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Abstract-Given a linear, time-invariant, dispersive channel, a re- 
ceiver that samples the channel output to within an accuracy of k d  
where d > 0, and a transmitter with an output amplitude constraint, 
what is the maximum data rate that can be reliably communicated? For 
any dispersive channel the maximum rate depends on d,  and is finite. 
The transmitted waveforms must be designed so that two channel 
outputs associated with two distinct transmitted signals are separated in 
amplitude at a particular time by d.  It is shown that given any channel 
impnlse response with rational Laplace transform, there exists an opti- 
mal set of inputs that are * A  everywhere where A is the maximum 
allowable amplitude. Furthermore, in any finite time interval each input 
changes sign a finite number of times. If the channel impulse response is 
a single decaying exponential, it is shown that simple binary signaling, in 
which A or -A ,  depending on the current message bit, is transmitted 
during each symbol interval, maximizes the data rate. 

I. INTRODUCTION 
HE problem of designing transmitted signals for digital T communications is reexamined here under different con- 

straints from those typically assumed. For a given channel the 
primary limitation on the maximum data rate that can be reliably 
communicated is assumed to be the precision with which the 
receiver measures the channel output. Our motivation originates 
from communication systems in which impairments at the re- 
ceiver cause the maximum achievable data rate to be consider- 
ably less than the Shannon capacity of the channel, assuming 
only additive thermal (Gaussian) noise. 

A particular channel of interest is the subscriber loop, which 
typically consists of twisted wire-pairs. A single twisted-pair 
(ignoring crosstalk) is accurately modeled as a linear, time-in- 
variant system. Furthermore, the amount of additive thermal 
noise introduced by the channel is very small, and does not pose 
a major limitation on achievable data rate. Rather, the main 
limitation is most likely due to inaccuracies introduced by a 
particular transmitter and receiver implementation, such as VLSI 
nonlinearities, timing inaccuracy, and the precision of the analog 
to digital (A/D) converter. 

One approach to estimating the capacity of channels in the 
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presence of the aforementioned receiver impairments is to model 
these impairments as additive noise with specified statistics, and 
subsequently attempt to compute the Shannon capacity of the 
resulting channel model. The primary difficulty with this ap- 
proach is that an accurate statistical model of the preceding 
receiver impairments is generally unavailable, and appears to be 
difficult to construct. Furthermore, unless the noise statistics are 
assumed to be Gaussian, evaluating the Shannon capacity, sub- 
ject to an appropriate input constraint, is likely to be a form- 
idable task. 

Here we take a simpler, and perhaps more useful approach to 
estimating the maximum data rate for the preceding types of 
channels. The channel is taken to be a linear, time-invariant 
system, and two channel outputs are assumed to be distinguish- 
able at the receiver if and only if they are sufficiently separated 
in an appropriate metric space. A set of N inputs to the channel 
must therefore be designed so that the minimum distance be- 
tween channels outputs is at least some prespecified amount. For 
a given minimum distance and input constraint, the maximum 
achievable data rate, or maximum channel throughput, is then 
the largest rate at which log N can grow with time. This is a 
deterministic notion of maximum achievable data rate, in con- 
trast to the preceding statistical approach. 

The metric used to distinguish the channel outputs should 
depend on the type of receiver impairments considered. For 
example, quantization error due to the A/D converter can be 
modeled as an additive noise which is bounded in amplitude by 
some constant d / 2 .  Consequently, if this is the only impair- 
ment, it is appropriate to design channel inputs so that any two 
distinct channel outputs are separated in amplitude by at least d 
at a particular time instant. In this case the corresponding metric 
space in which the channel outputs are to be separated is L,. 
This is the case studied in this paper. That is, it is implicitly 
assumed that all receiver impairments can be modeled as an 
additive noise which is bounded in amplitude by d / 2  almost 
surely. No additional assumptions will be made concerning the 
statistical properties of the receiver impairments. In addition, we 
will assume that the transmitter output is constrained by the 
dynamic range of the electronics, which implies a maximum 
input amplitude constraint. 

Different assumptions about the receiver impairments lead to 
different metric spaces in which the channel outputs should be 
separated. For example, if it is assumed that the receiver impair- 
ments can be modeled as an additive noise which has bounded 
power, then the appropriate metric space for the channel outputs 
is L,. In each case the statistical properties of the noise are 
lumped into a single constant representing the maximum amount 
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Fig. 1 .  Communications system model. 

the noise can perturb the channel outputs. This type of input 
signal design is therefore worst case in the sense that a higher 
data rate might be achievable by exploiting additional statistical 
properties of the receiver impairments. 

