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Suppression of Near- and Far-End Crosstalk by 
Linear Pre- and Post-Filtering 

Michael L. Honig, Pedro Crespo, and Kenneth Steiglitz, Fellow, ZEEE 

Abstract-Full-duplex data communications over a multi-in- 
put/multi-output linear time-invariant channel is considered. 
The minimum mean square error  (MMSE) linear equalizer is 
derived in the presence of both near- and far-end crosstalk and 
independent additive noise, assuming correlated data, and col- 
ored noise. The MMSE equalizer is completely specified in 
terms of the channel and crosstalk transfer functions by using 
a generalization of previous work due to Salz. Conditions are  
given under which the equalizer can completely eliminate both 
near- and far-end crosstalk and intersymbol interference. The 
MMSE transmitter filter, subject to a transmitted power con- 
straint, is specified when the channel and crosstalk transfer 
functions a re  bandlimited to the Nyquist frequency. 

Also considered is the design of MMSE transmitter and re- 
ceiver filters when the data signals are  arbitrary wide-sense sta- 
tionary continuous or discrete-time signals, corresponding to 
the situation where the crosstalk is not phase-synchronous with 
the desired signal. For a particular two-input/two-output dis- 
crete-time channel model, we study the behavior of the MMSE, 
assuming FIR transmitter and receiver filters, as a function of 
how the matrix taps are  allocated between these filters, and on 
timing phase. In this case, the jointly optimal transmitter and 
receiver filters a re  obtained numerically using an iterative tech- 
nique. For the channel model considered, the MSE is a very 
sensitive function of timing phase, but is nearly independent of 
how taps are  allocated between the transmitter and receiver 
filters. 

I.  INTRODUCTION 
NE of the major obstacles to realizing high data rate 0 (i.e., at least 800 kb/s) digital subscriber lines using 

twisted-pair wires is crosstalk between twisted pairs in 
close physical proximity. Full-duplex transmission gives 
rise to two types of crosstalk: near-end and far-end [ 11. 
In situations where a cable of twisted pairs is terminated 
at a single physical location, it has been proposed that the 
entire cable be treated as a single multi-input/multi-output 
(MIMO) channel. Crosstalk can then be characterized by 
the matrix impulse response of the channel, rather than as 
additive noise independent of the transmitted signals [2]- 
[4]. This work was initially concerned with the design of 
MIMO linear filters at the transmitter and receiver assum- 
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ing full-duplex transmission, and that the transmitter and 
receiver on each side of the MIMO channel process the 
entire vector of inputs and outputs. In this case, crosstalk 
is modeled by the off-diagonal terms of the channel matrix 
transfer function. This work also applies, however, to the 
situation in which data signals on each constituent single- 
input/single-output (SISO) channel are phase-synchro- 
nous, but independent transmitters and receivers are to be 
designed for each SISO channel. Crosstalk in this latter 
situation is an interfering data signal independent of the 
desired signal. 

The MMSE linear equalizer in the presence of syn- 
chronous interfering data signals has received attention in 
a number of different contexts. Perhaps the most popular 
application cited in the literature is multiuser communi- 
cations, in which many us,ers transmit data synchronously 
to various destinations over a single (SISO) channel [2], 
[5]-[8]. If the data signals are not orthogonal, then inter- 
ference from other active users is analogous to crosstalk 
between twisted pairs in the subscriber loop. Other com- 
munications applications in which crosstalk is present in- 
clude digital radio with diversity, in which the received 
signal is a vector with components from different antennas 
[2], [9], magnetic recording where crosstalk arises from 
data on adjacent tracks [lo], [ l l ] ,  dually polarized radio 
channels [ 121, [ 131, and mobile and cellular radio, where 
crosstalk is caused by data signals from adjacent locations 
or cells sharing the same frequency band [14]. Related 
work in which crosstalk is characterized statistically as 
cyclostationary interference is described in [ 151-[ 181. 

The communications channel for each of the preceding 
applications is a special case of an N-inputlM-output sys- 
tem, where N, M 1 1. For example, assuming linear time- 
invariant transmission media, in the case of a single 
twisted pair with near-end crosstalk, the transfer function 
from the far-end transmitter and N synchronous near-end 
(interfering) transmitters to a particular receiver can be 
represented by a 1 X (N + 1) transfer matrix, N > 1. 
Similarly, a single-input channel with diversity can be 
represented by an M x 1 transfer matrix, M > 1. It ap- 
pears that the structure of the MMSE equalizer for the 
former 1 X (N + 1) case, assuming PAM data signals, 
was first derived in [19] and later presented in [2], [6]- 
[lo], [ 171, [20], and [21] (see also [36] and the references 
within), although a complete specification in terms of (far- 
end) channel and crosstalk transfer functions is either 
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missing in these references or is not as compact as the one 
given here. The most general work in this area appears to 
be due to Salz [22] (see also [12] and [13]), who com- 
pletely specified the MMSE linear equalizer for the N X 
N channel, assuming uncorrelated data and white noise. 
He also derived the MMSE transmit filter, subject to a 
power constraint, when the channel transfer matrix is 
bandlimited to the Nyquist frequency. It is pointed out in 
[ 171 that the N X N case is easily generalized to the M X 
N case by inserting zeroes in the appropriate entries of the 
channel transfer matrix. Related work is presented in [23]- 
[26], in which MMSE linear pre- and post-filters for dis- 
crete-time MIMO channels are derived. 

In this paper, we first generalize the work of Salz [22] 
by deriving the MMSE MIMO linear equalizer assuming 
correlated data symbols, PAM data signals, and colored 
noise. Our derivation, given in Appendix A, differs from 
that given in [22] and uses classical results from sampling 
theory. This result is then used to specify the MMSE lin- 
ear equalizer in the presence of synchronous crosstalk and 
additive noise in terms of near- and far-end channel trans- 
fer functions. A general condition is given in terms of 
these transfer functions under which crosstalk and inter- 
symbol interference (ISI) can be completely eliminated, 
but at the expense of enhancing the additive noise. This 
“zero-forcing’’ condition is a special case of a zero-forc- 
ing condition for a general N x N channel, which has 
previously been observed in [8] and [7] (see also [17]). 

The relationship between excess transmitted bandwidth 
and mean square error (MSE), assuming MMSE linear 
equalization, is also studied numerically for a specific 
model of a channel consisting of one twisted pair with 
near-end crosstalk from a single source. Our results in- 
dicate that the MMSE decreases monotonically with ex- 
cess bandwidth. When crosstalk power is much greater 
than the power of the background noise, the use of excess 
bandwidth with the MMSE linear equalizer offers a sig- 
nificant reduction in MSE relative to the MMSE linear 
equalizer assuming that crosstalk is wide-sense stationary 
(WSS) noise. 

We also consider the MMSE design of an MIMO trans- 
mitter filter, subject to a power constraint, in the presence 
of both near- and far-end crosstalk, ISI, and additive 
noise. The solution, in contrast to the corresponding 
MMSE equalizer, cannot be reduced to a special case of 
the MMSE transmitter filter for an M X N channel, and 
apparently has not been considered elsewhere. That is, 
[22], [24]-[26] consider the design of the transmitter filter 
in the presence of only far-end crosstalk, ISI, and additive 
noise. In the case of full-duplex transmission over mul- 
tiple twisted pairs, however, near-end crosstalk is much 
more severe than far-end crosstalk. The design of trans- 
mitter and receiver FIR filters in the presence of near-end 
crosstalk, but using a different optimization criterion from 
the MSE criterion used here, is considered in [27]. 

Assuming the channel and crosstalk transfer functions 
are bandlimited to the Nyquist frequency, we obtain a 
necessary condition for the jointly optimal transmitter and 

receiver filters in the presence of near- and far-end 
crosstalk, ISI, and additive noise. In this case, near-end 
crosstalk is treated as an independent additive noise (not 
synchronous with the far-end transmitted signal) with 
spectral density that depends on the transmitted power 
spectral density. This problem is also equivalent to the 
problem of designing transmitter and receiver filters to 
minimize the & norm between the transmitted and re- 
ceived signals, where the transmitted signals are assumed 
to be WSS with given spectra. 

