rate A per cell (assumed
to be the same for all cells), and an average service rate (per call or packet) given by p,
the average number of users in the system is C(A/u), where C is the number of cells and
A/p is measured in Erlangs per cell. It is typically the case that in a DS-CDMA system
the average number of users present in the system greatly exceeds the processing gain. This
implies that the zero-forcing solutions previously discussed do not exist. However, if the
number of strong interferers is significantly less than the processing gain, then the linear
MMSE detector can effectively suppress these interferers, while treating weak users (e.g., in
other cells) as background noise.

We saw from Figure 5.5 that the appearance of a new strong interferer can cause a
transient performance degradation in adaptive algorithms. As the traffic load increases, these
transients become more frequent. Since, in packet data systems, the appearance of a new user
does not necessarily refer to a new call but rather a new data packet, rapid convergence in
response to the appearance of new users is therefore a requirement for adaptive interference
suppression in a packet data cellular system. Simulation results for a cellular type of model
with stochastic arrivals and departures indicate that an adaptive interference suppression
filter using the stochastic gradient algorithm is inadequate for this application, even under
moderate traffic loads [29]. Thus, more rapid adaptation techniques are needed for this
application.

6.1.6 Narrowband Interference

The fact that DS-CDMA systems spread transmitter power over a wide bandwidth allows
the possibility that such systems can be overlaid on existing narrowband communication ser-
vices, without undue degradation of either the narrowband or the spread-spectrum service.
(The same property allows antijamming capability in military spread spectrum systems.)
Although spread spectrum communications is inherently resistant to the narrowband inter-

42



ference (NBI) caused by such co-existence with conventional communications, it has been
demonstrated that the performance of spread-spectrum systems in the presence of narrow-
band signals can be enhanced significantly through the use of active NBI suppression prior to
despreading. In particular, not only does active suppression improve error-rate performance
[9], but it also can lead to increased CDMA cellular system capacity [75] and improved
acquisition capability [62].

Over the past two decades, a significant body of research has been concerned with the
development of techniques for active NBI suppression in spread-spectrum systems. All of
these techniques essentially seek to form a replica of the narrowband signals that can be
subtracted from the received signal before data demodulation takes place. The formation of
the replica may use predictors or interpolators to explicitly exploit the narrowband nature
of the NBI against the wideband nature of the DS-CDMA signal (cf., [61], [98], [122], [131]),
or it may use more detailed structural information in the case of digital NBI (which also
arises in multirate CDMA systems) [83], [99]. In the latter case, a form of linear multiuser
detection is essentially being used. Surveys of advances in this area are found in [61] and [80].
More recently, the adaptive MMSE detection techniques described in Sections 3 through 5
have been shown to work quite well against combined MAI and NBI of all types [87], [88].

6.1.7 Non-Gaussian Ambient Noise

Much of the development and analysis of interference suppression techniques for wireless
systems has focused on situations in which the ambient noise is Gaussian. As noted in
Section 2, this model has allowed the research in this area to focus on the main interference
sources, namely structured interference (MAI and NBI). However, for many of the physical
channels arising in wireless applications, the ambient noise is known through experimental
measurements to be decidedly non-Gaussian. This is particularly true of urban and indoor
radio channels [54, 55, 57| and underwater acoustic modem channels [11, 12, 56]. For these
channels, the ambient noise is likely to have an impulsive component that gives rise to larger
tail probabilities than is predicted by the Gaussian model. When the structured interference
dominates, the lack of realism of the ambient noise model is perhaps not crucial. However,
with multiuser detection, the MAI-limited nature of multiple-access channels is mitigated
and the nature of the ambient noise is more important.

It is widely known in the single-user context that non-Gaussian noise can be quite detri-
mental to the performance of conventional systems based on the Gaussian assumption. On
the other hand, the performance of signaling through non-Gaussian channels can be much
better than that for corresponding Gaussian channels if the non-Gaussian nature of the
channel is appropriately modeled and ameliorated. (The latter typically involves the use
of nonlinear signal processing.) Neither of these properties is surprising. The first is a re-
sult of the lack of robustness of linear and quadratic type signal processing procedures to
many types of non-Gaussian statistical behavior [43]. The second is a manifestation of the
well-known least-favorability of Gaussian channels.

In view of the lack of realism of an AWGN model for ambient noise arising in many prac-
tical channels in which multiuser detection techniques may be applied, natural questions
arise concerning the applicability, optimization, and performance of multiuser detection in
non-Gaussian channels. Although performance indices such as MSE and SINR for linear
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detectors are not affected by the distribution of the noise (only the spectrum matters), the
more crucial bit-error rate can depend heavily on the shape of the noise distribution. The
results of an early study of error rates in non-Gaussian DS-CDMA channels are found in [1],
[2] and [3], in which the performance of conventional and modified conventional detectors is
shown to depend significantly on the shape of the ambient noise distribution. In particular,
impulsive noise can seriously degrade the error probability for a given level of ambient noise
variance. In the context of multiple-access capability, this implies that fewer users can be
supported with conventional detection in an impulsive channel than in a Gaussian channel.
However, since non-Gaussian noise can, in fact, be beneficial to system performance if prop-
erly treated, the problem of joint mitigation of structured interference and non-Gaussian
ambient noise is of interest [79]. An approach to this problem for NBI in spread-spectrum
systems is described in [20]. Some very recent results along these lines for the case of MAI
are reported in [81] and [130], the latter of which describes nonlinear adaptive methods that
generalize the MMSE approach described in Sections 3 through 5.