The communications system model considered in this paper is 
shown in Fig. 1. We wish to transmit one of N messages, 
corresponding to the transmitted signal u,(t), 1 5 j 5 N,  in a 
finite time interval [0, TI. The channel has impulse response 
h( t ) ,  transfer function H(s) ,  and maps the input to the output 
vi( t) = h * U,( t) where “*” denotes convolution. (Any linear 
processing of the channel output, which the receiver may per- 
form, is assumed to be part of the channel transfer function.) 

The receiver samples the channel output at prespecified times 
t i ,  i = 1,2; e ,  to within an accuracy of -+d, and selects the 
transmitted message j based on threshold comparisons. The 
sampling times { t i }  are times at which two channel outputs are 
known to be separated by d. Specifically, let r ( t i ) ,  i = 1,2,  * - 
denote the received samples, and suppose that yl(tl) - y,(tl) 
> d. Then if r ( t l )  > [yl(tl) + y,(tl)]/2, the receiver rejects 
message 2 as the final estimate. Otherwise, if “ > ” @ replaced 
by “ < ,” then message 1 is rejected. The estimate j therefore 
corresponds to the input uj  such that I r( ti> - y,<ti) I < d /2 
for each i. 

Suppose that the A/D converter in Fig. 1 is replaced by an 
additive noise n ( t )  where I n( t) I < d/,2 for all t, so that 
r ( t )  = y ( t )  + n ( t ) .  Then the estimate j corresponds to the 
input u$t )  which produces the channel output y$t) closest to 
r ( t )  in the L, sense. In practice, a channel estimator, or 
equalizer, can be used at the receiver to subtract out intersymbol 
interference, and thereby center the threshhold comparisons 
about zero. Note that this type of receiver is often used in 
practice, with the added restriction that the sampling times are 
uniformly spaced. 

The problem studied here was considered as early as 1928 by 
Hartley [l]; however, the authors are unaware of any other 
closely related work. Hartley’s paper considers only channels 
with an exponential impulse response. A similar problem to that 
posed here, at least in appearance, in which the outputs must be 
separated in the L, sense, and the inputs are constrained in L, 
norm, was studied by Root [2] and by Wyner [3]. 

In the next section the problem outlined in this section is 
stated precisely. Section 111 presents the main results, and Sec- 
tion IV mentions some related problems. 

II. ~ O B L E M  STATEMENT 
Some notation is first defined. The L,  norm of a continuous, 

real-valued function f over an interval [0, TI is given by 

I l f l l T , m l  SUP I f ( t ) I .  (2.1) 
O s t i T  

Since we will not use any other norms in this paper, we will 
simply write this as 11 f 11 =. (If f is not continuous, then “sup” 
is replaced by “essential sup” [4].) The channel is assumed to 

be linear and time-invariant with real-valued, bounded impulse 
response h ( t )  where h( t )  = 0 for t < 0. The channel output in 
response to input u ( t )  is therefore given by 

y ( t )  = h * u ( t )  E h ( S ) u ( t  - S) dS. (2.2) Lt 
We also assume that 10” I h( t )  1 dt < 03 (i.e., h ( . )   EL^), so 
that any bounded input produces a bounded output. 

Throughout the rest of the paper we will assume a transmitter 
amplitude constraint. Specifically, any input to the channel is 
assumed to be less than or equal to one in magnitude ( I] u, 11 5 1 
for each j and any T > 0). 

The following problems are precise versions of those outlined 
in Section I. 

P1) Given some time interval [0, TI and some small constant 
d > 0, find inputs u l ( t ) , * - * ,  uN(t )  such that mini+,lly, - 
yi 11 1 d, with N as large as possible. Let N-(T, d) denote 
the largest possible N for fixed time interval [0, TI and discrim- 
ination d. 
p2) Given the discrimination d and the number of messages 

N,  find N inputs ul ( t ) ,  . * e ,  u N ( t )  that minimize the time T 
such that mini, , 11 y j  - yi)I 2 d. Let T-(N, d) denote the 
minimum time. 

P3) Given the interval [0, TI and the number of messages N, 
find N inputs ul(t); - e ,  u N ( t )  that maximize the minimum 
output separation d = mini + , 11 y, - yi  11 T .  

Of course, these three problems are related, for example, 

T-(N, d) = inf (TI N-(T, d) = N} (2.3) 
and 

N-(T,d) = max{NIT-(N,d) 5 T}. (2.4) 

Note that Nm(T, d) = 0 for all T > 0 if 10” 1 h ( t )  I dt < 
d/2. If 10” 1 h( t )  1 dt = d/2, then N-(T, d) 5 2 for any 
T >  0. 

