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Adaptive Reduced-Rank Interference Suppression
Based on the Multistage Wiener Filter

Michael L. Honig Fellow, IEEE,and J. Scott Goldstejrrellow, IEEE

Abstract—A class of adaptive reduced-rank interference sup- the lower dimensional signal subspace with largest energy (e.g.,
pression algorithms is presented based on the multi-stage Wiener [4], [7]). This technique can improve convergence and tracking
filter (MSWEF). The performance is examined in the context of di- performance whedV is much larger than the signal subspace.

rect-sequence (DS) code division multiple access (CDMA). Unlike 7, . . .
the Principal Components method for reduced-rank filtering, the This assumption, however, does not hold for a heavily loaded

algorithms presented can achieve near full-rank performance with commercial cellular system. Furthermore, in that application

a filter rank much less than the dimension of the signal subspace. can still be relatively large (i.ex 100).

We present batch and recursive algorithms for estimating the  Two reduced-rank methods that do not require the dimension
filter parameters, which do not require an eigen-decomposition. of the projected subspace to be greater than that of the signal

Algorithm performance in a heavily loaded DS-CDMA system “ ” -
is characterized via computer simulation. Results show that the subspace are the “cross-spectral (CS)” method, presented in

reduced-rank algorithms require significantly fewer training [11] (see also [12]), and the MSWF, presented in [10]. Unlike

samples than other reduced- and full-rank algorithms. the CS and PC methods, the MSWF does not rely on an explicit
Index Terms—Adaptive filters, code-division multiple access estimate of the signal subspace, but rather generates a set of
(CDMA), interference suppression. basis vectors by means of a successive refinement procedure

[10]. (See also [8], [13]. An “Auxiliary Vector” filter is pre-
sented, which generates the same subspace as the reduced-rank
MSWEF.) This technique can attain near full-rank minimum
EDUCED-RANK linear filtering has been proposed fomean squared error (MMSE) performance with a filter rank
array processing and radar applications to enable accurat@ch is much smaller than the dimension of the signal sub-
estimation of filter coefficients with a relatively small amounspace [14]. As will be demonstrated, this low rank enables a
of observed data (e.g., see [1], [2] and the references thereybstantial reduction in the number of training samples needed
Other applications of reduced-rank filtering include equaliz&e obtain an accurate estimate of the filter parameters.
tion [3] and interference suppression in direct-sequence (DS)We present a class of adaptive filtering algorithms, which are
code-division multiple access (CDMA) communications sygnotivated by the MSWF. These algorithms do not require an
tems [4]-[8]. In this paper we present reduced-rank adapti¢gen-decomposition, and are relatively simple (especially for
filtering algorithms which are based on the multi-stage Wiensmall filter rank). Both batch and recursive algorithms are pre-
filter (MSWF) [9], [10]. Algorithm performance is studied insented in this paper, along with training-based, or decision-di-
the context of DS-CDMA. rected, and blind versions of each. The blind algorithms require
Reduced-rank interference suppression for DS-CDMA wé&sowledge of the desired user’s spreading code and associated
originally motivated by situations where the processing ddin timing (i.e., see [6]). We will also assume that timing informa-
is much larger than the dimension of the signal subspace (et@n is available for the training-based algorithms. The perfor-
[4] and [5]). This is relevant for some applications where a larggance of the adaptive MSWF techniques are illustrated numer-
processing gain is desired for covertness. IfNutap adaptive ically, and are compared with other adaptive reduced-rank tech-
filter is used to suppress interference (e.g., see [6]), then larggues.
N implies slow response to changing interference and channel’he next section presents the DS-CDMA model, Sections |lI
conditions. and IV review reduced-rank MMSE filtering and the MSWF,
Much of the work on reduced-rank interference suppressiand Section V presents the adaptive MSWF algorithms. Numer-
for DS-CDMA has been based on “principal components (PCical results are presented in Section VI, and adaptive rank selec-
in which the received vector is projected onto an estimate i#n is discussed in Section VII.

. INTRODUCTION
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respectively, the delay and amplitude associated withiud&'e The sequence of projected received vec{gr§) } is the input
assume binary signaling, so that:) € {+1}. For DS-CDMA, to atapped-delay line filter, represented by thwectore(:) for

N-1 symboli. The filter output corresponding to thth transmitted
pr(t) = Z ar [V (t — ¢T,) ) symbol is
n (i) = "Dy (o). @)

whereqy[i] € {£1/V/N},i=0, ..., N—1,is the real-valued . _ . N
spreading sequencit) is the chip waveform, normalized to ASsSuming coherent detection, the vectdi) which mini-
have unit energyf. is the chip duration, and/ = T/T, is the Mizes the mean squared error (MSE)| c(¢)|*), wherec(i) =
processing gain. It is assumed that the same spreading codé (6 — €' ()¥(4), is
repeated for each symbol. The numerical results in Section VI - _ B-lx

. Cmmse = R P1 (8)
assume rectangular chip shapes.