6.2 System Issues

In addition to algorithmic issues such as performance and complexity, it is important to
determine how adaptive interference suppression will affect other communication system
requirements. These system issues are currently not well understood, so the following dis-
cussion is necessarily very brief (relative to importance).

6.2.1 Coding

Coding and interleaving are necessary to achieve reliable communications over fading chan-
nels. For example, in the commercial 1S-95 standard DS-CDMA air interface, a rate 1/3
binary convolutional code is used on the uplink, and simultaneously serves to spread the
bandwidth. Consequently, to achieve the same degree of spreading with coding, as com-
pared to without coding, the length of the pseudo-random (PN) sequence associated with
each bit must be reduced by a factor of three. When used with linear interference suppres-
sion, this reduction in PN-sequence length reduces the “degrees of freedom” available to
suppress interference. (The tradeoff is that the coding may be able to compensate for the
residual interference.) In other words, a low-rate code robs “dimensions” from the interfer-
ence suppression filter. We add that this tradeoff does not apply to interference cancellation
techniques, in which the interference is regenerated and substracted from the received signal
[72].

The preceding observation implies that it is best to use high-rate codes with linear in-
terference suppression, rather than low-rate codes. This has also been noted in [97], and in
[69]. However, existing high-rate codes, such as Ungerboeck codes [110], rely on relatively
dense constellations (such as 8-PSK), which may pose additional problems (e.g., with phase
tracking) in a fading environment.

Another issue is that if uncoded symbols are used for decision-directed adaptation, then a
more powerful coding scheme implies a higher decision error rate in the adaptive algorithm
(assuming a fixed target error rate). There is, therefore, a tradeoff between the performance
gain due to coding, and the performance loss due to uncoded decision errors in the adaptive
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algorithm. (This assumes that the delay associated with using decoded symbols to direct
the adaptation is unacceptable in a fast-fading environment.)

6.2.2 Power Control

For DS-CDMA systems that use the conventional matched-filter receiver, power control is
crucial for mitigating the near-far problem. Also, as noted previously, power control has
the advantage of lowering the transmitted power for each user, and thereby extends battery
life. For the conventional matched filter receiver, power control is typically used to equalize
the received powers [123]. (A further advantage of this is that it helps avoid saturation
of nonlinear receiver elements, such as fixed-point processors.) However, in general, the
goal of optimum power control is to adjust the transmitted powers so that the received
SINRs corresponding to all users being detected are equal [6]. Although multiuser detection
and interference suppression techniques can alleviate power control requirements, power
control can enhance the performance of interference suppression techniques. The interaction
of adaptive power control with adaptive interference suppression has so far received little
attention.

6.2.3 Timing Recovery

The discussion in preceding sections has assumed that the receiver is perfectly synchronized
to the desired user. It has been observed that timing offsets can significantly degrade the
performance of some multiuser detectors [13], [137]. This observation, however, is implemen-
tation dependent. An advantage of the adaptive tapped-delay line implementation for linear
interference suppression is that it is analogous to an adaptive fractionally-spaced equalizer
(for a single-user channel), which is known to be insensitive to timing offset [91]. Further-
more, timing recovery for the multiple-access channel with an adaptive fractionally-spaced
tapped-delay line (TDL) can be accomplished in an analogous fashion as for a single-user
channel. The combination of timing estimation with adaptive linear interference suppression

is studied in [52], [102] and [129].

6.2.4 Nonuniform Quality of Service

An important difference between linear interference suppression techniques and the matched-
filter receiver is that the former relies on the use of short spreading sequences, whereas the
latter can use either or short or long spreading sequences. A very long spreading sequence,
such as used in [5-95, is equivalent to selecting a different random spreading sequence for each
bit (“code hopping”). An advantage of code hopping is that each user sees approximately
the same performance, assuming perfect power control, since averaging the performance over
the sequence of transmitted bits is equivalent to averaging over spreading sequences.

In contrast, the solution for MMSE, given by (4.20), implies that the MMSE depends
on the particular assignment of spreading codes to users (as well as relative amplitudes and
phases). Furthermore, the MMSE will generally be different for different users. Conse-
quently, even though average performance (i.e., error probability averaged over all spreading
sequences) may be very good, some users may have relatively poor performance. This is be-
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cause the spreading codes assigned to two users may have relatively high cross-correlation.
This observation is made in [117], and is analyzed in [36].

To illustrate the preceding observation, Figure 6.2 shows the distribution (computed
via simulation) for SINR assuming that the user signature sequences are selected randomly
(i.e., each element of the vectors pg, K = 1,..., K, is determined by a fair coin toss). In
this example the processing gain N = 30, there are 10 “strong” (i.e., intra-cell) users, 50
“weak” (i.e., other-cell) users, and the signal-to-background noise ratio is 25 dB. The received
powers (for members of each set of strong and weak users) were selected from a log-normal
distribution. The SIR distribution for the matched-filter receiver is also shown.