Finally, we consider the design of fixed-order FIR pre- 
and post-linear filters for a discrete-time MIMO channel 
in the presence of near- and far-end crosstalk, ISI, and 
additive noise. A two-inputhwo-output channel model, 
based upon a simplified model of two coupled twisted 
pairs, is used to generate numerical results for this case. 
A simple iterative technique is used to compute jointly 
optimal digital FIR transmitter and receiver filters. The 
MSE is found to be a sensitive function of timing phase 
at the receiver. The timing phases are, therefore, selected 
independently on each of the two channels to minimize 
the MSE. For the example considered, it is found that, 
given a fixed number of matrix taps to be allocated be- 
tween the transmitter and receiver filters, the MSE is an 
insensitive function of how these taps are allocated (as- 
suming that the timing phases are optimized). This is due 
to the assumption that near-end crosstalk energy is much 
greater than that of the background channel and receiver 
noise. 

11. OPTIMIZATION OF FILTERS FOR PAM DATA SIGNALS 
A .  Channel Models 

Two channel models of interest are shown in Fig. 1. In 
Fig. l(a), the received signal r(t) at the bottom right con- 
sists of the sum of three components: i) the desired data 
signal, which is the result of passing the far-end signal 
a(t) through the transmitte: filter P, the far-end channel 
A, and the receiver filter R; ii) a crosstalk signal, which 
is the result of passing the near-end signalAb(t) through 
the transmitter filter, the near-end channel G, and the re- 
ceiv:r filter; and iii) additive noise, which is n(t)  filteTed 
by R .  Throughout this paper, variables underneath a “ ” 

are assumed to be functions of the frequency variablef. 
The input vectors a and b have N 1 1 components, and 
the transfer functions in Fig. l(a) are assumed to be N X 
N matrices. For example, this models full-duplex trans- 
mission over a cable containing N > 1 twisted pairs, 
where the transmitter (receiver) on each side of the chan- 
nel processes all N c!annel inputs (outputs) simulta- 
neously. In this case, H models the far-end transmission 
path from one end of the cable to the other, and G models 
the near-end transmission path from one end of the cable 
to the same side of the cable. That is, from Fig. l(a), 
[&I, is the transfer function, or frequency response, be- 
tween the left side of wire i and the right side of wire j ,  
1 I i, j I N (far-end frosstalk transfer function between 
channel i andj ) ,  and [GI,, is the transfer function between 
the right side of wire i and the right side of wi re j  (near- 
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(a) 

(b) 

Fig. 1. (a) Simplified model for full-duplex transmission over a linear 
MIMO channel. (b) Channel model for N 2 1 crosstalk interferers. 

end crosstal! transfer function between channel i and j ) .  
Note that [GIii is the echo transfer function on wire i. 

In what follows, we will also refer to the model shown 
in Fig. l(b), in which the signals and transfer functions 
are scalar quantities, but there may be many crosstalk sig- 
nals. Thepat: signal a(t) passes through the channel mod- 
eled by P ,  Go, and R,  and the ith crosstalk data signal 
bi(t) ,  1 5 i 5 N ,  passes through the near- (or far-) end 
crosstalk transfer function G,. This model describes the 
situation in which the channel is a cable containing many 
twisted pairs, and (scalar) transmitters and receivers are 
to be designed independently for each twisted pair. This 
situation is relevant to the subscriber loop application, 
since it is often quite difficult to physically coordinate 
transmitted signals on different twisted pairs. Of course, 
the two models shown in Fig. l(a) and (b) are closely 
related, and it will be quite easy to modify our results for 
the model in Fig. l(a) so as to apply to the model in Fig. 

In this section, we assume data signals in Fig. l(a) of 

(2. la) 

the form: 

U ( l )  = C akp(t - kT) 

and 

b(t) = b$(t - kT + 8) (2. lb) 

where ak and bk are N-vectors, p ( t )  is the transmitted pulse 
shape, and 8 is an arbitrary phase offset. The elements of 
ak and bk are complex in general, and the real and imag- 
inary components are chosen from a discrete set of levels. 
Full-duplex transmission is assumed so that the receiver 
on the right side in Fig. l(a) is attempting to estimate the 
far-end transmitted symbols {ak} at the same time that the 
transmitter on the same side of the channel is transmitting 
the symbol sequence { b k } .  The data signals in Fig. l(b) 
are also assumed to be PAM signals, or scalar versions of 
a and b in (2.1). 

k 

B.  The MMSE Linear Equalizer 
Let H ( t ) ,  G(t), P(t ) ,  and R(t) be the impulse responses 

of the far-end channel, near-end channel, transmitter fil- 
ter, and receiver filter in Fig. l(a), respectively. The out- 
put of the receiver filter R at time kT is: 

r (kT)  = [R * R[(k - i)T]]a, 
I 

+ [R * d[(k - i) T + 8]]bi + R * n(kT) 
I 

(2.2) 

where A(t) = H * P * p ( t ) ,  G(t) = G * P * p ( t ) ,  and "*" 
denotes convolution, i.e., 

We wish to find the receiver filter R that minimizes the 
MSE, E{llr(O) - aoll*}. For the model in Fig. l(b), the 
structure of the MMSE equalizer has been derived in [2], 
[6]-[10], [17], [19]-[21] assuming uncorrelated data (see 
also [36], which came to the authors' attention shortly 
before publication of this paper). It has been observed in 
[17] that both channel models in Fig. 1 are special cases 
of the model shown in Fig. 2, which shows a vector data 
signal u(t) as the input to an !-inputlM-output channel 
with M x N transfer function J ,  where N ,  M I 1. That 
is, Fig. 2 is equivalent to Fig. l(a) i f  

u(t) = [E (2N x 1) and 

j = [A G](N x 2N). (2.3) 

Furthermore, the MMSE linear equalizer for the channel 
in Fig. 2 has been derived by Salz [22] for the case of 
uncorrelated data and white noise. An abbreviated deri- 
vation of the MMSE linear equalizer for the channel model 
in Fig. 2 is given in Appendix A for the case of correlated 
data and colored noise. This equalizer is, also shown in 
Fig. 2, and consists of the matched filter J *  S,' followed 
by an MIMO tapped delay line with N X N matrix taps. 
The M X M matrix S, is the power spectral density matrix 
for the additive noise, n ( t ) ,  and "*" denotes complex 
conjugate transpose. (The " " will be omitted from 
spectra denoted as S or S.) The derivation in Appendix A 
is different from the one given by Salz, and uses proper- 
ties of the z-transform. The transfer function of the tapped 
delay line is: 

(2.4) Q(z) = S d ( z ) [ S J ( z ) S d ( z )  + Z I P  

where for z = eizTf, 

. j (f - ;) (2.5) 
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Fig. 2. MIMO channel followed by the MMSE linear equalizer. 

and S " ( z )  is the spectrum of the data sequence. That is, 

Sd(z) = T Z-k4; (2.6) 

where 4; = E[aiaT+k]. The discrete-time transfer function 
in (2.4) has also been recently and independently derived 
in (231. Throughout this paper, a variable superscript in- 
dicates that the associated quantity refers to a discrete- 
time sequence (i.e., Sd and 4;). A variable subscript is 
used for continuous-time processes (i.e., S,) .  

We now apply the preceding result to the channel model 
in Fig. l(a). When this channel model is embedded in the 
M x N channel J according to (2.3), the equalizer in Fig. 
2 estimates both the desired data and crosstalk data. That 
is, the transfer function for the tapped delay line in Fig. 
2 and the estimated data ri can be partitioned as: 

where the N X N matrix tapped delay lines C and D op- 
erate on the sampled output of !* to pnroduce the esti- 
mated data sequence {uk} ,  and E and F operate on the 
same sequence to produce the estimated crosstalk data se- 
quence {&}. Notice that the receiver filter in Fig. 2, which 
minimizes the total MSE, i.e., the sum of the MSE for 
the desired data plus the MSE for the crosstalk data, is 
equivalent to the receiver that simultaneously minimizes 
both of the preceding MSE's. This is simply because the 
MSE for the desired (crosstaLk) data is unaffected by the 
choice of the filters E and F (C and D).  Since the crosstalk 
data sequence is not desired, the MMSE equalizer for the 
channel model in Fig. l(a) is shown in Fig. 3. That is, 
the MMSE equalizer has two parallel signal paths, each 
containing a matched filter, followed by a tapped delay 
line. One matched filter, H*,  is matchednto the far-end 
channel transfer function, and the other, G:, is mantched 
to the near-end channel transfer function. (G* and H* are 
the complex conjugate transpose of the Fourier transforms 
of G and H ,  respectivtly.) 