Lety(¢) be theN-vector containing samples at the output of ahere
chip-matched filter during thé&h transmitted symbol, assuming . N i
that the receiver is synchronized to the desired user. Lektiag R = E[y(9)y'(9)] = SpRSp ©)
R =FLly

1 correspond to the user to be detected, we can write E[y(i)y'(i)]
K =P-A2P~T L ptAZPt 4 71 (10)
i) = Arbi(D)p1+) _ Ax[br(i)pf +0x(i—1)p, [4m(i) (3 . Nl

wherep; is the spreading sequence associated with the desiilgte associated MMSE for a radX filter is given by
user,p, and p,j are the twolN-vectors associated with the 1
kth interferer due to asynchronous transmission,&fglis the Mp =1-p;R""p1. (12)
vector of noise samples at tinieassumed to be white with co-  gefgre presenting the MSWF, we briefly mention other re-
varialjcecf?I. In what follows, we will use the more convenieniyced-rank filters, which have been previously proposed. The
notation performance of the adaptive MSWF algorithms to be described
y(i) = P~ Ab(i — 1) + PTAb(i) + n(i) (4) yvill be F:ompared_with the performance of thgse qther methods
in Section VI. A simulation study of the adaptive eigen-decom-
whereP* is the N x K matrix with columns given by the cor- position and partial despreading methods is presented in [5].
responding signal vectors(¢) is the vector of transmitted sym-
bols across users, aml is the diagonal matrix of amplitudes.A. Eigen-Decomposition Techniques
(Since the receiver is synchronized to the desired us&;fif  pc reduced-rank filtering is based on the eigen-decomposi-
containsp,, then the column oP~ corresponding to user 1jgn
contains all zeros.)
R = VAV (13)
[ll. REDUCED-RANK LINEAR MMSE HLTERING
) ) o whereV is the orthonormal matrix whose columns are eigen-
The MMSE receiver consists of the vectomhich is chosen ectors ofR, andA is the diagonal matrix of eigenvalues. If we
to minimize the MSE assume the eigenvalues are ordered@as s > --- > Ay,
M = E{|b1 (i) — ety (d)]?} (5) then for given subspac_:e dimensibn the proje_ction m_atrix for
PCisSp = Vi.p, thefirstD columns ofV. This technique can
wheret represents Hermitian transpose. For simplicity, we agtiow a significant reduction in rank when the dimension of the
sume that containsNV coefficients and spans a single symbodignal subspace is much less th¥nlf this is not the case, then
interval, which is suboptimal for asynchronous DS-CDMA [6]projecting onto the subspa8e, for small D is likely to reduce
The following discussion is easily generalized to the case whef@ desired signal component. This is especially troublesome in
the vectore spans multiple symbol intervals. a near-far environment where the energy associated with the in-
The vectok can be estimated from received data via standafétference subspace is greater than that for the desired user.
stochastic gradient or least squares estimation techniques [6]f the spreading code for the desired ugeris known, then
However, largeN implies slow convergence. A reduced-rankombining the PC method with the Generalized Sidelobe Can-
algorithm reduces the number of adaptive coefficients by preeler (GSC) structure [15], [16] maintains the desired signal en-
jecting the received vectors onto a lower dimensional subspaggyy. Specifically, the filtee can be expressed as= p; — Bw,
Specifically, letSp be theN x D matrix with column vectors whereB is a blocking matrix and satisfiedB’p, = 0. Se-
which are an orthonormal basis foZ&dimensional subspace,lecting w to minimize the output MSE givesr = R 1p;,
whereD < N. The projected received vector corresponding i@hereR, — BIRB, andp; = B'Rp,. Areduced-rank GSC is
symbol: is then given by then obtained by projecting the outputBfonto a smaller sub-
5(3) = gt (i) ©6) space, spanned by the columnsSef. A rank-D approximation
D for w is given byS pw, wherew = (S%RSD)—l(Sfo)l). For
where, in what follows, allD-dimensional quantities are de-the PC method, the columns 8f, are the eigenvectors at.
noted with a “tilde.” corresponding to th® largest eigenvalues [17]-[19].
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do(i) = b1 (i) £0(0)

Yol =y
L

Fig. 1. Multistage Wiener filter.