The results in Figure 6.2 indicate that there is a significant spread in performance ( > 10
dB) over the user population. Note that by using a very long spreading sequence (as in the
IS-95 standard) the distribution for the matched-filter becomes a point mass at the average
of the distribution shown in Figure 6.2 (-10 dB).

0.25

0.2

0.15f

0.1F

O I Il 1 1
-100 -80 -60 -40 -20 0 20 40
Signal-to-Interference Ratio

Figure 6.2: Distributions for Signal-to-Interference Ratio assuming random signature se-
quences. Results for both the linear MMSE detector and the matched filter are shown.

Power control may help to improve the performance of users experiencing poor perfor-
mance only in some situations. For example, two adjacent users may be assigned “nearby”
codes, meaning that their cross-correlation is large. If the adjacent users are transmitting
to the same receiver, then power control cannot significantly improve performance for both
users. However, if the users are transmitting to different receivers (i.e., if they are in dif-
ferent cells), then it may be possible for one of the users to reduce power, thereby reducing
interference to the other user.

Finally, we remark that the significant spread in performance shown in Figure 6.2 assumes
a static situation in which the set of users, and relative amplitudes and phases are fixed.
In a mobile wireless network these parameters are time-varying, which should alleviate this
problem to some degree. In addition, path and/or space diversity may also reduce the
likelihood of having relatively high cross-correlations with neighboring users.
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6.2.5 Very Long Spreading Sequences

The model that we have proposed in this chapter has addressed primarily the situation
in which the received signaling waveform of each user is the same in each symbol interval
(aside from fading and other channel effects). In some current DS-CDMA systems (such
as the IS-95 digital cellular standard), this model is not accurate because the period of the
spreading waveform spans many bits. From a theoretical point of view, this distinction is
not overly significant. However, from a practical point of view, it is quite significant. Since
the key parameter determining performance of DS-CDMA systems is the number of chips
per symbol, not the number of chips per period of the spreading code, this use of long
spreading codes is primarily of value in providing uniform quality of service over the user
population, as discussed in the preceding section, and in avoiding the need to assign (or
reassign) codes to each new call (or to an existing call which is handed off to an adjacent
cell). In deciding whether or not to use short or long codes in future DS-CDMA standards,
these advantages should be weighed against the performance advantages offered by practical
multiuser detection.

6.2.6 Power Consumption

Since mobility is one of the main motivations for using wireless communications, the practi-
cality of many of the techniques described in this chapter depends heavily on the ability to
implement them in portable, battery-operated handsets. Thus, the issue of energy consump-
tion is of considerable importance in the development of interference suppression algorithms
for wireless systems. In cellular systems, there is an asymmetry with respect to this issue,
in that the base station (i.e., the uplink transceiver) is relatively unconstrained by energy
consumption, whereas the mobiles (i.e., the downlink transceivers) are severely constrained.
So, the use of sophisticated signal processing, such as multiuser detection, at the base station
does not pose a serious energy-consumption problem. Since these techniques allow better
performance for a given level of received signal energy than do conventional methods, the use
of such methods in the base station can reduce required transmitter power at the mobiles,
thereby reducing overall battery requirements for portable transceivers. However, the ad-
vantages of adaptive linear multiuser detection, multipath mitigation, etc., can significantly
enhance the downlink performance as well. (Also, point-to-point systems do not necessar-
ily feature fixed, non-portable transceivers.) Thus, energy-efficient techniques for the linear
adaptive algorithms discussed in this paper are of considerable interest.

One technique for achieving energy efficiency in the MMSE detector is described in [88].
In particular, energy consumption in integrated circuits is an increasing function of gate
speed. Since the algorithms of interest here should be implemented at the signaling rate (i.e.,
at the symbol rate), the algorithms cannot be slowed down to reduce energy consumption.
However, as shown in [88], the blind RLS MMSE detection algorithm can be implemented
with a slower gate speed by mapping it to a systolic array. This mapping allows the individual
gate speed to be reduced significantly without a corresponding reduction in the speed at
which the algorithm updates its coefficients.
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7 Summary and Conclusions

In this chapter, we have discussed the use of adaptive signal processing techniques to suppress
structured interference in wireless systems. We have focussed on the suppression of multiple-
access interference, and have primarily considered techniques that are based on the MMSE
method of linear multiuser detection. As we have seen, MMSE detection provides many of the
performance advantages of optimal multiuser detection, without its attendant complexity.
Moreover, the MMSE detector lends itself to a great variety of adaptive methods, and it is
relatively robust to other types of interference (such as narrowband interference).

The results presented in this chapter have largely been of a research nature, as this is
the primarily intention of the present volume. However, we have also mentioned, in Section
6, a variety of other issues that are of concern in bringing these methods to practice. These
practical issues present a wealth of other research questions, many of which are currently
being addressed by the community.
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