To specify C and D in terms of the channel transfer 
function, we first combine (2.3) and (2.5) to give: 

where the matrix elements are aliased versions of the 
channel, crosstalk, and "cross-channel" spectra, i.e., for 
z on the unit circle, 

(2.9a) 

Fig. 3 .  MMSE receiver filter for the channel model in Fig. l(a) 

(2.9b) 

( 2 . 9 ~ )  
and SHG(eJ2"> = (SGH(eJ2"f))*.  

Substituting the S J  given by (2.8) into (2.4) gives: 

e(,) = Sd[Z + S H S d  - S H G S d ( S G S d  + Z)- 'SGHSd]  - I  

(2. loa) 

and 

D(z) = S d [ S G H S d  - ( S G H S d  + Z) 

- ( S H G S d ) - ' ( S H S d  + Z)]-' .  (2.10b) 

Embedding the channel model in Fig. l(b) in the model 
shown in Fig. 2 results in an MMSE equalizer that esti- 
mates all N interfering data sequences, in addition to the 
desired data sequence. Since the interfering data se- 
quences are superfluous, the MMSE equalizer consists of 
N + 1 parallel signal paths each containing a matched 
filter followed by a tapped delay line, the outputs of which 
are summed to form an estimate of the current data sym- 
bol. The matrix S J  in this case is ( N  + 1) x ( N  + 1) with 
ij th element: 

for 1 5 i, j 5 N + 1 and z on the unit circle. For the 
case of one crosstalk interferer, S J  is a 2 x 2 matrix, and 
the MMSE equalizer is shown in Fig. 3 where all transfer 
functions and signals are scalar quantities. From (2. lo), 
it follows that: 

(2.12a) 
(1 + S G S d ) S d  

and 

(2.12b) 

where the preceding quantities are the scalar versions of 
the analogous MIMO quantities, which were denoted in 
bold. 

It is shown in Appendix A that the output MSE for the 

ISd(2SHG 
&) = 

I S d S G f q 2  - (1 + SGSd)(l + S H S d )  
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MMSE equalizer in Fig. 2 is: 

(2.13) 
For the model in Fig. l(a), the MMSE is: 

where C is given by (2.10a), or (2.12a) for the case of a 
single crosstalk interferer. 

C. The Zero-Forcing Equalizer 
Referring to the MIMO channel in Fig. 2, as the addi- 

tive noise diminishes, that is, as 0; -+ 0, where G ;  is the 
variance of each noise component, then from (2.4), the 
transfer function of the tapped delay line Q(z) converges 
to [SJ]-’. In the absence of additive noise, the MSE, 
given by (2.13), becomes zero, indicating that the equal- 
izer can completely remove IS1 and cross-channel inter- 
ference (CCI), provided that S J  is nonsingular. Of course, 
if additive noise is present, thennISI and CCI can still be 
completely removed by setting Q = [ S J ] - l ;  however, the 
MSE, which in this case is solely due to noise enhance- 
ment, is greater than the MMSE given by (2.13). Specif- 
ically, the zero-forcing MSE for the channel in Fig. 2 is 
given by 

MSEzF = trace [ T i”(*‘) [SJ(eJ2Tf ) ] - i  df]. (2.15) 

The fact that nonorthogonal interfering data signals can 
sometimes be completely suppressed was first observed 
by Shnidman [8], who designed some specific data signals 
that satisfy this property. The fact that S J  must be non- 
singular for the zero-forcing equalizer to exist was ob- 
served by van Etten [7]. Petersen and Falconer [ 171 have 
also observed an equivalent zero-forcing condition for the 
channel model in Fig. l(b). 

Referring to Fig. l(a), in the absence of background 
noise the MMSE receiver can therefore perfectly recon- 
struct both the input symbol sequence {ak}  and the inter- 
fering symbol sequence { b k }  when S J  is nonsingular for 
all f. This is simply due to the fact that the equivalent 
discrete-time transfer function from the inputs { ak}  and 
{bk}  to the sampled outputs of the matched filters { x k }  
and { y k }  in Fig. 3 is the 2N x 2N matrix SJ(z). That is, 
in the absence of additive noise, 

1 /@TI 

where X ( z ) ,  Y(z), A(z), and B(z) are the z-transforms of 
the sequences { x k } ,  { y k } ,  { a k } ,  and { b k } ,  respectively. 
Since S J  is assumed to be nonsingular for z on the unit 
circle, the input data sequences can be recovered from the 
output data sequences. 

The zero-forcing transfer functions in Fig. 3 are easily 
obtained by computing ( S J ) - ’  from (2.8), namely 

C(z) = [SH(z) - SHG(z )  [SG(~)]- lSGH(~)]- l  (2.17a) 

and 

&) = [ S G H  - S G ( S H G ) - ’ S H ] - I .  (2.17b) 

If G = 0 (matrix with elements equal to zero), then C(c)  
= [ S H ( z ) ] - ’  and b(z) = 0, which is the zero-fqrcing 
equalizer for half-duplex transmission. Also, if G and 
k are orthogo?al, then S G H ( z )  = SHG(z) = 0, so that 
b(z) = 0 and C(z) = [SH(z)l-l. 

If S J  is singular, then in the absence of noise the MMSE 
linear equalizer cannot reconstruct all input data se- 
quences to the channel. However, in the case of channels 
with crosstalk interference, such as those shown in Fig. 
1, the receiver attempts to recover only one of the input 
data sequences. In this case, the MMSE receiver may be 
able to eliminate IS1 and crosstalk even when S J  is sin- 
gular. For example, rtfening to Fig, l(b), this may be 
possible when GI = G2 = . . = GN for all f. In this 
case, the N crosstalk interferers appear to the receiver as 
a single crosstalk interferer with an expanded symbol set. 

Suppose, then, that S J  corresponding to Fig. l(b) has 
rank m < N + 1 forfin some set F ,  and that we wish to 
determine if the desired data sequence {ak}  can be re- 
covered in the absence of noise. For anyfo E F ,  we can 
first perform a Gaussian elimination to convert S J  to an 
upper triangular matrix U where the bottom N + 1 - m 
rows contain all zeroes. Consider now the m X N sub- 
matrix of U consisting of the first m rows and the last N 
columns. The z-transform of the desired data sequence, 
A(z), can be evaluated at z = ej2Tfo provided that this sub- 
matrix has rank m - 1. This procedure can then be used 
to check whether or not A(z) is uniquely determined for 
all z on the unit circle. If so, then the desired data se- 
quence can be recovered. 

Note that the ability to eliminate IS1 and CCI does not 
depend on the presence of matched filters in Figs. 2 and 
3. Specifically, S i 1  G* and Si’s* can be replaced by al- 
most any t y o  difftrent analog filters, L and M, respec- 
tively, and C and D can, in principle, still be designed to 
recover A(z)  in the absence of noise. Specifically, by 
making this substitution, (2.16) becomes: 

where 

) = - C L  T k  f -  - A f -  - (2.19) ( “i) SLH(ePxf 

and the remaining spectra are defined similarly. Clearly, 
a zero-forcing equalizer still exists provided that the ma- 
trix in (2.18) is invertible. Of course, in the presence of 
additive noise L and ~ should be as close as possible to 
A* and G*, respectively, to reduce output MSE. 
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D. Effect of Excess Bandwidth on MSE 
Consider the channel model in Fig. l(b) for the case of 

a single interferer ( N  = 1). The matrix S J  is given by 
(2.8) and (2.9), where all quantities are scalars. It is eas- 
ily verified that det ( S J )  = 0 for all f if each of the sums 
in (2.9) contains only one nonzero term, which is the case 
when G and fi are bandlimited to the Nyquist frequency. 
Consequently, in this case S J  is singular and crosstalk 
cannot be completely suppressed. It was originally pointed 
out to the authors by Falconer, Petersen, and Golden [28], 
[29] that if there are N 2 1 interferers in Fig. l(b), then 
all N + 1 input data sequences cannot be recovered in the 
absence of noise when the near- and far-end transfer func- 
tions are bandlimited to N/(2T). More precisely, 

lG,(f)l = o forf > - i = 0, - - , N ,  
N 
2T' 

implies that S J  is singular for all f. 

