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Optimization of Signal Sets for Partial-Response 
Channels-Part 11: Asymptotic Coding Gain 

Michael L. Honig, Member, IEEE 

Abstract -For a linear, time-invariant, discrete-time channel 
with transfer function H(f), and information rate R bits/T, 
where T is the symbol interval, an optimal signal set of length K 
is defined to be a set of 2RK inputs of length K that maximizes 
the minimum 1, distance between pairs of outputs. This paper 
studies the minimum distance between outputs, or equivalently, 
the coding gain of optimal signal sets as K +m. For large K 
this coding gain, relative to single-step detection, can approxi- 
mately be decomposed into the coding gain of an optimal signal 
set of length K for the identity channel, plus the gain of a 
“baseline” coding scheme for the channel H(f). The baseline 
signal set is selected from the multidimensional integer lattice, 
where the basis vectors of the space are taken to be the eigenvec- 
tors of H‘H, and H is the Toeplitz matrix that maps channel 
inputs to channel outputs. The coding gain of the baseline 
scheme can be computed explicitly as K +CO in terms of IH(f)l  
and R. The minimum distance between channel outputs for 
optimal signal sets as K --$ m is determined by the €-rate of the 
channel. Existing upper and lower bounds on the e-rate are 
used to compute bounds on the maximum asymptotic coding 
gains achievable for some partial response channels. These 
asymptotic coding gains are compared with the coding gains 
corresponding to signal sets found by numerical optimization 
techniques. A comparison of bounds on r-rates for the identity 
and 1 - D channels indicates that for a given large K, the 
squared minimum distance of an optimal signal set for the 
1 - D channel is 2 dB more than the squared minimum distance 
of an optimal signal set for the identity channel at a rate of 1 
bit/ T. For rates greater than 2 bits/ T, however, this compari- 
son indicates that optimal signal sets of length K for these two 
channels have nearly the same minimum distance. 

Index Terms -Coding, partial-response channels, intersymbol 
interference, c -rate, multidimensional signal sets. 

I. INTRODUCTION 
IVEN an arbitrary channel that maps inputs to G outputs, the objective in I ,  / I 2  signal design [ l l  is to 

construct N inputs of length K ,  where the inputs are 
bounded in I,, to maximize the minimum I, distance 
between pairs of channel outputs. Motivation for this type 
of signal design arises from situations where it is difficult 
to characterize additive noise, or disturbances, to the 
received signal statistically, but it is safe to assume that 
these disturbances are bounded almost surely in I,. Here 
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we consider only channels that can be accurately modeled 
as linear, time-invariant, discrete-time systems. In Part I 
of this paper [l], numerical techniques for finding locally 
optimal solutions to the I ,  / I 2  signal design problem were 
presented and used to find good signal sets, or codes, for 
the identity, 1 - D ,  and 1 - D2 channels. Here, we study 
the maximum achievable minimum distance between 
channel outputs for large input lengths K.  

It was shown in [ l ]  that the I ,  / I 2  signal design problem 
with N inputs of length K < N is equivalent to packing 
N points in an ellipsoid in R K  to maximize the minimum 
Euclidean distance between pairs of points. Each point 
corresponds to one of the N channel outputs and the 
collection of points is referred to as the “output signal 
constellation.” The axes of the ellipsoid are coincident 
with the orthogonal eigenvectors of the channel linear 
operator, and the lengths of the axes are the correspond- 
ing singular values. Strictly speaking, this interpretation 
applies only to the hard input constraint (HIC) problem, 
in which each of the N inputs is assumed to be bounded 
in I ,  norm. For moderate to large input rates (i.e., L 2 
bits/ T ) ,  however, this interpretation also applies to the 
soft input constraint (SIC) problem, in which the average 
I ,  norm over the entire input signal set is bounded. 

In Section 11, after reviewing notation in Section 11, we 
show how to estimate the coding gain, relative to single- 
step detection, of an optimal signal set of length K when 
K is large. This coding gain can be decomposed into two 
additive components. The first component is the gain of 
the optimal signal set relative to a K-dimensional signal 
constellation constructed from the integer (cubic) lattice 
[2] within a cube. The second component is the gain of 
this “cubic,” or baseline signal constellation, where the 
basis vectors of the signal space are taken to be the 
channel eigenvectors, relative to single-step detection. 
The latter gain depends only on the channel transfer 
function and information rate, and can be explicitly com- 
puted. For large information rates R, nearly optimal 
signal sets can be constructed from dense lattices [l]. The 
former gain can therefore be decomposed further into the 
gain due to the dense lattice, plus the shaping gain 
obtained by selecting the input constellation points from 
within the sphere rather than the cube [21-[61. The spec- 

Sciences and Systems, Princeton University, Princeton, NJ, March 1990. 
The author is with Bellcore, Room MRE 2L-343, 445 South Street, 

Morristown, NJ 07960-0910. 

trum of the baseline constellation is also computed as 
K +CO, and for large R is shown to be approximately 
constant over a subset of the channel bandwidth. IEEE Log Number 9101605. 
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In Section IV, the numerical results in [ll, consisting of 
coding gains for different rates and input lengths, are 
compared to upper and lower bounds on e ra t e  171, [8], 
which for a linear, time-invariant channel and given infor- 
mation rate specifies the maximum achievable minimum 
distance of a signal set, or coding gain, as K + m. It is 
shown that the bounds on e ra te  given in [7]-[101, which 
assume the HIC, also apply to e ra t e  assuming the SIC; 
however, an open question is whether or not e r a t e  as- 
suming the HIC is always equal to e ra te  assuming the 
SIC. 

A comparison of €-rates is given for the identity, 1 - D, 
and 1 - D 2  channels. For a required minimum distance 
between outputs, this comparison indicates that longer 
codes are needed for the identity channel at low rates 
(i.e., at 1 bit/ T ) ,  but that at high rates (i.e., 2 bits/ T or 
more) the lengths of optimal signal sets that achieve a 
given minimum distance for these channels are nearly the 
same. This conclusion depends, however, on how the 
channels are normalized. That is, if the PR channels are 
normalized by the energy in the impulse response, then 
codes for PR channels must be longer than codes de- 
signed for the identity channel. Plots showing bounds on 
maximum achievable coding gain divided by input length, 
as K +a, vs. information rate are also shown for the 
preceding PR channels. 