The discrete-time versions of problems Pl)-P3) are also of 
interest. In this case h * U, = Hu,, where h is the vector of 
impulse response coefficients, the inputs { U,} are vectors in R‘, 
the outputs { y,} are vectors in RT,  and the rows of the matrix 
H are shifted versions of h. The discrete time I ,  norm is 
defined by )I U 11 , = maxi I [U], I .  

We now make two remarks concerning Pl)-P3). In order to 
obtain a reliable estimate of the transmitted message, it is 
assumed that the receiver samples the output at times where two 
outputs differ by at least d. Of course, in practice the receiver 
cannot sample at precisely the correct time instant. However, for 
any allowable input and impulse response, the output will be 
continuous. Two outputs separated by d at some time to will 
therefore be separated by at least d - E for some small E in a 
neighborhood of to. Compensation for timing errors can be 
therefore be made by choosing d large enough so that the 
distance between outputs is sufficiently large when the sampling 
times are shifted by small amounts. 

The second remark is that Pl)-P3) state that the distance 
between outputs is measured with respect to the interval [O,  TI. 
For many channels, however, two outputs can be first separated 
by d when t > T even though the associated inputs are zero for 
t > T (i.e., when the channel has a group delay). In this case 
Pl)-P3) can be reformulated so that the outputs must be sepa- 
rated by d on the interval [0, T + 71 where T > 0 and is 
independent of T. Since the impulse response h EL,[O, a), we 
can assume that 7 is finite. That is, because the inputs are zero 
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for t > T ,  there exists a finite r > 0 such that for any T ,  two 
outputs cannot become separated by d at any time t > T + r. In 
what follows it is convenient to first assume that r = 0 before 
considering the case r > 0. 

For a given allowable channel impulse response h ( . )  and 
discrimination d ,  the maximum channel throughput (MCT) is 
defined as 

We remark that 

log N-( T ,  d )  log N 
= sup- 

T N Tmin(N) * 
SUP 
T>0 

To show that the left side is less than or equal to the right side, 
fix T > 0 and d > 0, and let N = N-(T, d ) .  For this choice 
of N ,  [log N - ( T , d ) ] / T s  (log N ) / T - ( N , d ) ,  i.e.,forany 
fixed T > 0, there exists an N such that the preceding inequal- 
ity holds. Conversely, fixing N and letting T = T-(N, d )  
establishes that the right-hand side is less than or equal to the 
left-hand side. 

Fact I :  

In particular, the limit exists. 
Roughly speaking, this establishes that N-( T )  asymptoti- 

cally grows exponentially with T ,  with exponential coefficient 
equal to the MCT. We remark here that log N-(T)/ T is not 
monotonic in T .  This is because N-(T) increases only at a 
discrete set of times. Fact 1 follows from two simple lemmas. 

Lemma 1: 

N - ( T +  S )  L N - ( T ) N - ( S ) .  (2.7) 
Thus in time T + S we can transmit at least N-(T)N-(S) 
messages. 

Proof of Lemma 1: Let N = N-(T) and v1;*-, uN be 
input signals such that (1 h * vi - h * uj (1  2 d for i # j .  Simi- 
larly, let M = N,,(S) and wl; - e ,  w, be a set of input 
signals such that (1  h * wi - h * w, 11 5 d for i # j. Define 

O S t S T  
w j ( t -  T )  T < t I  T + S  

U i j ( t )  = 

i = l;..., N ,  j = l ; . . ,  M (2.8) 

which are just the concatenations of the signals w, with the 
signals ui.  We now show that 11 h * uij  - h * uklII T+S L d for 
i # k or j # I, which will establish the lemma. To see this, note 
that if i # k then 

d S  I l h * ~ ; j -  h*u , , ( ITS  Ilh*u;,-  h*u, , IIT+S.  (2.9) 
If on the other hand i = k but j # I, then h * ui,(t) = h * u,,(t) 
for 0 I t 5 T and 

h * u i j ( t )  - h * ~ , , ( t )  = h * w j ( t  - T )  - h * w l ( t  - T )  

for T I  t I T +  S (2.10) 
so that 

d S  I (h*wi , -  h*w,,IIT= J l h * u ; j -  h * U , l l l T + S .  (2.11) 

0 

Lemma 2: Let f :  [0, 00) -, [0, 00) be superadditive, that is, 

f ( a  + b)  L f ( a )  + f ( b )  forall a, b L 0. (2.12) 

Then 

f ( 4  f W  sup - = lim -. 
*>o x x-03 x 

(2.13) 

By Lemma 1, log N-( T )  is a superadditive function of T ,  
so Lemma 2 will establish Fact 1 .  