To prove this, note that if the components of j are band- 
limited to N/(2T), then S J  is the sum of Nouter products. 
The rank of S J  for any f is therefore less than or equal to 
N ,  which implies that S J  is singular since it has dimension 
( N  + 1) X (N + 1). Note that, in general, the zero-forc- 
ing equalizer does not exist when det ( S J )  = 0 for f in an 
interval of positive length. 

As discussed in the preceding section, it may still be 
possible to recover a single input data sequence when SJ 
is singular. However, a weaker version of the preceding 
condition that guarantees the existence of a zero-forcing 
equalizer in this situation is not pursued. 

For the case of one crosstalk interferer, the preceding 
discussion suggests that when the additive noise is small 
relative to crosstalk, the MSE can be significantly reduced 
by using excess bandwidth. The relationship between ex- 
cess bandwidth and MMSE is now studied numerically 
for a particular model of a single twisted pair with one 
near-end crosstalk interferer and additive white noise. The 
following numerical results complement those given in 
[ 171, which assume fixed system bandwidth, but study in 
more detail the performance advantage obtained by treat- 
ing the crosstalk as a synchronous data signal relative to 
treating it as a WSS random process. (See also [18], which 
gives numerical results for finite-complexity MMSE de- 
cision feedback equalizers.) 

For the channel model in Fig. l(b) with N = 1, we 
assume the following transfer functions, which approxi- 
mately model a twisted-pair wire, and near-end crosstalk 
coupling from an adjacent pair [l],  [30]: 

lfi(f)12 = e - 2 P l J F  (2.20a) 

and 

l @ f ) 1 2  = Kf3l2 (2.20b) 

where 1 is the wire length, and p and K are constants that 
determine the attenuation of the far-end channel and the 
amount of crosstalk coupling, respectively. The following 
results assume p = 2.3 X and 1 = 12 kft. The trans- 
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mitter pulse is assumed to be a raised cosine, so that the 
combined Fourier transform of the pulse shape, transmit- 
ter filter, and front-end filter at the receiver is: 

' 

1 
0 I f I - (1 - a) 

2T 
T 

(2.21) 

where 0 I a I 1, and a is the amount of excess band- 
width used as a fraction of the Nyquist frequency. The 
filter 6 refers to th,e fro?t-end analog filter at the receiver. 
We assume that U = P ,  so that 6 is not matched to the 
channel response. The MMSE equalizer (shown in Fig. 
3) follows 6. The equivalent noise spenctrum at the input 
to the matched filter is, therefore, a i  1 UI2. 

Fig. 4 shows plots of MSE/ai, computed from (2.14) 
and (2.12a), versus a for the preceding channel model, 
assuming uncorrelated data with variance ai, white noise, 
and signal-to-noise ratio 4 = ui/ai  = 60 dB. The baud 
rate 1 / T  = 400 kHz, so that four-level signaling gives a 
rate of 800 kb/s. Also shown is MMSE versus a for the 
case where the crosstalk is treated as WSS additive noise 
with spectrum aiKf 3/2. This would be the case, for in- 
stance, if the phase of the interfering data signal is ran- 
dom with a uniform distribution. The MMSE is then com- 
puted again from (2.14) and (2.12a), where S G  = 0, and 
S, = a i  + 0ilG1~. As will be discussed shortly, in both 
cases the MMSE shown in Fig. 4 can be obtained by fol- 
lowing the front-end filter at the receiver 6 with an infi- 
nite-length T/2 fractionally-spaced equalizer. We add that 
the MMSE without crosstalk (G = 0) is approximately 

Two cases are shown in Fig. 4 ,  corresponding to dif- 
ferent valuFs of desired signal powernto crosstalk at the 
output of U. That is, if the output of U is sampled at the 
rate 1/(2T), then the ratio of desired signal power to 
crosstalk power in the sampled sequence is: 

-52 dB. 

The top graph in Fig. 4 assumes K = lo-'' in (2.20b), 
which gives Pd/Px  = 18 dB, and the bottom graph as- 
sumes K = 

Notice that the MSE corresponding to the interfering 
PAM signal and the MSE corresponding to WSS crosstalk 
are the same when a = 0. This is because synchronous 
crosstalk behaves as a WSS process when sampled at the 

which gives Pd/P, = 38 dB. 



620 

- ~~ 

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL 10. NO 3, APRIL 1992 

-14 

WSS Nom -La 
-30 ! . ~. . . -. . . . . 

0.0 0.2 0.4 0.6 iJ X 

a 
< = M ) d B .  K =  IO-‘“. SignaVCruaswlk= l X d 0  

(*B) ~ 3 8  1 

-40 1 ‘  

I 
I 

l l  ______ InLericring PAM signid I 
-39 11 I 

.... 1 
1 ~ ~ . ~ ~ _ ~ . . . .  

n o  0 2  0.4 I1 6 (1 x I (I 

a 
5 = 60 dB. K = IO-”. Signal/Cmirulk = 38 dB 

1 I WSS Noise 

Fig. 4. Plots of MSE versus excess bandwidth a ,  assuming crosstalk is 
treated as an interfering PAM data signal, and as WSS noise. 

Nyquist rate. The bottom plot shows that treating the 
crosstalk as a WSS process with random phase actually 
gives slightly less MSE than treating it as a synchronous 
interfering PAM signal when CY is relatively small. This 
situation occurs only when the crosstalk power is quite 
small, or the ratio Pd/P, is large. 

The results in Fig. 4 indicate that the potential reduc- 
tion in MSE due to the use of excess bandwidth increases 
with the ratio of crosstalk to background noise power. 
Specifically, the top plot shows a reduction in MSE in 
excess of 14 dB when a increases from zero to one, 
whereas the MSE decreases by less than 5 dB in the lower 
plot. This is anticipated by the preceding discussion, 
which indicates that if SJ is nonsingular forfin some in- 
terval, then crosstalk can be effectively suppressed in this 
frequency range. For the situation considered, SJ is non- 
singular for (1 - a ) / ( 2 T )  < I f 1  < 1/(2T). Conse- 
quently, as a increases, the wider the frequency range in 
which crosstalk can be suppressed. Note, however, that 
the zero-forcing equalizer does not exist in this example, 
since sJ is singular for 1 S I  < (1 - a ) / ( 2 ~ ) .  

E. The MMSE and Zero-Forcing Fractionally Spaced 
Equalizer 

For a scalar (SISO) channel without crosstalk, it is well 
known that the MMSE linear equalizer can be imple- 
mented as a fractionally spaced equalizer (FSE) [3 I]. That 
is, the combination of a matched filter, bandlimited to 
n / ( 2 T ) ,  followed by a tapped-delay line can be imple- 
mented by a tapped-delay line alone, where the taps are 
spaced by T / n ,  n being a positive integer. Consider the 
channel and MMSE equalizer shown in Fig. 3 ,  where all 
quantities are scalars. The two parallel paths in the equal- 
izer, each consisting of a matched filter followed by a 
tapped-delay line, can be implemented as FSE’s say FSEG 
and FSEH. The entire MMSE equalizer can therefore be 
replaced by a single FSE, whose tap values are the sum 

of the tap values of FSEG and FSEH. The spacing between 
the taps of the ?SE should be no greater than T / n ,  assum- 
ing that both PGO and P H o  are bandlimited to n / ( 2 T ) .  