11. NOTATION 
Given an input vector U ,  the channel output is 

y = H u ,  (2.1) 
where H is the convolution matrix formed from the 
channel impulse response h [ k ] .  It is assumed that h[k] = 0 
for k < 0 and k > 7 -1, where 7 <CO, and that Ih[kll <m 

for k = 0; * -,7 - 1. If the input in (2.1) has length K ,  
then H is a ( K  + T - l ) x  K matrix, and y has dimension 
K + T - - l .  

Given a set of inputs ui, i =  l ; . . ,N,  then the mini- 
mum distance between pairs of outputs is 

d = min 11 H (  ui - u j )  11, 
i # j  

where the norm is the 1, (Euclidean) norm evaluated over 
the time interval [ l ,  K + 7 - 11. Since H’H is symmetric 
and Toeplitz, we can write 

H’H = (DAW, (2.3) 
where @ is the K X K orthonormal matrix whose columns 
are eigenvectors of H ’ H ,  and 

A = diag [ A,, A,; , A K ] ,  (2.4) 
where A,, k = l ; * . , K ,  are the eigenvalues of H‘H,  
assumed to be arranged in nonincreasing order. We as- 
sume that H‘H is nonsingular, so that these eigenvalues 
are real and strictly positive. 

Letting iii = W u i ,  then d can be rewritten as 

The objective in l , / l ,  signal design is to maximize d 
subject to the hard input constraint (HIC), 

1 1 ~ ~ 1 1 ~  = llii,112 I P K ,  i = 1,.  * . , N ,  (2.6) 
where P is the average transmitted power. We also con- 
sider the more conventional soft input constraint (SIC), 

1 N  
- I1ii,1I2 5 PK. (2.7) 
N , = l  

A set of N vectors ii,,. . e ,  C, will be referred to as the 
“input signal constellation.” The set of vectors y’, = A1l2Zi,, 
i = 1,. . a ,  N ,  will be referred to as the “output signal 
constellation,” and “signal constellation’’ will be used 
when a specific reference to input or output points is 
unnecessary. If the fir’s are within a sphere of radius r in 
K dimensions, then the output signal constellation is 
bounded by an ellipsoid with axes having lengths 
rA\/’; * . , rA‘,/,. 

Given any signal constellation, its coding gain is de- 
fined as 

in dB, where d,, and Pss are the minimum distance and 
average power, respectively, assuming single-step detec- 
tion. Single-step detection refers to a one-dimensional, 
multilevel signaling scheme in which the receiver makes a 
decision on a (scalar) transmitted symbol based on a 
single channel output. In this case the normalized squared 
distance between outputs is 

d:s 12a2 
_=-  
P,, 4 R - 1 7  

where R is the information rate in bits/ T ,  1/ T being the 
symbol rate, and a is the ratio of the minimum distance 
between any two possible outputs at a particular time to 
the spacing between input levels. For the 1- D and 
1 - D 2  channels a = 1. 

Strictly speaking, (2.9) makes sense only when R = 

log, L, where L is a positive integer representing the 
number of levels that can be transmitted at each symbol 
interval. However, we will use (2.9) to compute the coding 
gain of signal sets at arbitrary values of R ,  which may 
correspond to noninteger values of L. 

It is also of interest to compare the performance of 
coding schemes with that of a system with an ideal deci- 
sion feedback equalizer (DFE). That is, the transmitter 
again transmits one of L > 2 uniformly spaced levels per 
baud ( T ) ,  but the receiver now makes a decision on the 
(scalar) output of an ideal DFE, which is assumed to 
eliminate intersymbol interference caused by the channel 
impulse response coefficients h[kl ,  k # 0. In this case the 
ratio of minimum distance between two possible outputs 
to the spacing between input levels is h[O]. Note that h[O] 
can be substituted for a in (2.9) to give the normalized 
minimum distance as a function of R. For the PR chan- 
nels used to generate numerical results in this paper 
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a = h[01= 1, so that for these PR channels (2.9) also 
applies to the ideal DFE system just described. Conse- 
quently, the computed coding gains that appear in the 
paper are with respect to either single-step detection or 
the ideal DFE system. 

111. A BASELINE SIGNAL CONSTELLATION (BSC) 
In this section we estimate the coding gain, relative to 

single-step detection, of an input signal constellation ob- 
tained by selecting points from a scaled dense lattice 
within a sphere. This estimate can be accomplished in two 
steps, namely, first compute the gain of the signal constel- 
lation with respect to a baseline signal constellation (BSC), 
and then the gain of the BSC with respect to single-step 
detection. The BSC is defined so that for large R,  the 
gain in the first step can be partitioned into the gain due 
to the dense lattice, plus the shaping gain obtained from 
selecting the points in the input space from within the 
sphere rather than the cube, which has been studied 
elsewhere [2]-[61. As pointed out in [l], and in i l l] ,  a 
trellis code can be defined with respect to an output 
signal constellation, as defined here. The coding gain of 
the trellis code is then added to the gain of the signal 
constellation. We add that computations of coding gains 
for PR channels, assuming different coding schemes from 
the one considered here, also appear in [ l l l  and [121. 

To motivate the choice of BSC consider first the iden- 
tity channel. The baseline signaling scheme for this chan- 
nel to which coding schemes are typically compared is 
multilevel signaling, in which a transmitted symbol at 
each time instant is chosen independently from a set of 
uniformly spaced, discrete levels centered at the origin. A 
block of M transmitted symbols therefore corresponds to 
a point selected from a section of an M-dimensional 
integer lattice, which is bounded by a cube, and is cen- 
tered at the origin. 

To generalize this to PR channels, consider the same 
constellation, where the basis vectors of the signal space 
are taken to be the channel eigenvectors. That is, each 
constellation point corresponds to an input vector C,. If 
the input set {C,) lies within the unit cube in R", then the 
output signal constellation { j , ]  lies within a rectangular 
parallelepiped in R". Notice also that if the input points 
are uniformly spaced with minimum distance d along 
each axis, then the outputs are uniformly spaced along 
the ith axis with minimum distance A',/2d. What is de- 
sired, however, is that the output signal constellation be 
uniformly spaced along each axis with the same minimum 
distance. Consequently, the input signal constellation must 
be uniformly spaced along each axis, but the ratio of 
minimum distance between points, or signal levels, along 
the ith axis relative to the minimum distance between 
points along the first axis must be ( A l / A z ) 1 / 2 .  Alterna- 
tively, the density of points along the ith axis relative to 
the density of points along the first axis is ( A , / A l ) 1 / 2 .  
More signal levels, or bits, are therefore allocated to 
those dimensions associated with larger eigenvalues. 