Proof of Lemma 2: Clearly, f is nondecreasing. From 
the superadditive property, for any a and any nonnegative 
integer n we have f (nu) 2 nf (a) .  Given x 2 0, let x = nu + r 
where 0 I r < a. Using the monotonicity of f and the fact cited 
above, we have 

x n a + r  n a + r  a 
Note that for x large enough, the right-hand side of the above 
inequality exceeds f ( a ) /  a - E for any positive E .  Hence, 

V U  > 0, V E  > 0, 3B such that 

E ,  
f ( x )  f ( 4  x 2 B implies - >-- 

X U 

from which lemma 2 follows. 0 
Consider now Pl)-P3) where the distance between outputs is 

measured with respect to the time interval [ O ,  T + r] where r is 
a finite, positive constant. The maximum channel throughput can 
be redefined as 

assuming the limit exists where NAax is the maximum number of 
distinguishable outputs with respect to the time interval [0, T + 
r ] ,  assuming the inputs are zero for t < 0 and t > T .  Note that 

log N-(T,  d )  log N-(T,  d )  log N-(T + r, d )  
I S 

T + r  T + r  T + r  
(2.16) 

for any finite T > 0. Now as T + 00, the left and right hand 
expressions converge to MCT(d), which is assumed to be finite. 
Consequently, Fact 1 implies that the limit in (2.15) does exist, 
and that MCT'(d) = MCT(d). That is, the definitions (2.5) and 
(2.15) are equivalent. It is easily verified that the results in the 
next section are valid for any r 2 0, assuming that the MCT is 
replaced by MCT' defined by (2.15). 

III. THE MAIN RESULTS 

Problems Pl)-P3) have not yet been solved for general h( -); 
however, here we give some partial results, stated by Theorems 
1-4. The proofs of Theorems 2 and 3 are given in the Ap- 
pendix. 

Assume that the channel has the state-space characterization, 

i ( t )  = A x ( t )  + b u ( t )  y ( t )  = C X ( ~ )  (3.1) 

where u ( t )  and y ( t )  are the input and output of the channel, 
respectively, and x ( t )  is an n-vector representing the state of 
the channel where n is finite. Of course, A is an n x n matrix, 
and b and c are n element column and row vectors, respec- 
tively, and H ( s )  = c(sZ - A ) - ' b  is the channel transfer func- 
tion. 
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Theorem 1: For the channel with transfer function H ( s )  
given in the preceding paragraph, there exists a solution to P2) 
suchthat Iui(t)I = l f o r e a c h  i = l ; * - , N a n d O ~ t ~ T .  
Furthermore, in any finite time interval, each ui changes sign a 
finite number of times. 

This theorem is a consequence of the following lemma. 
Lemma 3: Assume that the system (3.1) is a controllable 

realization of H(s) ,  and that there exists an input u( t )  which 
drives the state from x ( t i )  to x ( t f )  where t, > ti. Then there 
exists an input ii(t) where I i i ( t )  I = 1, which also drives the 
state from x ( t i )  to x ( t f ) .  If the eigenvalues of the n x n 
matrix A in (3.1) are real, then the number of times i i( t)  
changes sign is at most n - 1 whereas if the eigenvalues of A 
are complex, then the number of times i i( t)  changes sign is 
finite, but depends upon the initial and final state. 

Proof: Define T ( x i ,  x,) as the minimum time to go from 
the initial state x i  to the final state x,. Then t , -  ti L 
T [  x ( t i ) ,  x ( t f ) ] .  Assume that E(t)  = 1 (or - 1) for t i  I t I t* 
I t,. We wish to show that there exists a t* such that 

The optimal inputs in this case are therefore * 1, correspond- 
ing to whether a zero or one is the current source bit, for the 
fixed duration to (“bit-by-bit” or “binary” signaling). Theo- 
rem 2 implies that for the impulse response (3.3), 

t* + T [  x ( t * ) ,  x ( t , ) ]  = t, - t i .  (3.2) where 

The inverse of the right-hand side is the time it takes to transmit 
one bit. 

So far, the impulse response (3.3) is the only nontrivial 
example for which T-( N ,  d) can be explicitly computed for all 
N and d. For the class of functions h defined in the next 
Theorem, however, it is possible to compute T-(N, d )  for 
N I ~ .  