The preceding discussion implies that the MMSE 
equalizer for the channel in Fig. l(b) can be implemented 
as a single FSE, where the spacing between taps is no 
greater than T / n ,  n being the smallest integer such that 
PGiO = 0, I f 1  > n / ( 2 T ) ,  i = 0 ,  , N. From the 
discussion in the last section, if a zero-forcing equalizer 
exists for the channel in Fig. l(b), then the bandwidth of 
PGiU must be at least (N + 1)/(2T) for some i .  Conse- 
quently, the zero-forcing equalizer can be implemented as 
an infinite-length FSE where the spacing between taps is 
no greater than T / ( N  + 1). Of course, in practice the FSE 
must have a finite number of taps, which are adapted to 
minimize the MSE. 

F. MMSE Transmitter Filter 
In gcneral, a closed-form solution for the transmitter 

filter, P, that minimizes the MSE in Fig. l(a) or (b), sub- 
ject to a power constraint and assuming the MMSE re- 
ceiver filter, seems quite difficult to pbtain. It is possible 
to derive a necessary condition for P in Fig. l(b) by ap- 
plying a variational argument to the expression for 
MMSE, (2.14). However, the resulting expression is 
complicated and does not seem to yield much insight. 

The discussion in Section 11-D indicates that improved 
MMSE performance can be obtained by using transmitter 
filters with bandwidths in excess of the Nyquist interval 
[ - 1 / ( 2 T ) ,  1 / ( 2 T ) ] ,  which is in contrast to the case when 
crosstalk is not present [32, Sect. 7 . 3 . 3 ! .  Nevertheless, if 
we assume that the transfer function J is bandlimited to 
the Nyquist interval, then at the sampling instants the 
crosstalk becomes a WSS additive noise. The total noise 
spectrum is then: 

N 

S,,,(f) = S , ( f )  + Sd(e’2Tf) c IGi(f)l’. (2.23) 
r = l  

The MMSE receiver consists of the matched filter 
Go/S,,, followed by a tapped-delay line. The MMSE 
transmitter filter can be obtained by applying a variational 
argument to (2.14), where the power constraint 

is taken into account via a Lagrange multiplier p .  The 
result is: 

I @d 

and = 0 forfg! F ,  where: 
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This expression reduces to the MMSE transmitter filter 
given in [32, Sect. 7.3.31 when the data is uncorrelated, 
i.e., Sd(eJ26) = o i ,  and Gl = 0, i = 1, . * 2 N (St,, = 
Sn). 

Optimization of the transmitter filter in Fig. l(a) is de- 
ferred until the next section on continuous waveform es- 
timation. We point out, however, that optimizing the 
transmitter filter in Fig. l(a) gives a different solution from 
the one just obtained for Fig. l(b), since the same trans- 
mitter filter precedes both the far-end and near-end trans- 
fer functions. This would be the case if an MIMO trans- 
mitter filter is attached to an MIMO full-duplex channel. 
If all signals and transfer functions in Fig. l(b) are sca- 
lars, then the situation modeled is full-duplex transmis- 
sion over a SISO channel with echo. 

In addition to the transmitter optimization problems 
considered here, one could also extend the model in Fig. 
1 (b) by assuming all of the crosstalk transfer functions are 
preceded by different transmitter filters. Taking into ac- 
count that these transmitter filters are also connected to 
far-end channels as well, the problem is then to minimize 
an appropriate cost function (for example, total MSE over 
all channels) subject to transmitted power constraints. 
Such an optimization problem appears to be quite com- 
plicated, and is not pursued further. 

111. CONTINUOUS-TIME PROBLEM 
In this section, we optimize the transmitter and receiver 

filters for the case where the data signals are arbitrary WSS 
waveforms. The filters are designed to minimize the L2 
norm between the transmitted and received signals. This 
situation applies to analog communications systems with 
crosstalk, and also data communications systems in which 
the interfering data signals are not synchronous with the 
received signal. 

r(t) = R * H * P * a(t) + R * G * P * b(t) + R * n(t) 

From Fig. l(a), the received signal vector is: 

(3.1) 

where P( t ) ,  R(t) ,  H( t ) ,  and G(t)  are the matrix impulse 
responses of the transmitter and receiver filters, and far- 
and near-end channels, respectively. Taking the Fourier 
transform of both sides of (3.1) gives 

4 f )  = &f)”m) 
+ & f > G ( f > @ ( f > i < f >  + Rf)f i ( f )  (3.2) 

where the Fourier transform of the vector function V ( t )  
is denoted as V ( f ) .  

The MSE can be written as: 

(3.3) 

62 1 

where the expectation is taken with respect to b(t) and 
a(t). Assuming that b and a are independent, but have the 
same second-order statistics, the expectation in (3.3) can 
be evaluated as: 

[(&HP - Z)Sd(&HP - Z)* [ L MSE (12, P) = trace 

+ &GPSd(riGP)* + ffS,&*] df] (3.4) 

where the N X N matrices Sd and S,  are the spectra of the 
data (desired) and noise (N-vector) waveforms, respec- 
tively. Note that “n” and “d” are subscripts, so as to 
distinguish these spectra ,from the data and noise spectra 
in Section 11. For fixed P ,  the MMSE receiver filter has 
been derived in [3], assuming the desired signal and noise 
are white. If the designed signal and noise are colored, 
the MMSE receiver filter is: 

Rapt = sdP*fi*A -’ (3.5) 
where 

d = &PsdP*fi* + GPt.$dP*G* + s,. (3.6) 
Note that this receiver filter is simply the standard Wiener 
filter for a channel with transfer functipnAfi and additive 
WSS noise with spectrum S,  + GPSdP*G*. Substituting 
for R in (3.4) gives: 

MSE (8,,,, f i  = trace 1 [Sd(Z - P*H*A -‘fiPSd)] df. 

Assuming for the moment that the desired signal and 
noise are white, i.e., Sd = aiZ and S, = uiZ, then (3.7) 
can be rewritten as: 

m 

-m 

(3.7) 

T n m  r 

MSE (kept, 4 = U $  trace 1 jpm + HWH* 

where W = PP*, and the signal-to-noise ratio 4 = 

It is easily verified that the expression for the MMSE 
receiver filter, (3.5), is the same as the MMSE receiver 
filter for a PAM data signal derived in Section I1 when 
the near- and far-end channels in the latter case are 
bandlimited to the Nyquist frequency 1/(2T). The 
expression for MSE, (3.7), is then the same as the anal- 
ogous expression for MSE in the PAM case. If the near- 
eTd impulse response G(t) = 0, then the expression for 
ROpI and the associated MSE reduce to results previously 
denved in [24]-[26]. 

We now wish to minimize the expression for MSE given 
by (3.7) over P subject to an average transmitted power 
constraint, i.e. , 

. ; /U;.  

(3.9) 
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A necessary condition for the optimal transmitter transfer 
matrix can be derived by applying a variational argument 
to (3.7). A simpler approach, however, is to first fix the 
receiver filter, and solve for the P that minimizes the MSE 
subject to the power constraint (3.9). The solution is: 

POpt = (H*R*RH + G*R*RG + pZ)-'H*R*. (3.10) 

It is shown in Appendix B that combining (3.10) with 
(3.5) gives the following necessary condiltion [of the op- 
timal transmitter transfer characteristic, W = PP*, when 
the data signal is white, i .e.,  S d ,  = o:Z, 

a;fi*A-'GWG*A-'fj - o;G*A-IfiWfi*A-lG 

+ fi*A-'sJ-'fi = E (3.11) 

where p is the Lagrange multiplier chosen to satisfy the 
constraint (3;9). Since W is real and symmetric, it can be 
written as W = +(f) V(f)+*(f) where + is an ortho- 
normal matrix for each f ,  and V is diagonal. Conse- 
quently, the optimal transmitter filter has the form 

0: 

p = +v1/2u (3.12) 

where U is an orthonormal matrix. Note that U can be 
selected to allocate power among the constituent SISO 
channels. Algorithms that compute the U to satisfy spec- 
ified power constraints on each constituent channel are 
discussed in [12] for the two-inputhwo-output case, and 
in [24] and [25] for the general N-inputlN-output case. 