The input BSC is therefore obtained from the integer 
lattice by "stretching" the ith dimension by the factor 
( A ,  /A,)'12. The maximum magnitude of each coordinate, 
or signal level, is assumed to be less than or equal to 
A/2. The input BSC is therefore bounded by a cube of 
length A on each side, and centered at the origin. Note, 
however, that if p1 is the number of points along the first 
axis, associated with A,, then the number of points along 
the ith axis should be (A,  /A1)l12pl, which is generally not 
an integer. 

To ensure that an integer number of points are as- 
signed to each dimension, the input BSC is defined as 
follows. We start with the stretched integer lattice, as 
previously defined. Next, select p1 to be some positive 
integer greater than or equal to two. The choice of p, 
determines the rate in bits/ T ,  as will be seen shortly. The 
number of points along the ith axis is then defined to be 
p, = [(A, /A1)'/2p1], provided that this number is not less 
than two, where 1x1 is the greatest integer less than or 
equal to x .  If ( A ,  /A,)1/2pl < 2, then pz = 0, implying that 
this dimension is not used. Finally, the entire constella- 
tion is scaled to satisfy the average energy constraint. 

As defined, the input BSC lies within a cube in R", 
n I K ,  centered at the origin, with side lengths equal to 
A = ( p l  - 1)d/A:l2. This is because p1 uniformly spaced 
points along a line with minimum distance 5 results in a 
distance of ( p l  - 115 between the furthest points, and the 
minimum distance between the points along the ith axis 
in the input BSC is d/A',/'. The output BSC is therefore 
a section of the integer lattice with minimum distance d 
that is contained within a parallelepiped centered at the 
origin, where the length of the side along the ith axis is 
AA',/2. The definition of p, implies that the length of this 
ith side when i # 1 is generally greater than d(p, - l), the 
distance between furthest points along the ith axis. Note, 
however, that any point in the integer lattice that is not in 
the output BSC must lie outside of this parallelepiped. 

By definition, p,  = 0, if and only if AA, < d. That is, a 
dimension is "discarded," if and only if A,  is small enough 
so that two points separated by A in the input constella- 
tion along the ith axis are less than d apart in the output 
space. Since the A,'s are nonincreasing with i, p ,  = 0 
therefore implies that p k  = 0, for k > n. That is, [CL]k = 0 
for n I k I K ,  and each i = 1,. . ., N .  We later show that 
this causes the transmitted energy, as K .-+a, to be con- 
centrated in a subset of the frequency band [0,1] where 
the channel attenuation is relatively small. 

For fixed K ,  the total number of points in the BSC is 

n 

N =  n P A W ,  (3.la) 
k = l  

where 

n = max [ k :  p,( ? ) ' I 2  2 21, (3.lb) 
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and is also a function of K.  The information rate 
(log, N ) / K  is therefore determined solely by p1 and the 
channel matrix H .  In general, this rate will be some 
irrational number. However, for large K ,  p1 can be 
selected so that the resulting rate is close to some desired 
rate, and a small number of points can subsequently be 
added to or deleted from the BSC to achieve the desired 
rate without significantly changing the coding gain. 

Another way to define a BSC is to fix p ,  for some i, 
and define p,  = [ p l ( A , / A , ) 1 / 2 ] ,  for all j such that p, 2 2. 
The total number of points for a particular K ,  as given by 
(3.11, and the coding gain would then depend on i. 
However, for channels of interest this dependence will 
diminish as p1 increases. One can also compute an ap- 
proximation to the coding gain of a BSC by allowing 
noninteger values of p , .  That is, one could approximate 
p l  = (A,  /Al)1’2pl. As will be seen, however, it is relatively 
simple to compute numerically the coding gain of the 
BSC previously defined without using this type of approx- 
imation. 

We now compare the BSC just defined with the con- 
stellations proposed for vector coding [ll]. In both cases, 
the constellations are taken from the integer lattice, where 
the basis vectors of the space are the eigenvectors of 
H’H. In vector coding, however, the number of points 
along each dimension ( p ,  for 1 I i I K )  is constrained to 
be a power of two, or zero. (For specific values of K ,  this 
is necessary if one is to use the constellation with known 
multidimensional trellis codes, such as those listed in [41.) 
The number of bits allocated to each dimension (log, p , ,  
i = 1,. . *, K )  is then selected to minimize a cost function 
that approximates the average energy of the signal set. 
This type of optimization therefore imposes a more spher- 
ical shape on the boundary of the input constellation, as 
compared with the cubic shape of the input BSC defined 
here. 

The BSC can be used to estimate the coding gain of 
optimal signal sets for large K.  One attractive property of 
the BSC is that the average energy of the BSC can be 
computed explicitly as a function of p l ,  assuming fixed 
minimum distance d between channel outputs. As K + m, 
this average energy is easily evaluated in terms of the 
channel frequency response, and can be used to compute 
asymptotic coding gains of the BSC relative to single-step 
detection. This is in contrast to the computation of coding 
gain performed in [ll],  which relies on the approxima- 
tion that the signal points are continuously distributed 
throughout the interior of the boundary region (see also 
[51). This “continuous” approximation becomes inaccu- 
rate at low rates (i.e., R I 1 bit/ T ) .  

A. Decomposition of Coding Gain 

For a given PR channel let (d2/P)pR-ssD and 
(d2/P)pR-oss(K) denote normalized squared minimum 
distances for single-step detection (i.e., (2.9)), and an 

optimal signal set of length K ,  respectively. Then 

( 3 4  

where BSC ( K )  refers to the BSC of length K.  The ratio 
to the far right can be computed explicitly. The middle 
ratio is the additional coding gain that can be obtained 
relative to the BSC. For example, one way to achieve 
additional coding gain is to use a dense lattice, “stretched” 
in each dimension by (A,  /A,)’/,, and to shape the input 
signal constellation so that the points are uniformly dis- 
tributed throughout a sphere, which has the least average 
energy for fixed volume of any region. The gain due to 
selecting the input constellation points from within a 
sphere rather than a cube can be estimated by using the 
“continuous” approximation just described [5]. This gain 
approaches 1.53 dB from below as the number of dimen- 
sions increases to infinity. Techniques for achieving sub- 
stantial shaping gains for moderate K are given in [61, and 
can also be applied to the BSC defined here. 