Theorem 3: If h is an integrable, nonincreasing function 
defined for t 2 0, then 

T,,(4, d )  = 2 to( d ) ,  ( 3 4  

T ( x i ,  x,) is a continuous function of x i  (see [5, Section 6-7), 
which implies that T [  x(  t*), x(  t,)] is a continuous function of 
t*. Consequently, a t* which satisfies (3.2) exists by the inter- 
mediate value theorem. Furthermore, for t* I t I t,, ii(t) 
becomes the minimum time control that drives the state from 
x ( t * )  to x(t,). The lemma therefore follows from Theorem 6-8 
in [5] (and the following discussion), which gives the number of 

0 
Proof of Theorem I :  Let u , ( t ) ; * . ,  u,(t) be a solution 

to P2), and assume that at time t i j ,  I yi( t i j )  - y,(tij) I 2 d.  
Without loss of generality, pick t l j  so that t , ,  = 0 I I,, I 
* - I t,,. Associated with u l ( t )  is therefore the sequence of 
states x,( t,,), - , x,( t , , ) .  Lemma 3 implies that there exists 
an input El( t), which switches between + 1 and - 1 during each 
interval ( t l , j - l ,  tit>, j = 2;.*, N, such that the same se- 
quence of states wlll be visited if u, ( t )  is replaced by iil(t). 
Replacing each input u j ( t )  by an input i i j  in this manner 
guarantees that I h * iii( t i j )  - h * E j (  t i j )  I L d, which gives the 
result. 0 

Notice that the preceding proof and Lemma 3 imply that if the 
eigenvalues of A are negative real, then there exists a solution 
to €2) such that the magnitude of each input is one for all 
0 I t I T ,  and each input changes sign a maximum of (N - 
l)(n - 1) times. 

times the minimum time control changes sign. 

Consider now the specific impulse response 

d 
2 

to(@ 
h ( t )  dt = - .  (3.7) 

By taking a! = 0, it is apparent that Theorem 2 also applies to 
the integrator impulse response h( t )  = a where a is a constant 
and to = I d /2 a I . This observation is used to derive the follow- 
ing upper bound on MCT in terms of the total variation of the 
channel impulse response. 

Theorem 4: Assume that h ( . )  is differentiable on (0, a), and 
let K denote the total variation of h, that is, K = I h(0) I + 
10” I dh / d t  I dt. Then the MCT of a channel with impulse 
response h satisfies 

1 2 K  
I M C T ( ~ )  I - 

t O ( 4  d 

where to(d) is any time such that 

(3.9) 

Proof: To derive the lower bound let 

and u2( t )  = - ul ( t ) .  Then we have 

h ( t )  = AeWat (3.3) 

where a! > 0, and assume that the number of messages N and 

so that 11 y ,  - y ,  11 2 d .  It follows that (log 
N-[t,(d)])/t,(d) 2 l / to (d)  (in fact equality must hold), so 
of course MCT L 1 / to( d). 

channel with impulse response of total variation K must be less 
than the MCT of a channel with impulse response h( t )  = K .  

the discrimination d are fixed. Let bjk be the kth digit in the 
binary expansion of the integer j representing message j ,  0 I j 
I N - 1 where “0” is replaced by “- 1,” and k I 

Forexample,ifN=j=5,then{b5,,b, , ,b, ,}  = (1, - l , l } .  
iiO!h the smallest integer greater than Or equal to log, N. The upper bound is established by showing that the MCT of a 

Theorem 2: A solution to €9) is given by 

u j ( t )  = bjk, ( k  - l ) t o  I t < kt,, (3.4a) The fact that bit-by-bit signaling, as-defined in Theorem 2, is 
optimal for h( t )  = K then completes the proof. 

Let u , ( t ) ; * - ,  u N ( t )  be a solution to Problem P2) for a where 
1 channel having impise response h( t ) .  We define the ijth sam- 

(3.4’) pling time as 

and 1 I k I [log, NI. t i j  = min { I ,  such that 11 y i  - yjll = d}. (3.12) 
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For fixed N there are N(N - 1)/2 sampling times; however, 
many sampling times may coincide. Let tr , 1 = 1, , L ,  be the 
distinct sampling times in ascending order where L 5 N(N - 
1)/2. Set to = 0. For i = 1, * - e ,  N define 