In the absence of echo and near-end crosstalk and as- 
suming that s,, = oiZ, the optimality condition (3.11) 
simplifies to: 

1 1 
- A*(fiWfi* + - z>-*fi  = pz. (3.13) 

Assuming that &fi* is nonsingular, this can be written as: 

4 4 

It is shown in Appendix B that a solution to (3.14) is given 
by: 

1 1 W = - (fi*fi)-'/2 - - (fi*fi)-l. (3.15) a 4 
According to the preceding discussion, this expression for 
the MMSE transfer function should be the same as the 
MMSE transmitter transfer function for PAM data trans- 
mission when the channel is bandlimited to the Nyquist 
frequency. That is, (3.15) gives the MMSE transmitter 
transfer characteristic for half-duplex PAM transmission 
over an MIMO channel, which was first obtained by Ami- 
tay and Salz [12], [22]. It is shown in Appendix B that 
this expression is indeed the same as the analogous result 
in [22]. 

The only case for which wencan derive a closed-form 
expression for Wis when both G and H are diagonal. This 
corresponds to the presence of only echo and ISI. Assum- 

ing arbitrary data and noise spectra, the MMSE transmit- 
ter filter for a SISO full-duplex channel is given by: 
i 

and \PI2 = 0 when f F ,  where fi and G are the SISO 
far-end and near-end (echo) channel transfer functions, 
respectively, and: 

(3.16b) 

Note that (3.16) reduces to the MMSE transmitter filter 
given by (2.25) when G = 0. Computing the Lagrange 
multiplier p from (3.9) gives: 

Since F depends on p ,  in general p must be obtained by 
an iterative numerical technique. Substituting (3.16) into 
(3.5) relates the MMSE receiver filter to the MMSE trans- 
mitter filter: 

Ropt = 4:: - - :;*, f E F (3.18a) 

or 

(3.18b) 

which is independent of G. Finally, substituting for (PI' 
in (3.7) gives the minimum SISO MSE when both the 
transmitter and receiver filters are optimized: 

sd p lpq2 = - lP12, f E F 
s n  

(3.19) 

If the noise is white, i .e.,  S, = oi, then (3.16) and 
(3.17) can be combined to give: 

(3.20) 
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As a i  + 0, leaving IS1 and echo as the only channel im- 
pairments, the last term on the right disappears, and the 
set F tends to (-00, 00). Conversely, as the background 
noise level represented by ai increases, the second term 
on the right dominates. Letting U: -+ 0, and combining 
this with (3.17) and (3.18) gives the magnitude of the op- 
timal receiver transfer function: 

(3.21) 

Note that (PI in this case is independent of the trans- 
mitter power P,,,,. This is due to the fact that increasing 
P,,,,, also increases IS1 and echo, so that the effective sig- 
nal-to-noise ratio is independent of the transmitted power. 
The minimum MSE in this case is: 

which is also independent of the transmitted power. If, 
however, U: > 0, then it can be shown that the MSE is a 
decreasing function of P,,,,,. Note that by setting G = 0, 
the previous expressions reduce to the corresponding 
known results for half-duplex transmission. 

IV. DISCRETE-TIME PROBLEM 
Consider again the transmission of PAM data signals 

in the presence of crosstalk, as shown in Fig. 1(a). Sup- 
pose that the receiver filter consists of an analog front-end 
filter followed by a T-spaced tapped-delay line. This may 
be the case in situations where the MMSE filter is too 
expensive to implement. The channel then has an equiv- 
alent discrete-time description [30] in which the crosstalk 
can be treated as WSS. We can again consider the prob- 
lem of designing MMSE discrete-time receiver and trans- 
mitter filters for this equivalent discrete-time channel in 
the presence of crosstalk. If the transmitter and receiver 
filters are assumed to be IIR (infinite complexity), then 
the problem is completely isomorphic to that considered 
in Section I11 and the same results follow without change, 
except that: Fourier transforms are replaced by 
z-transforms with z = integrals on the imaginary 
axis are replaced by integrals on the unit circle. 

A .  The Discrete-Time Fixed-Order FIR Case 
To establish the notation, we begin with the simple case 

of optimizing the receiver with fixed transmitter filter and 
no crosstalk. The transmitter filter will be represented by 
a sequence { P k ,  0 5 k I m }  of N X N matrices, where 
the elements of the kth matrix represent the impulse re- 
sponse of the filter at time k.  Similarly, the channel filter 
is represented by a sequence of matrices { H k ,  0 I k I 
m} and the receiver filter by a sequence {Rk ,  0 I k I 

To write the output as a matrix operating on the input, 
we define the following matrix constructions. Let {Ak, 0 

1 ) .  
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I k I p }  be a sequence of N x N matrices, N I 1. 
Then the row-expanded matrix A- is: 

A- = [AOIAlIA,I * 14. (4.1) 

The sequence index k of {Ak} is regarded as a time pa- 
rameter, and we can view this matrix as a time expansion. 
It has N rows and ( p + 1) N columns. We always assume 
that any postmultiplier is compatible in its dimensions 
with A-. Similarly, the column-expansion of the sequence 
{Bk,  0 I k I q }  of N x N matrices is defined by: 

LB,' 1 
which has (q  + l )N rows and N columns. Again, this is 
regarded as a time expansion, where q is the current time 
index, and any premultiplier is assumed compatible with 
the dimensions of BI . Note that time is shifted backward, 
so that matrix-vector products correspond to convolu- 
tions. Specifically, the convolution of the sequence {Ak}  
with { B k }  can be expressed as A-[B-]l where [B-]1 is an 
N ( p  + 1) x N(q + p + 1) convolution matrix. For ex- 
ample, i f p  = 3 and q = 2, 

1 po B,  B2 o o o 

Lo o o B~ B~ B,J 
We can now write the received N-vector signal r(k) in 

terms of the far-end N-vector signal a(k) as: 

r(k) = 9 [ f W - l 1 1 ( 4 k ) (  (4.4) 
where the column-expanded input signal vector, a(k)l, is 
an (n  + m + Z + 1) * N x 1 vector. Now let 

v = [H[P-llll (4.5) 
which is an N(Z + 1) X N(m + n + Z + 1) convolution 
matrix representing the combined impulse response of the 
channel and transmitter filter. The input-output relation 
can now be written: 

r(k) = R-Va(k)I + R-n(k)l (4.6) 
where n(k)l is an additive noise signal at the output of the 
channel. 

The receiver filter R is chosen to minimize the MSE: 

JNr<k) - 4 k  - 4)1l21 (4.7) 
where 4 represents the delay between the times when a 
symbol is transmitted and detected. Notice that a(k) is the 
N-dimensional data vector at time k ,  which is different 
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from the column-expanded vector a(k)l. Standard tech- 
niques show that R is determined by the familiar projec- 

on transmitter output power, and is determined by the 
condition: 

tion 

R- = E; V*( V@., V* + a,,)-' (4.8) 
trace {PlaaPT} = P,,,,. (4.15) 

Note that the matrix EM-$ can be defined exactly as E, 
where is replaced by the analogous column vector in 
which the data vectors are time reversed. 

Finally, we mention that a decision feedback equalizer 
can be incorporated into the preceding optimizations using 
the methods in [13]. 

where @., = E[~(k)la(k)~l ,  @,I = E[n(k)ln(k)rl ,  and E,  = 
E[a(k)ia*(k - +)I. If the data is uncorrelated with vari- 
ante '-& then the (m + + 1 + 1) . N X N matrix E, is 
given by: 

the N X N identity matrix being positioned after + zero 
matrices, each N X N .  The integer + can vary from 0 to 
(m + n + I )  and is selected to further minimize the MSE, 
which can be written as: 

MSE = trace {+., - R-VE,} (4.10) 

B. An Algorithm for the FIR Case 

The problem of obtaining the simultaneously optimal 
pre- and post-filters in the FIR case in closed form is open. 
The following iterative method was found effective in 
practice: First optimize the receiver filter for fixed trans- 
mitter filter, then optimize the transmitter filter for that 
receiver filter, and repeat until convergence is obtained. 