Assume, then, that the coding gain of an optimal signal 
set of length K is accurately approximated by the coding 
gain of a constellation consisting of points from the dens- 
est lattice within a sphere in R K ,  scaled appropriately in 
each dimension. This was observed in [l], where signal 
sets obtained from scaled lattice constructions were often 
found to be nearly as good, if not better, as signal sets 
obtained from a gradient search algorithm. The resulting 
signal constellation will generally span m < K dimensions 
[l]; however, we assume that starting with a K-dimen- 
sional lattice, rather than an m-dimensional lattice, is 
nearly optimal. As R increases, it can be shown by using a 
volume argument that m increases to K.  (See [l] and 
Section IV of this paper.) Since the BSC is based on the 
scaled K-dimensional integer lattice, the middle ratio in 
(3.2) can be approximated as the gain of the densest 
K-dimensional lattice relative to the K-dimensional inte- 
ger lattice, plus the shaping gain in K dimensions. Ac- 
cording to our previous assumption, this is approximately 
the coding gain of an optimal signal set of length K for 
the identity channel. We, therefore, rewrite (3.2); as 

~ G P R - O S S ( K )  E CGID-oss(K) + CGBsc(K), (3.3) 

where CG,D-OSS(K) is the coding gain of an optimal 
signal set of length K for the identity channel, and the 
other terms are defined in the obvious way. 

Although the validity of (3.3) has been argued only for 
the case of large R,  the numerical results in this section 
and the next suggest that (3.3) is accurate for moderate 
values of R as well (i.e., R 2 1 bit/ T ) .  For large K it will 
be convenient to approximate the right-most term in (3.3) 
by the asymptotic gain lim, -tm CGBsC(,, = CG&, which 
is easily computed given the channel transfer function 
H( f ). Numerical results in the next section indicate that 
this approximation is accurate for K 2 10. 
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B. Asymptotic Coding Gain 

respect to single-step detection as K +W. From (3.1) the 
asymptotic rate as a function of d is 

distance si is 

We now compute the coding gain of the BSC with sz Ei = -pi(  p;  - 1). 
12 

Consequently, the total energy of the BSC is 

1 "  

= K - m  lim {A K i = l  2 log2[pl( :)'I21) bits/T, (3.4) 

where n ( K )  is given by (3.lb). Throughout this paper, the 
superscript "* " indicates that the associated variable is 
defined by letting K +W.  

To compute R* for fixed p1 we apply Szego's theorem 
regarding the asymptotic distribution of eigenvalues of a 
Toeplitz matrix [131. This theorem states that for any 
continuous function F ( x ) ,  

(3.10) 

The energy per point is therefore 

where the fact that ( f  = d 2 / A i  has been used. Since the 
summand is a piecewise continuous function of A,, * * . , A,,, 
and uniformly bounded for all K ,  we can again apply 
Szego's theorem to get an expression for the asymptotic 
transmitted power, 

where A,( K ) , .  * *,  A,(K) are the eigenvalues of H'H at p* = lim E t o d  K )  
time K arranged in decreasing order, and K + m  K N ( K , D )  

T - 1  

H (  f )  = E h[  / ~ ] e - j ~ ~ f ~ .  (3.6) 
k = O  

Throughout this paper f denotes normalized frequency 
(i.e., the analog frequency times the symbol length TI. 
Now the summand in (3.4) is not a continuous function of 
Al; . . ,A, .  However, for each K we can construct a 
sequence of continuous functions that converges to the 
summand almost everywhere. Applying (3.5) to this se- 
quence of functions, and using the fact that the summand 
in (3.4) is a uniformly bounded function of the Ai's for all 
K ,  it is easily shown that 

(3.13) 

For a given channel transfer function H(f) and num- 
ber of levels p, ,  the asymptotic rate can therefore be 
computed from (3.7), and the asymptotic normalized 
squared minimum distance is 

where 

and 

The set B(f;pl) is the set of frequencies in which the 
signal energy is concentrated as K -+ W. 

To compute the average energy in the BSC, first note 
that the total energy in pi  uniformly spaced points cen- 
tered around the origin in one dimension with minimum 

As a simple example, consider the identity channel. In 

R* = log, p1 (3.15) 

this case IH(f)l= 1 for 0 < f < 1. From (3.7), 

and from (3.141, 

12 
-- (3.16) 

d 2  12 
P* p:-1 4R*-1 ' 

which agrees with the single-step formula (2.9), since 
a = 1. 

Consider now the extreme cases p1 = 2 and p ,  +W. 

The former case gives the minimum value of R*, and the 
latter case corresponds to R* -+W. In the former case 

_ -  
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from (3.71, 

21). (3.17) 

and from (3.141, when R*,, > 0, 

4M2 
- -- (3.18) 

12 - d 2  

P* 3R*,,,/M2 R Z i n .  
_ -  

Consequently, the asymptotic coding gain of the BSC in 
this case is 

(3.19) 

As R*,, -+ 0, CG* + (M2/3a2)log,4.  For piecewise con- 
tinuous IH(f)l, this expression can be used to estimate 
the asymptotic coding gain of the BSC for small rates 
even when RL, defined by (3.17) is zero. Specifically, if 
R*,,=O for given IH(f) l ,  we can instead consider the 
magnitude transfer function 

Applying (3.7) and (3.14) to IG(f>l when p1 = 2, and 
letting M‘ + M again gives (3.19) where R*,, -+ 0. For 
the 1 - D channel, (Y = 1 and IH(f)I2 = 2(1- cos2.srf1, so 
that M 2  = 4. The asymptotic coding gain of the BSC 
corresponding to the modified channel IG(f)l given by 
(3.20) therefore approaches (410ge4)/3, or 2.7 dB as 
M‘ + M .  