Since the total variation of h is K and (1 U ;  1) I 1, we have 
1 y i ( t )  - y,(s)  1 I K 1 t - s 1 .  Hence, the signals U; defined 
above satisfy )I uiII I 1. Furthermore, if we let J j  = K * U;, 
then yi( tr)  = ~ ( t , ) ,  from which it follows that 

min 11 K * U; - K *ujll  L d .  (3.14) 
i+j 

Thus for each T ,  N,,(T) for the channel with impulse re- 
sponse K is at least as big as N-(T) for the channel with 
impulse response h. It follows that the MCT for the channel 
with impulse response K is at least as big as the MCT for the 

0 
The lower bound on MCT becomes equality when the impulse 

response is a single exponential, and the upper bound becomes 
equality when the impulse response is a constant. Evaluating K 
for h ( t )  = e-' gives 

channel with impulse response h. 

1 4 

l n ( l  - d/2)  d 
- = MCT(d) 5 -. (3.15) 

As d + 0, the MCT approaches 2 / d ,  so that the upper bound is 
twice the lower bound in this case. Both the lower and upper 
bounds on MCT presented in Theorem 4 have been improved 
recently [6]. 

IV. OPEN ISSUES 
Problems Pl)-P3) remain unsolved except for the specific 

case mentioned in Section 111. One conjecture is that bit-by-bit 
signaling, as described in Theorem 2, is the solution for the class 
of impulse responses defined in Theorem 3. 

All solutions to Pl)-P3) may require that the inputs switch 
instantaneously between 1 and - 1, or vice versa. Since this is 
impractical, it is of interest to reconsider Pl)-P3) with addi- 
tional constraints placed on the inputs U ;( t ) .  For instance, the 
magnitude of the derivatives of the inputs might be constrained. 

Problems PI)-P3) are easily generalized to the case where 
data is to be transmitted over multiple coupled channels. In this 
case the channel impulse response is a matrix, H( t ) ,  the ( i ,  j)th 
entry being the output of channel j when an impulse is applied 
to channel i .  The problem is then to design the maximum 
number of vector inputs ul( t ) ;  - e ,  uN( t ) ,  each having M 
elements where M is the number of channels, in a given time 
interval [0, TI so that IIH*u,( t )  - H * u j ( t ) ( l T ?  d ,  i # j .  
Then Lm norm of a continuous vector time function on the 
interval [0, TI is 11 x( t) (1 = supj, s t  I xi( t) I where xi( t )  
is the j th  component of x ( t ) .  An interesting question is how 
does the MCT behave as a function of cross-coupling between 
channels? 

APPENDIX 

PROOFS OF THEOREMS 2 AND 3 
Proof of Theorem 2: Let S = [O,m) x W denote the 

state space corresponding to a single control U. A member 
( f ,  y) of S will be called a state and corresponds to an output 
value y = h * U at time t where h ( t )  = Ae-"'. Given two 

states ( to ,  yo)  and ( t , ,  yl) with to 5 t , ,  we will say that 
( t , ,  y , )  is reachable from ( to ,  yo)  if there exists an input u 
such that I U I I 1, y( to)  = yo and y ( t l )  = y , .  All the states 
reachable from a given state (t ,  y )  will denoted by R ( t , y ) .  
Note that R( t :y ,  C R , ,  for any state (t ,  y) reachable from 
(0,O). R(o,o) is also sometimes called the set of all reachable 
states. 

Lemma A.Z: Let (0,O) = ( t o , ~ o ) , ( ~ , , y l ) , ~ ~ ~ , ( ~ , , ~ , )  be 
a sequence of states such that to I t ,  5 I t, and 
(ti+,, yi+,) is reachable from (ti, y; )  for i = O;.., n - 1. 
Then there exists an input U ,  I U 1 I 1, such that the output 
y ( t i )  = y;  for i = l;.., n. 

Proof: This follows immediately from considering the dif- 
ferential equation satisfied by the output: d y / d t  + a y  = U. 0 
For notational convenience we will denote /: h(s) ds as h * l ( t ) .  

Lemma A2: R , ,  = { ( t ,  y )  I - h * U t )  5 y I h * l(t)}. 
Hence, the set of all reachable states is bounded above by h * 1 

Proof: This follows directly from the fact that h is non- 
negative and the inputs are constrained to be at most 1 in 
absolute value. 0 
Let x [ ~ , ~ )  denote the characteristic function of the interval 
[ a ,  b), i.e. 

andbelowby - h * l .  