We observed that this iterative process can converge to 
different locally optimal solutions, depending on the 
choice of starting point, and in Section V we describe nu- 
merical results for some typical examples. We found in 
our simulations that the best results were obtained with 
the initial condition Pk = Z for k = 0, and 0 otherwise. 

where +., = E(@)@)*]. V. NUMERICAL RESULTS 
Introducing near-end crosstalk adds a term to the 

expression for the received signal which depends on the 
near-end signal b(k): 

A simplified model for two coupled twisted-pair wires 
is now used to compute optimal transmitter and receiver 
filters, and the associated MSE. We assume the model in 

r(k) = R-Va(k)l + R-Gb(k)i + R-n(k)i (4.11) 

where G is a convolution matrix incorporating the com- 
bined effect of the transmitter filter and crosstalk coupling 
impulse response, in analogy with V .  The same method 
then yields the MMSE solution: 

R- = E;V*(V@.,V* + G@,,G* + @ , , ) - I  (4.12) 

with the same expression for minimum MSE given by 
(4. lo). 

We next consider the optimization of the transmitter fil- 
ter given the receiver filter. The treatment is the same, 
except that we add a power constraint at the output of the 
transmitter filter. In analogy with V ,  let the convolution 
matrix representing the combined impulse response of the 
channel and receiver filter be: 

(4.13) 

and let the combined near-end crosstalk and receiver filter 
impulse response be denoted by the convolution matrix S. 
Then the optimal transmitter filter is given by: 

Pi = (K*K + S*S + pZ)-'K*EMp, (4.14) 

where M + 1 is the number of data vectors in @)I, and 
p is the Lagrange multiplier associated with the constraint 

Fig. 1 (a), and that the receiver samples the channel output 
once per baud. The channel can therefore be replaced by 
an equivalent discrete-time channel, where the transmitter 
and receiver filters are discrete-time filters. Crosstalk in 
this case is equivalent to an additive WSS noise with spec- 
trum that is proportional to the transmitted spectrum. The 
transmitter and receiver filters are assumed to be FIR, and 
our purpose is to study the MMSE as a function of sam- 
pling phase and how the matrix taps are allocated be- 
tween the receiver and transmitter. This is in contrast to 
the numerical results presented in Section 11-D, which il- 
lustrate the performance advantage obtained by the MMSE 
receiver, as compared with the type of receiver assumed 
here. 

The channel model used here is essentially taken from 
[4]. In particular, the self-impulse response on each 
twisted pair was computed from a transmission line model 
for 12 kft of 24 gauge wire and 9 kft of 26 gauge wire. 
Each impulse response was sampled at 16 times the baud 
rate, which was chosen to be 800 kHz, and was truncated 
to 160 samples (10 symbol intervals), so that the number 
of matrix taps needed in the transmitter and receiver to 
substantially reduce the MSE would not be prohibitively 
large. It is assumed that 0 5  = 0, and that echo is perfectly 
canceled by echo cancelers, so that the diagonal elements 
of G are zero. 
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Near-end crosstalk was generated by modifying the im- 
pulse response obtained from the transfer function [ 11: 

g l L ( f )  = j27rf 1: e -*r(f)rc,k(x) h (5.1) 

where clL(x) is the coupling capacitance between pairs i 
and k as a function of distance along the cable, 1 is the 
cable length, and r ( f )  = J ( R  + j27rfL)(G + j27rfC) is 
the propagation constant where R,  C, G, and L are the 
wire resistance, capacitance, conductance, and induc- 
tance of the cable per unit length, respectively. Here we 
assume for simplicity that clk(x) is a constannt independent 
of x, and that clk = C k l ,  so that the matrix G is symmetric. 
The near-end impulse response used to generate the nu- 
merical results was obtained by smoothing the impulse 
response obtained from this model. The smoothing was 
added to reduce the sensitivity of the MSE to the phase 8 
introduced in (2 .  lb). Far-end crosstalk was generated 
from the transfer function: 

c r k ( f )  = j27r-e-2r(f)‘ S‘ clk(x) h. (5 .2) 

The transmitted signal is assumed to be of the form 

(1,141 
J I I I I 

~ ( t )  C akp(t - k T )  (5.3) 
k 

where the ak’s are uncorrelated and have component k 1, 
and p(r) is a rectangular pulse shape of width T and am- 
plitude one. The convolution of p ( t )  with the channel im- 
pulse responses described in the preceding paragraph are 
shown in Figs. 5 and 6. The channel output is synchro- 
nously sampled at the baud rate, 1 / T  = 800 kHz, so that 
the equivalent discrete-time model in Fig. l(a) has as in- 
puts the binary-valued vector input sequences {ak}  and 
{ b k } .  Since the channel (matrix) impulse response was 
sampled at 16 times the baud rate, this gives 16’ possible 
combinations of sampling phases from which to choose. 
The particular combination that minimizes the MSE was 
obtained by exhaustive search. 

The algorithm described in Section IV-B was used to 
compute simultaneously optimal transmitter and receiver 
filters. Fig. 7 shows plots of MSE versus iteration for 
cases in which the total number of (matrix) taps allocated 
between the transmitter and receiver is 15. In particular, 
curves are shown for one, two, five, and ten taps in the 
transmitter. The sampling phases in each case were cho- 
sen to minimize MSE after convergence. In each case, the 
MSE decreases rapidly during the first 200 iterations, but 
takes more than 1000 iterations to approach its asymptotic 
value. 

Fig. 8 shows the improvement in MSE obtained by 
adding taps at the transmitter for a fixed-length receiver 
filter. Also shown is MSE versus the number of transmit- 
ter taps when the total number of transmitter and receiver 
taps is fixed. The results in Fig. 8 assume that the timing 
phase on each channel is chosen to minimize the MSE. 
For the channel model considered, the MSE is an insen- 
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sitive function of how the taps are allocated between the 
transmitter and receiver. It is suspected that the variation 
shown (approximately 2 dB) is due to the quantization of 
sampling phase. In particular, the same results were gen- 
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Fig. 9. Two-dimensional perspective plot of MSE versus timing phases on 
each channel. 
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Fig. 8. MSE versus the number of transmitter taps assuming: (a) the nuni- 
ber of receiver taps is held constant at 13; and (b) the total number of 
transmitter and receiver taps is 14. 

erated assuming that the sampling phase is quantized to 8 
samples per baud, and the variation in MSE was found to 
be much greater. The reason for this insensitivity is that 
as the transmitted power increases, so does near-end 
crosstalk so that, in the absence of noise, the MSE is not 
a decreasing function of transmitted power. For the case 
considered, where near-end crosstalk is the dominant im- 
pairment, the transmitted power constraint (4.15) there- 
fore becomes extraneous. Consequently, the MSE be- 
comes almost independent of where filters are added 
relative to the channel. 

The dependence of MSE on timing phase is illustrated 
in Fig. 9, which shows a two-dimensional perspective plot 
of MSE as a function of timing phase on both channels 
for the case where the receiver filter has 14 taps and the 
transmitter filter has 1 tap. The variation between the min- 
imum and maximum values of MSE in this figure is ap- 
proximately 22 dB. For the case considered, the MSE was 
found to be a very sensitive function of timing phase. 
However, as in the SISO case, as taps are added to the 
receiver filter, the dependence of the MSE on sampling 
phase diminishes. In principle, the phase 0 in (2.lb), 
which is the difference between the times when near-end 
symbols are transmitted and far-end symbols are detected, 
can also be adapted to minimize MSE. However, because 
of the practical difficulties involved in such an optimiza- 
tion, this was not investigated. 

VI. CONCLUSIONS 
The MMSE linear equalizer in the presence of syn- 

chronous crosstalk has been completely specified in terms 
of the near- and far-end channel transfer functions. In 
practice, the tapped delay lines associated with the MMSE 
equalizer can be approximated by FIR filters, and the taps 
can be adapted to minimize the MSE between transmitted 
symbols and the filter output. In order to effectively sup- 

press N different near-end crosstalk signals, the band- 
width available must be N + 1 times the Nyquist fre- 
quency. If the MMSE equalizer is implemented as a 
fractionally spaced equalizer, it follows that the tap spac- 
ing should be no greater than T / ( N  + 1) to suppress all 
crosstalk signals. 