An alternative to PC is to choose the sefdéigenvectors for ¢y, ..., ¢p, whereD is the order of the filter. IfD = N, then
the projection matrix which minimizes the MSE. Specificallythe filter is the full-rank MMSE (Wiener) filter. LeB,,, denote
if Sp consists ofD eigenvectors oR, then the MSE can be ablocking matrix i.e.,
written in terms of projected variables as

—1/2~

Mp =1-Ap / p1||2 (14) In what follows, we will sometimes writd,,, = null(c,,),
whereAp is the D x D diagonal matrix of associated eigenwhichisM x (M — 1), and other times writB,,, = I-c,,,c} ,
values. To minimizeM p, the basis vectors should be thevhichisA{ x M, but has rankd — 1.
eigenvectors ofR associated with theD largest values of  Referring to Fig. 1, letl,,,(i) denote the output of the filter
IP1, &||?/ Ak, Wherepy 5 = V};pl is thekth component op,, ¢, andy,,(¢) denote the output of the blocking mati,,,
andVj is thekth column of V. (Note the inverse weighting of both at timei. The ¢ + 1)st multi-stage filter is determined by
Ak in contrast with PC.) . "

This technique, called “cross-spectral (CS)” reduced-rank fil- Cmt1 = Eldyym]. (17)
tering, was presented in [11]. Prior to that work, a similar CBorm = 0, we havedy(¢) = b1(¢) (the desired input symbol),
metric for ordering the eigenvalues in a GSC was presentedyisi) = y(¢), andc; is the matched filtep;. As in [10], it
[12]. The CS reduced-rank filter can perform well fbr < K will be convenient to normalize the filteks, ..., cp so that
without the GSC structure since it takes into account the enenlyy,,|| = 1.
in the subspace contributed by the desired user. Unlike PC, thé he filter output is obtained by linearly combining the outputs
estimated subspace for CS requires either training, jpriori ~ of the filtersc,, ..., ¢p via the weightswy, ..., wp_1. This
knowledge of the desired user’s spreading cpdeA disadvan- is accomplished stage-by-stage. Referring to Fig. 1, let
tage of eigen-decomposition techniques in general is the com-

Bl c,. =0. (16)

plexity associated with estimation of the signal subspace. m (1) = dn (8) = w11 (2) (18)
for 1 <m < D andep(i) = dp(i). Thenw,,41 is selected to
B. Partial Despreading minimize E[|em]?].

In this method, proposed in [20], the received DS-CDMA The rank{) MSWF is given by the following set of recur-
signal ispartially despreadover consecutive segments of Sions.
chips, wherem is a parameter. The partially despread vector Initialization:

has dimensiod = [N/m], and is the input to th&-tap filter. do(i) = b (i P 19
Consequentlyy: = 1 corresponds to the full-rank MMSE filter, o(?) 1@, yo(_L) y(@). (19)
andm = N corresponds to the matched filter. The columns dforn = 1, ..., D (Forward Recursion):
Sp inthis case are nonoverlapping segmentggfwhere each — Bl /Bl 20
segment is of length. = Eld;, 1 Yn—1(D/ |1 E[d},_1¥n—1]]l (20)
Specifically, if N/m = D, thejth column ofSp is dn (i) =clyn_1(d) (21)
[Splj =100 P ((;_1)ms1jm] OOl (15) B, =null(c,) (ifn<D) (22)
wherel < j < D, the subscrip{l : m) denotes components Yo =Bly,._1 (if n < D). (23)

[ throughm of the corresponding vector, and there §je—

1)m zeros on the left andD — j)m zeros on the right. This Pecrement. = D, ..., 1 (Backward Recursion):
is a simple reduced-rank technique that allows the selection of wy, = E[d*_ (D)en (D)]/El|en(9)]?] (24)
MMSE performance between the matched and full-rank MMSE
filters by adjusting the number of adaptive filter coefficients. en—1(8) = dn_1(2) — wyen (i) (25)
whereep (i) = dp(i). The estimate oflp is we;.
IV. THE MULTISTAGE WIENER FILTER (MSWF) At stagen the filter generates a desired sequefidg(i)}

The MSWF was presented in [10] for the known statisticnd an “observation” sequendg.,,(i)}. Replacingc,, in the
case, i.e., known covariance matiiand steering vectop;. MSWF by the MMSE filterc{™”**) for estimating{d,, 1 (i)}
A block diagram of a four-stage MSWF is shown in Fig. 1from {y,._1(¢)} gives the full-rank MMSE filter. The MSWF
The stages are associated with the sequence of nested filterself-similar” in the sense that the MMSE filtef™™*) is
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replaced by the associated MSWF. The covariance matrix fortpitialization:
the projected vectof = [do, di, ..., dp_1] is tri-diagonal dy=b Y=Y (35)
[10].

i ) ) . For n=1,...,D (Forward Recursion):
It is shown in [14] that MSWF has the following properties.