Lemma A.3: Suppose that yo  = h * l(to). Then 

A similar result holds for the case yo  = - h * 
Proof: The two inputs ~1 = x[o , tO)  + x[to ,m)  and uz  = 

x[o, to) - xLro, m) both pass through the state ( t o ,  Y O ) ,  and 
intermediate state between y1  and y 2  can be obtained bY 
considering the input U( t) = xr0, to) + kttto, m) for - 1 5 5 

0 + 1. 
Given a discrimination d > 0, define the time to as the 

minimum for which h * l(fo) = d/2 .  We now define two sets of 
States and Ld as 

{ ( t , y ) l  - h * l ( t )  + d I y I h * l ( t ) }  (A.3a) 

L d =  { ( t , y ) I  - h * l ( t ) ~ y ~ h * l ( t ) - d } .  (A.3b) 

Lemma A.4: Let U,, uz be two inputs with 1 U, I ,  1 u2 I I 1. 
If at some time t > 0, h * ul ( t )  - h * u2( t )  = d,  then 

Proof: Just note that the two states involved are reachable 
and so Lemma A.2 applies. The necessary inequalities directly 
follow. 0 

By making the substitution u1 = + 1 and uz = - 1, Lemma 
A.4 says that ( t o ,  d/2) E and ( t o ,  - d/2)  ELd. Moreover, 
it is clear that to is the earliest time for any state in or Ld. 

and R(to, d f2 )  are just mrror images of 

R(to ,d /2) .  By Lemma A.3, we only need to show that ud is 
contained in the set on the right side of (A.2). Hence, given 

( t , h * u , ( t ) ) E U d a n d ( t , h * u , ( t ) ) E L d .  

Lemma A.5: R ( t o , d / 2 )  and Ld R(to,.-d/2).. 

Ld and R(fo, - d / 2 ) ,  reSpeCtiVely, W e  shall Only Show 
Proof: Since 

c 

- h * l ( t )  + d ~ y ~ h * l ( t ) ,  (A.4) 

1 
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we need to show Proof: Let g be any other solution. Then 

writing l f g  = /Afg + JAc fg  where AC denotes the comple- 
ment of A ,  we have Since X [ O , ~ ~ )  +.X[to,m) 1, the right inequality of ( A 3  is 

immediately satnfied. The left inequality will be satisfied if we 

IAf(l - g >  I J f g .  (A.9) 
can show 

A C  
h * ( X [ o , t o ) - X [ t o , m ) ) ( t ) ~  - h * W  +d9 t l t o .  ( A 4  

Adding h * 1( t) to both sides and writing 1 = xr0, to) + xrt0, m), whence 1 X A  I 1 g .  
On A ,  f 2 c whereas on A', f I c. Thus, /A 1 - g I lAc g 

0 
As an immediate corollary, we have the following. 
Lemma A.9: Let h be a nonnegative, nonincreasing impulse 

response, u a nonnegative input, and d > 0 a discrimination. If 

we are reduced to showing 

2h*X[o,t0)(f)  I d ,  t 2  t o .  (A*7) 

This, however, always holds since h is nonincreasing and to 
0 

Lemma A.6: Let {U;} be inputs and { t i j }  be sampling times, 
defined by (3.12), with respect to a discrimination d > 0. Let to 
be determined by the equation h * 1( to) = d / 2 .  Then there exist 
inputs { i i ; }  such that 

a) on the interval [0, to], the inputs iii are constant, assuming 
the value of either + 1 or - 1, 

b) there exist two indexes i, j such that 1 h* iii(to) - 
h * ii,( to) I = d ,  and 

c) h*i i i ( t i , )  = h*ui( t j j ) forevery i , j .  

was chosen such that h * 1( to) = d / 2 .  

Proof: Let ti denote the first sampling time for input ui. 
Note that t i  2 to. At time ti, the output h * ui is separated from 
another output by d ,  so by Lemma A.4, the first sampling state 
( t i ,  h * #,( t i ) )  is either in or Ld (or possibly both). If it is in 
U,, then by Lemmas A.l and A S  we can replace U ;  by an input 
which is + 1 on the interval [0, to] and still have it pass through 
all of the sampling states associated with ui. A similar result 
follows if the first sampling state is in Ld. Consequently, 
conditions a) and c) can be satisfied. Condition b) can easily be 
met if we just choose one of the replacements to be + 1 on the 
interval [0, to]  and another to be - 1 on that same interval. 0 

Lemma A.7: A solution to Problems Pl)-P3) for the case 
h( t )  = Ae-*' is given by bit-by-bit signaling. 