To evaluate the asymptotic coding gain of the BSC as 
p 1  + w, first note that (3.7) implies that 

Assuming /: log, IH(f)l df < 03, it follows that 

where o(pl) is a correction term that goes to zero as 
p 1  +w. If H ( f )  is minimum phase,’ then it can be shown 
that [14] 

jollog21H(f)Idf=log2h[Ol, (3.23) 

where h[O] is the first impulse response coefficient. Al- 
though the l - D and l - D2 channels are not minimum 
phase, (3.23) is also valid for these channels. Assuming 
(3.23) is valid, then (3.22) can be rewritten as 

(3.24) 

‘A transfer function H(f) is minimum phase, if and only if all of its 
zeros and poles are inside the unit circle. 

Using an argument analogous to that used to derive 
(3.221, it can be shown that (3.13) implies 

(3.25) 

lim O( p l ) / p ;  = 0, for any K > 1. 
PI +cc 

Consequently, 

d’= 12( O ( l / p ? )  = 12h[0]24-R*+ 0(16?*).  
P* 

(3.26) 

Comparing this with single-step detection gives 

2 - R * S  = (q)’ 
lim CG* = lim 12h[0] 4 

P l + m  R* +cc 12a2 
(3.27) 

It is easily verified that 10’ df / IH(f)I2 <cc for the 1 - D 
channel, so that (3.27) implies that the BSC gives 0 dB 
coding gain with respect to single-step detection as R* + 

W. For large rates, an optimal signal set designed for the 
1 - D channel therefore has approximately the same cod- 
ing gain as an optimal signal set designed for the identity 
channel. 

The asymptotic coding gain of the BSC relative to the 
ideal DFE system as R* + 0 and R* +CO is again given 
by (3.19) and (3.27), respectively, where a is replaced by 
h[O]. As R* +CO, this asymptotic coding gain is again 0 
dB. Note that if a code designed for the identity channel 
is applied to a PR channel with an ideal DFE, then the 
coding gain remains the same, assuming h[OI = 1. Since 
CG* = 0 as R* + w, the ideal DFE system combined with 
codes designed for the identity channel offers the same 
performance as comparable codes (i.e., optimal signal 
sets) designed explicitly for the PR channel. This has also 
been observed in [ l l ]  and [15]. (See also [161. Because the 
eigenvectors of H’H become sinusoidal as K + [ll, the 
multitone transmission scheme considered in [ 161 is anal- 
ogous to the BSC considered here.) However, the previ- 
ous analysis indicates that at low rates a code can be 
designed for a PR channel that performs better than a 
comparable code designed for the identity channel and 
subsequently applied to this PR channel with an ideal 
DFE. 

C. Numerical Results 

Fig. 1 shows plots of asymptotic coding gain of the BSC 
vs. information rate for (1 - DX1+ 0)“ channels, m = 
0,1,2,3. Each “curve” actually consists of a set of discrete 
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padding is, of course, less than the coding gain without 
padding, ignoring the effect of IS1 in the latter case. 
When comparing coding gains of finite length signal sets 
with asymptotic gains, however, no padding is assumed, 
since d ,  defined by (2.21, is the minimum /,-distance 
between pairs of outputs over the entire time interval in 
which the outputs are nonzero. Consequently, when esti- 
mating coding gains of optimal signal sets in finite dimen- 
sions, we assume no padding, although as the input length 
goes to infinity, the gains with and without padding be- 
come the same. Of course, we can still compare the 
coding gain of a signal set with padding to an asymptotic 
gain by modifying the corresponding information rate. 
For example, the 256/7, 1 - D signal set with padding 
(one zero is appended to each input vector) shown in 
[ l ,  Table I11 corresponds to an effective rate of 8/7 
bits/T, even though in practice it can be used at the 1 
bit/ T rate without interblock interference. 

Fig. 1. Asymptotic coding gain of the BSC for some PR channels. D. Of the BSC 

points corresponding to p 1  = 3,4,5, . . . . In each case 
p ,  = 2 gives R* = 0. The remaining points are close 
enough together so that smooth curves can be drawn. 
Note that the asymptotic coding gain for the 1 - D chan- 
nel at the smallest value of R* is not far from 2.7 dB, the 
approximation to low rate asymptotic coding gain given by 
(3.19). The asymptotic coding gain as R* +CC is zero, as 
predicted by (3.27). 

Fig. 1 and the numerical results in [ l l  are now used to 
check the decomposition of coding gain (3.3). For the 
1 -  D channel Fig. 1 shows that the BSC gives an asymp- 
totic coding gain of approximately 2.4 dB at R* = 1 bit/ T. 
Reference [ l ,  Table I11 shows a 4.38 dB coding gain 
corresponding to a 256/8 code ( N  = 256 points in eight 
dimensions) for the 1 - D channel (without padding). The 
corresponding 256/8 code for the identity channel gives a 
2.10 dB gain (see [ l ,  Table I]), and adding this to the BSC 
coding gain gives 4.5 dB, which is close to the preceding 
4.38 dB coding gain. However, adding the gain of the 
256/4 code for the identity channel (1.71 dB shown in 
11, Table I]) to the gain of the 1 - D BSC at 2 bits/T 
(1.19 dB) gives 2.9 dB, which is somewhat less than the 
3.43 dB gain of the 1 - D 256/4 code, shown in [ l ,  Table 
111. This is presumably caused by the inaccuracy in esti- 
mating the gain of the four-dimensional BSC from Fig. 1. 
For large K and moderate to large information rates, the 
coding gains of optimal signal sets for PR channels can be 
estimated by adding the appropriate gains computed here 
for the BSC to the gains shown in [3] for dense lattices 
and optimal shaping. This will be demonstrated further in 
the next section. 

As discussed in [ l ,  Section IV], a particular signal set, 
or block code, can be "padded" with T - 1 zeros, where T 
is the length of the channel impulse response, in order to 
eliminate intersymbol interference (ISI) between succes- 
sive blocks of channel outputs. The coding gain with 

The shape of the transmitted spectrum corresponding 
to an optimized signal set for a PR channel was discussed 
in [l]. It was shown there that for large rates R and large 
input length K ,  the spectrum of an input signal constella- 
tion in which the points are uniformly distributed 
throughout a region R ,  which is invariant with respect to 
permutation of axes, is approximately white over a fre- 
quency band F(f) = (f: IH(f)l> p}, where p is a con- 
stant that depends on the minimum distance d .  As R 
increases, p + 0. It was also observed that the spectrum 
for f P F(f) is primarily determined by R, i.e., the shape 
of the constellation, rather than the particular lattice 
from which the points are chosen. 