. . _ s t

1) Let Sp denote theD-dimensional subspace associated bn = Yn—ldn_l (N-n+1)x1 (36)

with the rankD MSWF. Then o = [IBnll (37)

Cp = ﬁn/(sn (38)

Sp =span{cy, ..., cp} (26) d, = Y., 1xM (39)
=span{p1, Rpi, R%pi, ..., RD_lpl} 27 Ifn <N,

B, = nulllc,) (N—n+1)x(N-n)  (40)

where the first set of basis vectors is an orthonormal set,

and the basis vectors in the second set are not orthog

onal. Thatis, a reduced-rank MSWF projects the received Decrement n = D, ..., 1 (Backward Recursion):

signal ontaSp,, the Krylov subspace defined by (27), and

optimizes the filter within that subspace. wn = (ead}_y)/|lenll? = 6n/enll? (42)
2) The rankD needed to achieve full-rank performance does -1 = dpoy — ey (43)

not scale with system sizek( and ). This is shown

by computing the large system output SINR for the re-

duced-rank MSWF, defined by lettifg — oo andV — Fig. 2. Algorithm 1. Batch adaptive MSWF with training.

oo with fixed K/N. For the ideal synchronous CDMA

model, ag) increases, this large system output SINR conyng our objective is to minimizéle||2, which is the standard

verges to the full-rank large system SINR as a continuggh <t squares (LS) cost function. For rabk < N, the cost
fraction. As a consequence, full-rank performance is eginction becomes

sentially achieved with rank® < 8 for a wide range of o
loads and S|gnal—t9-n0|se ratios (SNRs). . _ Cp = Z I1b1(3) — éty(i)HQ (31)
We remark that, a® increases, the set of basis vectors in im1

(27) can become nearly linearly dependent evedfogl K. In \yherec andy are the associated projected variables. Specifi-
that case, the transformed covariance maﬂiprS p becomes cally
ill-conditioned, which creates numerical problems with com- X
puting the reduced-rank filter. This indicates that fewer than y(@) = Sg(i)y(i) (32)
basis vectors essentially span the projection subspace, and that L ) )
D can be decreased without significantly increasing the MSEhere the columns d8» (<) are the estimated basis vectors for
This observation is used in Section VII to formulate an adaptiVg€ subspac8p at time:.
rank selection method. A. Batch Algorithms

Here we consider estimation of the MSWF parameters given
V. ADAPTIVE REDUCED-RANK ALGORITHMS Y andb in (28) and (29). The approach just described leads to

In this section, we present a family of adaptive algorithnfIgorithm 1(see l_:ig. 2, the batch agaptive _M_SWF With training
which are related to the MSWF. A straightforward way to de->>)—(43)- Following the approach in [10], it is straightforward

rive such an adaptive algorithm is to replace statistical avép_shoc\j/vtdhatth|s|algor|th.m tri-diagonalizes g +1) x (N +1)
ages by sample averages. This has the geometric interpr@fg-en ed sample covariance matrix

t?on of changing the metric space in V\{hi_ch variables are _de— R-VY' (33)
fined [21]. Namely, for the known statistics case, we define

the inner product between two random variah®sndY as Wwhere

Y, = BlY,;, (N-n)xM (41)

where ep = dp. The symbol estimate is wie;.