Proof: Clearly the result is true when the number of inputs 
is one or two. Assume the result holds when the number of 
inputs is n or less. Given an optimal solution for n + 1 inputs, 
Lemma A.6 says that there exists another solution in which the 
inputs split up into two groups: those which are +1 on the 
interval [0, to] and those which are - 1. Moreover, neither of 
these two groups are empty. At time to,  the first group has 
separated from the second group so all that has to be done is the 
separation of inputs within each group. Since on the interval 
[0, to] the inputs in a given group are the same, the way they 
separate on [ t o ,  001 must itself be optimal. Hence, by the 
induction hypothesis, we can assume this is bit-by-bit signaling. 
Finally, noting that making the number of inputs in each of the 
two groups as close as possible minimizes the total separation 

Proof of Theorem 3: The proof relies upon the following 
Lemma. 

Lemma A.8: Let f be a nonnegative, integrable function 
and I a real number, 0 < I s  1 f. Consider the problem of 
minimizing 1 g subject to 1 fg  2 I and 0 I g I 1. Suppose 
that A is a set of the form f '((c, 031) U B where B C f ' ( c )  
for some real number c. Further, suppose that /A f = I .  Then 
x A  is an optimal solution to this problem in the sense that if g is 
another such solution, then / g 2 1 x A .  

time completes the proof. 0 

to is the minimum for which h * 1( to) = d / 2 ,  and h * U( to) 2 
d / 2 ,  then Jg fo  u( t )  dt 2 to. 

Proof: Just note the set [0, to] is of the form h-'((c ,  031) 
U B where B C h-'(c)  for some real number c. Hence Lemma 
A.8 applies. 0 

From now on, let h, d ,  and t be as described in Lemma A.9. 
Also, let U+ denote the function max (U, 0) and u- denote the 
function - min (U, 0). One then has that both u+ and u- are 
nonnegative functions and U = u+- U-. 

Lemma A.10: Let U, and up be two inputs such that at time 
to, h * #*(to) - h * #,(to) 1 d .  Then /$ [(U1 - up  /2) ]+  dt 1 
to. Furthermore, the function U = [(U, - up /2) ]+  is nonnega- 
tive and bounded by 1. 

Proof: Apply Lemma A.9 to the function U = [(U, - 
up /2) ]+ .  Note that since u,  and u2 are bounded in absolute 

0 
To prove Theorem 3 it suffices to show that Tm,(3, d )  = 2t0 

where to is determined by (3.7). This is because T-(N, d )  is a 
nondecreasing function of N, and a set of three inputs that 
achieves T- = 2t0 is 

(A.lOa) 

value by 1, u is bounded by 1. 

u , ( t )  = - u 3 ( t )  = 1, 0 I t I to 

O I t C t ,  (A. lob) 
t 0 I  t < 2 t o '  U&) = 

Adding the fourth input u4( t )  = - u3(t)  gives T-(4, d )  = 

Lemma A.11: Let {Ui}, i = l;.., N, be a solution to P2) 
for N 2 3 .  Then there exist three inputs u l ,  u2 ,  u3 and two 
times I , ,  t2 such that h * u,(r, )  - h * u,(t,) = d and h * u2(t,) 

Proof: Let { ti,} be the set of sampling times for the { ui} . 
Consider the matrix A in which the element A ,  is + 1 if 
h * ui( ti,) > h * uj( t i j )  and - 1 otherwise. The diagonal ele- 
ments are not important. Clearly, A is antisymmetric. For a 
group of three or more inputs,,it is easy to see by inspection that 
it is impossible for all the rows of A to be only + 1 or only - 1. 
Hence, there exists a row which has both + 1 and - 1 elements. 
Consequently, there exists an output which at one sampling time 
is greater than the output it is separating from, and at another 
sampling time is less, which is what we wanted to show. 0 

Lemma A.10 and A . l l  imply that for any set U,, u p ,  u3 that 
is a solution to P2) for N = 3, 

T - 0 9 4 .  

- h * ~ 3 ( t p )  = d .  

(A. l l )  

Extending both integrals to T = max ( t , ,  f2) and adding them 
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yields 

We now argue that the integrand is always non-negative and not 
more than 1. At every time between 0 and T ,  either both terms 
are zero, exactly one is nonzero or both are nonzero. In the first 
two cases, clearly the integrand is bounded above by 1. In the 
last case, u l ( t )  L u Z ( t )  L u3(t) ,  and so the integrand collapses 
to (U, - u3 /2) 2 0 which is at most 1. Thus, 2t, I T I 

0 T-(3, d), (U, - u3)/2 which establishes Theorem 3 .  
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