These results depend on an assumption concerning the 
asymptotic properties of the matrix @, defined by (2.3). 
Let fi ,(f)  denote the Fourier series associated with the 
input U,, 

K 

a,( f )  = U , [  k ] e - ~ ~ " f ( ~ - l ) ,  (3.28) 
k = l  

where u , [ ~ ] = [ u , ] ~ .  The assumption is that the compo- 
nents of @ U ,  and fi,[k/(2K +2)], k = 1;. -, K ,  have the 
same distribution for large K.  This is based on the fact 
that for large K the eigenvectors of H'H, which are the 
columns of @, can be approximated by sinusoidal vectors 
at frequencies that are uniformly distributed over the 
interval [O, 1/21. In this section, we use this assumption to 
compute the asymptotic spectrum of the BSC. 

The preceding assumption implies that for large K the 
kth eigenvector of H'H can be approximated as a sinu- 
soidal vector at the frequency k /(2K + 2), and the corre- 
spond ing  e igenvalue ,  h k ,  is approximate ly  
IH[k/(2K + 2111,. In what follows, we therefore do not 
assume that the eigenvalues A,; . . ,A,  are nonincreasing, 
but rather, that they behave as uniformly spaced samples 
of IH(f)I2 for f in the interval [O, 1/21. 
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For a given K-dimensional signal set the average input 
spectrum is defined as 

I N  

(3.29) 

The previous discussion implies that the components of 
iii = Qui behave as uniformly spaced samples of G , ( f ) ,  
that is, 

The spectrum at uniformly spaced frequencies for large K 
is therefore approximately 

(3.31) 

where n,  given by (3.lb), is the number of dimensions 
spanned by the iii7s. From (3.10)-(3.12) the average en- 
ergy per point of the BSC with respect to the k th axis is 

(3.32) 

assuming pl(A, /A,)'/' 2 d.  If pl(Ak /A1)l12 < d ,  then 
S [  k /(2 K + 211 = 0, since the corresponding dimension is 
not used. Letting K + 03, and applying Szego's theorem as 
before gives 

f B ( f ; p , ) ,  

as K --)CO, (3.33) 

where c is chosen to satisfy the average power constraint 
jdS(f)df = P, and B ( f ; p , )  is defined by (3.8). 

The sense in which S ( f )  converges to the right hand 
side of (3.33) depends on the sense in which the eigenvec- 
tors of H'H converge to sinusoidal vectors. Suppose U, is 
a sinusoidal vector of length K with frequency k /(2 K + 
2), and let & be the kth eigenvector of H'H. If Iluk - 
~$,ll+ 0 as K + m  for each k = 1,-  . ., K, then the differ- 
ence between the left and right sides of (3.31) converges 
to zero as K +CO for each k .  This would imply that S ( f )  
converges pointwise to the right-hand side of (3.33). 

As before, we again examine the cases R* + 0 and 
R* +m. When p1 = 2, S ( f )  becomes a constant for all f 
such that ( H ( f ) l = M ,  and is zero elsewhere. Using the 
substitution (3.20) and letting M' + M ,  it is apparent that 
for small R*, the spectrum of the BSC shrinks to a small 
subset of the channel bandwidth. As p1 -03,  then any 
f E [0, 11 for which IH(f)l# 0 is eventually contained in 
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Fig. 2. Asymptotic spectra of the BSC for the 1 - D channel at two 
different information rates, assuming P = 1. 

the set B ( f ;  p l ) .  Consequently, in this case (3.33) and the 
power constraint imply that S ( f )  becomes a constant for 
all f where IH(f)l# 0. Note, however, that because the 
integer part of p , l H ( f ) l / M  appears in (3.331, the asymp- 
totic spectrum is discontinuous for finite pl. 

The preceding discussion is illustrated in Fig. 2, which 
shows plots of average spectra of the BSC at two different 
information rates for the 1 - D channel, assuming the 
average transmitted power P =  1. As predicted, as the 
information rate increases, the spectrum tends to a con- 
stant for frequencies where I H ( f ) l  is significantly greater 
than 2 M / p , .  In addition, there are discontinuities at 
frequencies f corresponding to jumps in Lp,lH(f)I /Ml.  
As R * ( p , )  increases, the number of discontinuities in- 
creases, and the size of the jumps decreases. 

Intuitively, the transmitted spectrum associated with 
the BSC is undesirable because the discontinuities cause 
the transmitted energy to be unevenly allocated in fre- 
quency bands where the channel attenuation does not 
change significantly. Since the spectrum is determined by 
the average energy per dimension, E,  / ( K p k ) ,  this energy 
distribution can be improved by changing the distribution 
of points per dimension p , , .  . , p,. Specifically, selecting 
p, , .  . -,p,, so that the constellation approximately lies 
within the sphere in n dimensions, rather than a cube, 
reduces the energy per constellation point, and smooths 
the resulting distribution of energy. This demonstrates the 
property observed in 111 that the transmitted spectrum is 
primarily determined by the shape of the constellation, 
rather than the lattice from which the points are chosen. 
This is simply because the density of any lattice in R" is 
uniform throughout R" (even after being scaled by the 
A,'s in each dimension), and the average energy of a 
constellation with respect to each dimension is approxi- 
mately independent of this density. 
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IV. BOUNDS ON ASYMPTOTIC CODING GAIN 

Consider the generalization of the 12/f2 signal design 
problem in which N inputs, each restricted in I, norm on 
the interval [ l ,  Kl, are to be designed to maximize the 
minimum f,, norm between pairs of channel outputs. 
Alternatively, we can fix the distance between outputs 
and the time interval [ l ,  Kl, and maximize N ,  the number 
of inputs. For a channel with impulse response hL.1, let 
N,,, (K,  d )  denote this maximum number of inputs. 
The maximum channel throughput for the channel h[ .I is 
defined as MCT(d) = lim,,,[log, N,,(K, d)l/K, in 
bits/T. One interpretation of this quantity is the maxi- 
mum asymptotic rate at which data can be reliably trans- 
mitted through the channel h[ -], assuming an additive 
noise source about which nothing is known except that 
the I,, norm of the noise is bounded by d /2 almost surely. 
In the case of the Z 2 / f 2  problem, the MCT has been 
called “E-capacity,” or “erate” [7], [SI, where E refers to 
the minimum distance between channel outputs. Since we 
have used d to denote minimum distance between chan- 
nel outputs, we will refer to this quantity as the “d-rate” 
of the channel, and denote it as C(d). 