(X,Y) = E[X*Y], which leads to an MMSE cost criterion b
(minimize ||b; — cfy||? for randomb; andy). Y= |---|. (34)
For the given data case, inner product between two vectors is Y
defined in the standard way. Given a sequencé/{ofeceived
vectors andV/ training (or estimated) symbols In what follows, we assume that the rows of each blocking
matrix B,,, n = 1, ..., D, are orthonormal, so that the per-
Y =[y(1), y(2), ..., y(M)] (28) formance is independent of the specific choice of blocking ma-
_ trix. In general, the performance does depend on the choice
b =[b1(1), ..., b1 (M)] (29)  of blocking matrices when they are not constrained to be or-
thonormal [22]. Note that, = minz Cp, the minimized LS
the (M x 1) vector of errors is defined as cost function in (31). When used in decision-directed mode, the

B estimate of the block of transmitted symbalss wier, where
e=b-c'Y (30) ¢, is computed from (43).
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Initialization: . Initialization:
T; =R(3) (44)
Forn=1,...,D (Forward Recursion): do(t) = b1(2) yoli) =¥(@) (53)
R At h 4 f =1,...,D:
Bn = [Tlnnsrven (45) e riorn
O = Hf’n” Cp = f’n/‘sn (46) ﬁn(") = (1 - /J)f)n(z - 1) + V’d;—l(i)Yn—l(i) (54)
B, = null(c,) (47) 8.(1) = (B, €n(d) = Pu(i)/9n(3) (55)
In,n | On,N-';—l—n dn(l) - C;rw(i))’n—l(i) (56)
L, = Cn (48) (57)
ON+1-n,n | - - ==
B}, Ifn<N,
Tpyy = L,T,LI 49
+ (49) B.(i) = nulllch(i)] (58)
Decrement n = D, ..., 1 (Backward Recursion): Va(d) = BlE)ya_1(d) (59)
w, = 0,/&, (50) Decrement n = D,...,1:
§o-1 = [Toriltint1) — widn (51) . . .
£()) = (1—-pé&(i—1) + plea(B)? (60)
where &, = [|e,|? in (43), and ép = [Tpi1](p+1,0+1)- wa(i) = 6,(3)/&() (61)
)

en-1()) = dna(8) — wy(9)en(d) (62)

Fig. 3. Algorithm 2. Adaptive MSWF based on tri-diagonalization of the
sample covariance matrix. where ep(i) = dp(i).
Filter output (estimate of b;(¢)) = wi(%)e:1(¢)

A nontraining based, or blind version of the preceding al-
gorithm can be obtained simply by substitutipg (spreading Fi9- 4. Algorithm 3. Stochastic gradient (SG) MSWF.
code for the desired user) fg@r; in the preceding algorithm.
The resulting set of forward recursions does not exactly tri-diagrich is equivalent to the adaptive MSWF, is based on com-
onalize the extended sample covariance matrix, and the assggiing powers oR, to be described in the next section.
ated output SINR tends to converge more slowly to the optimumRather than perform an exact tri-diagonalization of the
value relative to a training-based algorithm. An illustrative exsample covariance matrix at each iteration, it is also possible to
ample is given in Section VI. approximate the MSWF parameters via sample averages. This
An alternative set of computations to Algorithm 1 foneads to Algorithm 3, given by (53)-(62) (see Fig. 4), the “Sto-
estimating the MSWF parameters is Algorithm 2, giveghastic Gradient (SG)” MSWF algorithm. This algorithm is
by (44)-(51) (see Fig. 3). Algorithm 2 tri-diagonalizes th@omputationally simpler than recursive versions of Algorithms
extended sample covariance matix [10]. Specifically, let 1 and 2, but does not exactly tri-diagonalize the extended

D = [do;di;dy;...;dp], whered, is defined by (39), and sample covariance matrR(i) at each iteration. Consequently,
*," separates rows, so th@ is (D + 1) x M. Then Algorithm  Algorithm 3 does not perform as well as the “exact” Algorithms
2 computes the tri-diagonal matfi€p,; = DD'. Namely, 1 and 2, as the results in Section VI illustrate.

Tp41 is the (D + 1) x (D + 1) matrix, which occupies
the upper left corner o'p41, computed in Algorithm 2. In

: . C. Algorithms Based on Powers Bf
Algorithm 2, X...m) denotes the row vector containing the g

kth throughmth components of théh row of the matrixX. An alternative set of adaptive algorithms can be derived based
The MSWF recursions (19), (21)-(23), and (25) are then used the second representation s given in (27). For the given
to compute the filter output. data case with training, we replace the matrix of basis vectors

We remark that the computational requirements of the pr» by
ceding algorithm for smalD are modest in comparison with _ . . .
reduced-rank techniques that require the computation of eigéhe (i) = [p1(1), R(D)p1(1), R*()p1(i), ..., RP7H(i)p1(4)]
vectors of the sample covariance mafix= YY'. (63)

B. Recursive Algorithms where

Arecursive update for the extended sample covariance matrix o o o
is given by P1(9) = (1 —p)p1(é — 1) + pd™()y(é) (64)