Optimization of the transmitter filter in the presence of 
crosstalk, assuming either channel model in Fig. 1, ap- 
pears to be difficult since the effect of aliasing must be 
taken into account. However, if the channel is bandlim- 
ited to the Nyquist interval, a closed-form solution exists 
for the MMSE transmitter filter in particular cases, since 
crosstalk at the sampling intervals can be treated as an 
additive WSS noise. 

Our numerical results in the preceding section demon- 
strate that when near-end crosstalk is the dominant chan- 
nel impairment, adding taps to an MIMO transmitter filter 
selected to minimize MSE has the same effect as adding 
taps to a MIMO linear equalizer. From a practical point 
of view, it is therefore better to equalize the channel at 
the receiver since, in the case of an unknown or time- 
varying channel, the equalizer taps can be adapted to min- 
imize the MSE. In contrast, an adaptive algorithm for the 
transmitter taps requires an estimate of the channel and 
crosstalk impulse responses, which can be provided only 
by feedback channels. For the channel model considered, 
the MSE was found to be a sensitive function of timing 
phase, which was selected independently on both SISO 
channels. 

A natural extension of this work is to consider more 
sophisticated detection algorithms in the presence of 
crosstalk, such as decision feedback equalization, and 
maximum-likelihood estimation. Decision feedback 
equalization in the presence of crosstalk is considered in 
[lo], [13], [17], and [18]. For a 2 x 2 MIMO channel. 
it has been demonstrated in [ 131 that sensitivity to timing 
phase can be reduced by using an MIMO decision feed- 
back structure, which has the approximate effect of short- 
ening the channel impulse response. For the type of cross- 
talk channels considered here, simulation results in [ 181 
show that timing sensitivity can also be significantly re- 
duced by using a fractionally spaced equalizer. Maxi- 
mum-likelihood and related estimation techniques are 
considered in [33]-[35] for the multiuser channel. The 
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performance of these techniques for the types of channels 
considered here has not yet been studied. 

APPENDIX A 
DERIVATION OF THE MMSE LINEAR EQUALIZER 

Consider the channel model in Fig. 2 with M X N 
transfer function J and input u(t) = Ck akp(t - k T ) ,  where 
{ a k }  is the input N-vector data sequence. Suppose that 
this channel is followed by an N y M receiver filter R ,  
and let r(0) denote the output of R at time t = 0. Then 
the MSE can be written as: 

MSE = E{ Ilr(O) - ao1I2} 

o m  o w  \ 

R(s) d~,~(s - U )  R*(u) ds duj  (A. 1 )  

where R is the impulse response of R ,  Kk = R * .!(kT), 

J * P * p ( t ) .  In general f(t) is an M X N matrix, R is an 
N x M matrix, is an M X M matrix, and 4; and KI 
are N x N matrices. A standard variational argument can 
be used to derive the following optimality condition for 
the receiver filter 

im R(s)4,,(r - s) ds = c (4: - &)J*(kT - t )  

+ 3-3 3 - m  

4; = ~ ( % d + I ) ,  4,1(4 = E[n(t)n*(t - s>l, and 9(t> = 

- w  I 

(A.2) 
where 

KL = c K m 4 i P m .  (A.3) 
in 

Taking the Fourier transform of both sides of (A.2) gives: 

Rs,, = C (4; - EI)e-J2TfkT 1 J* (A.4) 
I k  

where J is the Fourier transform of 9. 

quence { K I }  as: 
Defining the Fourier series associated with the se- 

64.5) K ( e J 2 6 )  = C K -J2rfkfkr 
k e  

and the Fourier series Z?(eJ226) in an analogous manner, it 
then follows from (A.3) that: 

Z ? ( p f )  = & e J 2 q  S d ( e J 2 6 )  ('4.6) 

where S d ( e J 2 d )  is the data spectrum defined by (2.6). 
Consequently, (A.4) can be written as: 

~ ( f )  s,,(f) = ( I  - ~ ( e ' 2 " ) ) S d ( e J 2 ~ ~ ) S * ( f )  

= Q(eJ?")J*(f) ('4.7) 

which corresponds to the block diagram in Fig. 2,  where 

We now wish to find an expression for the transfer 
function of the tapped delay line Q(eJ2") in terms of the 

Q ( e J 2 d )  [ I  - R('(eJ2")]sd(eJ2'f). 
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channel transfer function J, and the data and noise spec- 
tra. Let { x k }  denote the input sequence to the tapped delay 
line at the sampling times kT, k = 0, 1, 2,  * * , and let 
X ( z )  denote the associated z-transform. If A(z) denotes the 
z-transform of the data sequence and N(z)  denotes the 
z-transform of the sampled output of the matched filter 
with only the noise n(t) as the input, then: 

('4.8) 

where S J  ( z )  is the z-transform of the equivalent discrete- 
time channel with inputs {ak}  and outputs { x k } .  It follows 
that S J ( z )  for z = eJ26 is given by (2.5), and the spectrum 
of the noise sequence at the output of the matched filter 
is SN(eJ2Tf)  = S J ( e J 2 T f ) .  (See [30, Ch. 31. The general- 
ization to MIMO systems is straightforward.) Let { y k }  be 
the sequence of outputs of Q(z) ,  that is, y k  = C, Q k - , x l ,  
where {Q , }  is the impulse response of the tapped delay 
line in Fig. 2.  y k  is, therefore, the MMSE estimate of ak. 
The z-transform of the error sequence {ek = y k  - ak} is: 

E(z) = [Q(z)SJ(z)  - Z]A(z) + N(z)  (A.9) 

X(z )  = SJ(z)A(z) + N(z) 

so that the MSE can be written as: 

+ Q(z) SN(z )  Q1(z - I )  ) ; (A.lO) 

where prime denotes kranspose. (Note that S J ( z )  = 
[ S J  ( z  - ' )I , . )  Selecting Q(z) to minimize this expression 
gives (2.4). Combining (A. l ) ,  (A.2), and (A.6) gives the 
following expression for the MMSE: 

MMSE = trace [(+;f - Eo) 
1 / @ T )  

- 1 /Q7J 
= trace [T 1 [ I  - k(ej2d)]Sd(e'26') df] 

APPENDIX B 
DERIVATION OF (3.1 1) 

Substituting (3.5) into (3.10) gives: 
(&*A -'fiPsiP*fi*A - 1 f i  

+ G*A-'HPs2,P*H*A-lG + p Z ) P  

- - fi*A-lfipsd (B. 1) 

where A is defined by (3.6), and p is the Lagrange mul- 
tiplier chosen to satisfy (3.9). Le;ting Sd = oiZ, and post- 
multiplying by P* and then by W-' gives: 

fi*A - 'A - @ifi*A -'fiWfi*A - 1 f i  

- @ifi*A -IfiWG*A - 1 G  = E Z. (B.2) 
o d  
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- - fi*(A-’(A - & j w f i * ) A - ~ ) f i  

= f i *A- l (o :GWG*  + S,JA-’A (B.3) 

To show that @given by (3.15) satisfies (3.14), we first 

1 2 1 

and combining (B.3) with (B.2) gives (3.11). 

rewrite (3.14) as: 

- HH* = HWH*HWH* + - HWH* + i I .  (B.4) 
4P 4 4 

Postmultiplying by H and then ( & * @ - I  gives: 

and premultiplying by A* and then (fi*fi)-l gives 

1 (A*&)-’. (B.6) 

It is now easily verified that the expression for W given 
by (3.15) satisfies (B.6). 

We now show that (3.15) is the same as the MMSE 
transmitter transfer function obtained in [ 121 and [22]. 
Since H*H is real and symmetric, it can be rewritten as 
\k( f) A ( f ) \k  *( f), where \k is orthonormal for eachfand 
A is diagonal. Let P = \kP and T = PP*.  It is shown in 
[12] and [22] that the value of T which minimizes the 
MSE is: 

A 1  1 
(B. 7) T = ~ A-112 - - A - ‘  6 4 

so that 

1 1 W = \k*f\k = ~ \k*A-’/2\k - - \E*A-’\k 
Jclt; 4 

1 - - I (&*&)-1/2 - - ( f i * f i ) - I .  (B. 8) Jclt; 4 
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