The d-rate can be defined assuming either the HIC or 
SIC, i.e., 

lluil12 I P ,  for each i =  1;. - , N  (HIC) 
or 

I N  

These input constraints do not allow the input energy to 
grow with time, as in (2.6) and (2.7). Alternatively, we can 
adopt either constraint (2.6) or (2.71, but then the squared 
minimum distance d 2  must be replaced by d2K. That is, if 
the input energy is allowed to increase with K, then the 
minimum distance must also increase with K if the d-rate 
is to be finite €or channels of interest. In what follows we 
assume the input constraints (2.6) and (2.71, so that the 
argument of C(. ) is time-normalized minimum distance, 
denoted as d, and refers to minimum distance between 
channel outputs normalized by a, i.e., z2 = d2/K.  

For a given R and channel IH(f)l, it will be useful to 
define an asymptotic time-normalized minimum distance, 

assuming the limit exists, where Z(K, R) is the time-nor- 
malized minimum distance of an optimal signal set of 
length K consisting of 2RK points. For fixed R,  there 
exists some Z0 2 0 for which R = C(zO) .  By the definition 
of d-rate, this means that the minimum distance of opti- 
mal signal sets grows asymptotically as zO@, so that 
J0 = Z*(R). For large K, the d-rate can therefore be used 
to estimate the coding gain of an optimal signal set. In 
this section we compare the time-normalized minimum 
distance of signal sets, or block codes, found in .[1] with 
z* computed from the corresponding d-rates. We also 
compare d-rates for different channels. This comparison 

gives the relative input lengths of optimal signal sets for 
each channel needed to achieve asymptotically a specified 
minimum distance between outputs. 

Upper and lower bounds on C(Z*)  assuming the HIC 
are given for continuous-time channels in [71-[101. The 
analogous bounds for discrete-time channels are easily 
obtained, so that we omit the details. In general, the best 
lower bound on d-rate for a linear, time-invariant channel 
is given in [7], and is based on a simple volume argument. 
Modification of the bound in [7] so as to apply to 
discrete-time channels gives 

C (  Z*) 2 _c( Z*)  = / log, ( @‘i(f)‘) df, (4.2a) 
B(f) 

where 

This bound was derived assuming the HIC. However, 
since any signal set that satisfies the HIC also satisfies the 
SIC, it follows that C ( z * )  assuming the HIC is less than 
or equal to C ( z * )  assuming the SIC, so that (4.2) is valid 
assuming either constraint. 

The best available upper bound on C ( z * )  is given in 
[lo], and is a modification of an upper bound originally 
given in [9]. This upper bound states that C ( z * )  is less 
than or equal to the Shannon capacity of a power-limited 
channel consisting of the original channel, H ( f  ), followed 
by additive Gaussian noise with variance Z*’/4, but 
otherwise having arbitrary power spectral density. It is 
shown in [lo] that the noise spectrum that minimizes this 
bound is proportional to the input power spectral density, 
so that combining these two results gives 

c ( z * ) 4 q z * ) = 2 /  1 1  log, ( 4p’::!)’2 + 1) df. (4.3) 
0 

Now the Shannon capacity of the additive Gaussian noise 
channel can be defined using either the HIC or the SIC, 
and is the same in either case [17]. Consequently, the 
bound (4.3) is valid assuming either constraint. 

The preceding discussion naturally leads one to ask 
whether or not C(z*)  assuming the HIC is always equal 
to C(Z*)  assuming the SIC. It appears that this problem 
is open; however, the following indicates that they are the 
same as the information rate R + CQ. Assume that the 
optimal input constellation is uniformly distributed inside 
an n-dimensional sphere S with radius r .  Note that the 
densities along each axis can be different; however, it is 
assumed that the density of points in n-space is a con- 
stant, p. The average energy per point of this signal 
constellation is approximately given by 
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Fig. 3. (a) Normalized squared distance vs. input length for the iden- 
tity channel signal sets represented in [l, Table I], corresponding to a 
rate of 1 bit/T. Also shown are upper and lower bounds on z*’. 
(b) Normalized squared distance vs. input le_n th for identity channel 
signal sets at a rate of 2 bits/ T. Bounds on d*’ are also shown. 

which is independent of the density p. As R -+CO, this 
expression becomes exact. If the HIC is assumed, then 
r = m, that is, each point has energy less than or equal 
to PK. If the SIC is assumed, then (4.4) implies that 
r 2  =[(n  +2)PK]/n, which converges to PK as n --)W. 

Consequently, as n +w, the number of points in the 
signal constellation assuming the SIC is the same as the 
number of points assuming the HIC, subject to the pre- 
ceding integral approximation. Therefore, according to 
this approximation C ( z * )  is the same in either case. 

Figs. 3 and 4 show d 2 / K  vs. input length K for some 
of the signal sets found by the numerical search tech- 
niques discussed in [l, Section 1111. Also shown for each 
channel are lower and upper bounds on the maximum 
asymptotic normalized distance obtained from (4.2) and 
(4.31, respectively. The code search results shown in Figs. 
3(b) and 4(b) have been augmented by including addi- 
tional points representing estimates of coding gains ob- 
tained from using dense lattices in higher dimensions 
than those considered in [l, Section IVI. These estimates 
are obtained by adding the coding gain of a dense lattice 
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Fig. 4. (a) Normalized squared distance vs. input length for the 1 - D 
channel codes in [l, Table 111 (without padding) at the rate 1 bit/T. 
Also shown are upper and lower bounds on z**. (b) Normalized 
squared distance vs. input length for 1 - D channel signal sets shown in 
[I, Table 111 at a rate of 2 bits/T. Bounds on (7*’ are also shown. 

in dimension K, given in [31, to the corresponding asymp- 
totic coding gain of the BSC computed in Section 111. The 
shaping gain obtained by selecting the points from within 
a sphere rather than a cube in R K  is also included. The 
figures indicate that d 2 / K  approaches its asymptote for 
K 2 10. 