R(i) = (1 — ) *I_{(L — 1)+ uy )y () (52) andR(i) is updated according to (52). Let

where . is a forgetting factor which discounts past data. The Am =P{R™P1 (65)
preceding algorithms can, in principle, be used to update the
MSWF parameters at eachalthough this would be compu-

tationally intensive. A somewhat simpler recursive algorithm, fl:l+m = Fettm Yittiaem+1 - Vitmett2m] (67)

’?l:rn = [’Ayl ’?l-{—l Tt ’Aan]/ (66)
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R=YY!, p,=Yb! (69)

For m=0,...,D, ¥, = R™p,
Form=0,...,2D 1, 4 = ViV, j+ 1 =m.

02

&p = bAp-1 (70)

0.15

Fori=1,...,M:

error rate

.. Matched Filter

y(i) = 8Ly (3) Symbol estimate = &'§(s) (71) o1

Fig. 5. Algorithm 4. Batch adaptive algorithm based on ppowers of the sam} .|
covariance matrix.

where the dependence érs not shown for convenience. Note o} - - = — — - -
that';4p is @an(m + 1) x (m + 1) matrix. Selectinge to number of dimensions
minimize (31), wherey is given by (32), gives @
¢p = (SEfiSD)‘ISEﬁl = fl_;}j’AYO:D—l- (68)

Given Y and b in (28) and (29), a reduced-rank batct
algorithm with training is Algorithm 4 given by (69)—(71)
(see Fig. 5). Ifp; is known, then in the absence of training
p1(¢) in (63) and (65) can be replaced lpy.

Following the same argument used to prove [14, Theorem .
it can be shown that Algorithm 4 is equivalent to Algorithm 1 i
the blocking matrix in (40) is replaced B, = I-c,.c/,, and the
dimensions of the other variables are adjusted accordingly. Tl
is, both algorithms produce the same filter output. Of course, t oos-

preceding algorithm can be implemented recursively, where t
variablesv,,, and#,,, are recomputed for each

0.2

o
o

error rate

0.1

L L ) ! L " J
o 10 20 30 40 50 60 70
number of dimensions D

VI. NUMERICAL RESULTS (b)

Fig. 6 shows plots of error rate versus the number of dig. 6. Error rate versus the number of dimensions for reduced-rank adaptive
mensions for reduced-rank adaptive algorithms after train?ogthf;sdaﬁ?fﬁfamipg with 280 SVmbOlgTd= 1§8' _“Zdasymhfogous ussrs,

. . sfandard deviation of received powets B, desired user's SNR= 1
with 200 symbols. Parameters fO_I’ all numerical examples . (a) Comparison of adaptive MSWF with reduced-rank filters based on
N = 128, K = 42, and the received powers are log-normaligen-decomposition. (b) Comparison of adaptive MSWF with PD methods.

with standard deviation 6 dB. The top graph shows results for
the following algorithms: MSWF, CS, PC with the GSC struGyere R, s the covariance matrix for the interference plus
ture (PC-GSC), and the matched filter (MF). For the adaptl\%ise li.e., (10) without the desired signal], andé is the re-

CS methodR andp, in (13) and (14) are replaced By and g, ceq-rank filter, which must be computed from the estimated
p1. respectively. The simulated MSWF and CS filters requing q\we parameters (see [10]), or equivalently, from (68). Re-

a training sequence, and do not require knowledgeofin g1t are averaged over random spreading codes, delays, and
contrast, the simulated PC-GSC does not require a training BSWers

quence, but is assumed to kngw. Fig. 6 shows that the adaptive reduced-rank techniques gen-

The pottom graph in Fig. 6.sh0ws results for three partial ,dgfally achieve optimum performance whén< ~. Namely,
spreading (PD) methods, which correspond to the way the f'“i%enD is large, insufficient data is available to obtain an accu-

cis updatgd given th? sequence of ”ai”if‘g syml{d)hs{i)} rate estimate of the filter coefficients, whereas for sthalthere
and the projected (partially despread) veclgr&i) }. Stochastic e ingfficient degrees of freedom to suppress interference. The

Gradient with PD (SG-PD) indicates that the veotols up-  inimum error rate for the adaptive MSWF is achieved with

dated according to a normalized Stochastic Gradient algor_ithg}”y eight stages (dimensions), which is much smaller than the
LS-PD and MMSE-PD correspond to LS and MMSE solutiong,inimizing order for the other reduced-rank techniques. Fur-

for c. The adaptive PD algorithms require both a training Sfhermore, this minimum error rate for the MSWF is substan-

quenceand knowledge O_fpl' . . tially lower than the error rate for the matched filter receiver,
The error ratel’. in Fig. 6 is computed assuming that the,, ' is ot very far from the full-rank MMSE error rate. Addi-
r_e3|d_ua| mterf_erence pl_u_s hoise at the output of the adaptwgnal simulations with only 100 training samples show that the
filter is Gaussian. Speciiically, minimum error rate for the adaptive MSWF is again achieved
with D = 8.
(72) Fig. 7 shows output SINR versus time, or number of training
symbols, for the “exact” MSWF algorithm given by (44)—(51).

A7|eTp. |2

P, ~ = —
-~ 0 ciR ;e
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Convergence Plots: N=128, K=42, Power std= 6 dB Convergence Plots: N=128, K=42, log-std. dev.= 6 dB, SNR= 10 dB
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nIéjg. 8. Output SINR versus time (number of received vectors) for blind

Fig. 7. Output SINR versus time (training symbols) for recursive MSWF a S aptive MSWE algorithms. Parameters are the same as in Fig. 6.

RLS-PD algorithms. Parameters are the same as in Fig. 6.

the initial estimatéR(0) reduces this initial degradation at the

Curves corresponding to different ranksare shown. Analo-
gxpense of somewhat slower convergence to steady-state.

gous curves for the RLS algorithm with PD are also show
System parameters are the same as in Fig. 6. The figure shows
that a low-rank adaptive MSWF (e.d, = 4) can converge sig- VII. RANK ADAPTATION
nificantly faster than the full-rank RLS, and has nearly the sameFig. 6 indicates that the performance of the adaptive MSWF
asymptotic SINR. As expected, for the RLS with PD, as thean be a sensitive function of the radk Here we provide
dimension decreases, convergence speed increases, but asyipadaptive methods for selecting the rank of the filter. Re-
totic SINR decreases. lated work on rank selection for the Auxiliary Vector method is
Fig. 8 compares the convergence of blind MSWF algorithnsesented in [24]. The first method is based on the observation
(i.e., p1 = p1). Plots are shown for the exact MSWF withthat the basis vectos,, v1, ..., ¥p_1, wherev,, = R™p;,
D = 2andD = 4, and for the gradient MSWF with = 4. The are linearly dependent, or nearly dependent, for relatively small
rank D = 4 filters perform best over a wide range of trainingzalues ofD. Furthermore, it is easily shown thatif, is in Sp,
intervals. Also shown are plots for the full-rank blind SG algothe subspace spanned by, ..., vp_1, thenv,, € Sp for all
rithm [6], the full-rank blind RLS algorithm (i.eq = frlpl), n > D. This leads to thetopping rule
and the MSWF with training witlD = 8. These results show L
that for the parameters selected, the reduced-rank algorithms D — max {n; 1P, (Va)ll - 6*} (73)
converge significantly faster than the analogous full-rank algo- [[¥2l]
rithms. However, we remark that the full-rank blind RLS algo-
rithm was found to be sensitive to the initializationlaf and WwherePZ(x) is the orthogonal projection of the vectaronto
the choice of exponential weigptin (52). (The full-rank RLS the subspacé, andé* is a small positive constant.
algorithm with training is much less sensitive to the choice of For the powers oR method, the stopping rule (73) prevents
these parameters.) Specifically, for the exact algorithms shotti¢ matrixI';.p in (70) from being ill-conditioned. In the Ap-
in Fig.8, » = 1 andR(0) = 0.01 x L For the SG algo- pendix it is shown that
rithms, 1 = 0.98. Reducingu significantly improves the con- _—
vergence speed of the full-rank RLS algorithm over relatively ||7’§ ()l = H 5 (74)
short training intervals, but this is traded off against degraded "
steady-state performance. In contrast, the performance of the
blind MSWF is relatively insensitive to these parameters. The$@ered, is given by (37). We have not found an analogous
results also show that there is a noticeable degradation in perfpression fof|v, || in terms of MSWF parameters, which is
mance in going from the training-based to blind to SG MSweasily computable. Consequently, we do not have an equivalent
algorithms for the case considered. Still, these latter algorith®@pPping rule which can be conveniently used with Algorithms
perform significantly better than the full-rank SG algorithm. 1-3.
The initial degradation in performance shown for the blind al- The second method for selecting the filter rank is based on
gorithms (especially prominent for the full-rank RLS algorithm§stimating the MSE from tha posterioriLS cost function
occurs because the estimated covariance mRtris ill-condi- i
tion_gd for very shorF training intervgls. This.behavior h.aS be_en Cl(i) = Z by (m) — ég(m — Dyp(m)]>  (75)
verified analytically in [23]. Increasing the diagonal weights in

=1

m=1
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o Convergence Plots: N=125, K=42, Log-norm std= 6 dB DS-CDMA. For large filter lengths, the MSWF allows a sub-
e o stantial reduction in rank, relative to other reduced-rank filters,
7t R e ok o ) such as those based on an eigen-decomposition of the sample

covariance matrix. Numerical results show that the adaptive
MSWEF achieves near full-rank performance with fewer training
samples than what is required by other full- and reduced-rank
techniques. For the examples considered, an adaptive MSWF
with rank eight achieves near full-rank performance with
significantly less tharR N training samples, wheré&/ is the
number of filter coefficients. Methods for tracking the optimal
rank as a function of training interval have also been presented.

Output SINR (db)

APPENDIX
DERIVATION OF (74)

It is shown in [14] that

1 1 1 . )
0 100 200 300 400 500 600 700 800 900 1000 1
time

0 - L ] L i

<I — Z clclT> Re,
=1

Cpn41 = s
1
Fig. 9. Output SINR versus number of symbols for the blind adaptive MSWF s
with rank adaptation. Parameters are the same as in Fig. 6. 1 n
= Pz (Rey) (76)
6n—|—1

where the subscrip denotes the rank associated with the variyhere c,, is given by (20) for the MSWF and,,; =
able. For eachi, we can select th& which minimizesC,(é). || P3. (Re,)|| is a normalization constant. For the given data
The exponential weighting facteris needed since the optimal(unknown statistics) casé, is given by (37).

rank D can change as a function of training interval From (27) and (76), we can write

The preceding rank selection techniques were simulated for ne1
the same system model and parameters used to generate Fig. 6. - 1 Z o1V (77)
For rank selection based on (73), we ch65e= 0.01. Further bn =

simulations indicate that performance is insensitive to th\iﬁ
choice over a reasonable range (i.e., betweer? Hhd 10°2).
For the MSWF with training, the results essentially coincide 1=
with those shown for ranl> = 8 in Fig.7, although the second Re, = 5 Z Gtn—1Vi+1- (78)
method, based on the posterioriLS cost function, performs . . 'z=o
slightly worse than the first method. Further simulations arfd®Mpining (78) with (76) gives
analysis indicate that rank = 8 appears to be optimal, or c _ 1 ne 11 PE (Vi) (79)
nearly optimal, for a wide range of system parameters and T T
training intervals [23]. This observation is consistent with the Tg evaluater,,_;.,_;, we combine (76) and (77) which gives
results in [14] (for synchronous CDMA), which show that the el
E/I)S;Ng achieves essentially full-rank performance with rank ; U1V :Pé'—n,l(ch—l)

For the blind adaptive MSWF, the optimal rank generally

herev; = R'py, and thea;.,,_1 S are constants, so that

changes with the training interval, as shown in Fig. 8. For very _pl R 1 nz_fa v

short training intervalsi(< N), D = 1 or D = 2 is best. The TS bn 1 bn—2
optimal D increases with training, but is generadfyp, which is -

typically less than the optimdD for the MSWF with training. 1 n n?

Fig. 9 shows output SINR versus training interval for the blind T Ps, Z Gin—2Vit1

adaptive MSWF with rank selected according to (73), and rank =0

selected by minimizing’,(¢) in (75) with ;. = 0.99 for each 1 n

i. Also shown are curveg(cérresponding to fixed rafks= 4 6 n=2in=2P5, _ (Vn-1)- (80)

andD = 2. For the case simulated, the latter rank adaptatiQQyitin
method is able to track the optimal rank fairly closely, whereq%ht_
the former method tracks the performance with= 4.

g PE_ (Vn-1) = Va1 — Ps,_,(va—1), and equating
and left-hand coefficients of,,_; shows that

n—1
1 1
An—1n—1 = T An—2;n—2 = < (81)
VIIl. CONCLUSION 6n—1 ll;ll 61
Adaptive reduced-rank linear filters have been presentsiiceao,y = 1. Combining with (79) establishes (74) for the

based on the MSWF. These algorithms can be used in dmown statistics case. The preceding derivation also applies to
adaptive filtering application, although the performance hdlse given data case, where statistical averages are replaced by
been examined in the context of interference suppression f@ample averages.
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