Fig. 5 shows plots of upper and lower bounds on C ( z * )  
vs. ~P/L?*~ in dB for the PR channels 1 - D, 1 - D2,  and 
(1 - D)(1+ DI2, as well as for the identity channel. The 
bounds are the same for the 1 - D and 1 - D2 channels. 
For the channels considered, the bounds on d-rate in- 
crease with the energy in the channel impulse response. 
For fixed 4P/d*2,  the bounds on d-rates shown in Fig. 5 
for the PR channels are therefore greater than the corre- 
sponding bounds on d-rate for the identity channel. This 
implies that asymptotically, the minimum distance of an 
optimal signal set for the identity channel is less than the 
minimum distance of an optimal signal set having the 
same input length and designed for one of these PR 
channels. For example, at a rate of 1 bit/ T the bounds in 
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Fig. 5. Upper and lower bounds on d-rates vs. 4P/d”’ in dB for 
some PR channels. 

Fig. 5 indicate that normalized minimum distance for the 
identity channel is approximately 2 dB less than the 
normalized minimum distance for the 1- D channel. 
However, this difference decreases to zero as R increases. 

To elaborate further, suppose that R = 1 bit/T. Fig. 5 
shows that lOlog,, [d*’/(4P)] for the identity channel is 
less than or equal to -4.7 in this case. Consequently, for 
large enough K, 1010g,,[~*~/(4P)1 for any identity chan- 
nel block code is upper bounded by -4.7+ lOlog,, K. 
For the 1 - D channel, the corresponding upper bound is 
- 3.0+ lOlog,, K. Equating these two quantities indicates 
that the input length of the identity channel signal set 
must be approximately 1.5 times longer than the input 
length for the 1 - D channel signal set to achieve the 
same minimum distance. Using the lower bounds in Fig. 5 
gives approximately the same result. At a rate of 2 bits/ T, 
the bounds on d-rate indicate that L?*~/(~P) is approxi- 
mately the same for both the 1 - D and identity channels. 

The bounds on d-rate can also be used to compute 
bounds on the coding gain of optimal signal sets relative 
to single-step detection as K +ca. Specifically, for fixed R 
and K,  the coding gain of an optimal signal set is given by 

d2KPss 
CG = 10 log,, ~ - - G, + lOlog,, K ,  (4.5) 

P4S 

and from (2.9) 

Let G,* = limK+mGo(K, I?) = 10 log,, [(4R - l)Z*’/ 
(12a2P>1. Then upper and lower bounds on the coding 
gain G,* can be obtained from the preceding upper and 
lower bounds on d*, where C(z*) = R. 

Upper and lower bounds on G,* vs. R are shown in Fig. 
6 for some PR channels. (Note that these results are 
independent of how the channels are normalized, since a 

f /  I 

I I I I I I J 
0 2 4 6 8 10 

R (bits/r) 

Fig. 6. Bounds on asymptotic coding gain G,* vs. rate for the identity, 
1 - D, 1 - D 2 ,  and (1 - 0x1 + 0)’ channels. 

normalization factor would multiply both d2 and d,2,, 
leaving the coding gain unchanged.) These curves indicate 
that for small rates (i.e., less than 4 bits/T), optimal 
signal sets for the identity channel give less coding gain 
than optimal signal sets for the PR channels considered. 
For example, at a rate of 2 bits/T, the upper bounds for 
the identity and 1 - D channels differ by approximately 
1.5 dB. The lower bounds differ by about 1 dB. 

Note that the bounds on coding gain for the identity 
channel are independent of R for large R .  This observa- 
tion is anticipated by results in [3] and [4], if it is assumed 
that for any large integer M ,  there is a K > M such that a 
nearly optimal signal set of length K can be obtained by 
selecting a section of a dense lattice within a sphere. 
(Justification for this assumption is given in [MI, where it 
is shown that lattice codes can achieve the Shannon 
capacity of an additive Gaussian noise channel.) Assum- 
ing this is true, then there is a sequence of dimensions 
K,, K,; . *,which increases without bound, for which lat- 
tice codes are nearly optimal. The coding gain of an 
optimal signal set for each of these input lengths can then 
be separated into the gain obtained from the dense lattice 
plus the shaping gain, both of which are independent of 
R when R is large. 

As R + m, the upper (lower) bounds on coding gain for 
each of the channels shown in Fig. 6 converge to the same 
limit. This is because the upper bound on d-rate, given by 
(4.3), satisfies 

where the inequality becomes asymptotically tight as 



j*  + 0. For the PR channels considered, and the iden- 
tity channel, /d log, IH(f>l df = log, h[O] = 0. Setting 
c(d*)  = R ,  solving for d* /@ via (4.79, and substituting 
into the expression for Gg gives 

lim Gg I lim lOlog,, 
4(4-R)(4R -1) 

12 R--= R + m  

1 

3 
= 10lOgl0 - = -4.77 dB, 

for the channels considered. Similarly, it is easily verified 
that the lower bound on d-rate, given by (4.21, satisfies 

where 6 ( d * )  is a correction term that satisfies 
lim,* , ,6(d*)  = 0, so that 

The 6 dB difference between the bounds on G: as R .+ 00 

is a direct consequence of the 6 dB difference along the x 
axis in Fig. 5 between the asymptotes of _C(d*) and 

Observe that the difference between the upper (or 
lower) bound on G,* for a PR channel and the upper 
(lower) bound for the identity channel shown in Fig. 6 
resembles the asymptotic coding gain of the BSC for the 
PR channel shown in Fig. 1. This is consistent with the 
decomposition of coding gain discussed in Section IIIA. 
Specifically, as K + m, (4.5) implies that the difference 
between coding gains of optimal signal sets for two chan- 
nels at a given R is the difference in G $ ( R )  for each 
channel. Consequently, (3.3) implies that GX(R) for a PR 
channel minus Gg(R) for the identity channel is approxi- 
mately equal to the asymptotic BSC coding gain for the 
PR channel. Fig. 6 shows that the bounds on G: given 
here also satisfy this relation. 

m* 1. 

V. CONCLUSION 
This paper has studied some properties of I ,  / Z 2  signal 

design for large input lengths K.  Our main result is that 
for large K ,  the coding gain of an optimal signal set for a 
PR channel can be decomposed into the coding gain of an 
optimal code for the identity channel of length K plus the 
coding gain of a baseline signal constellation, defined in 
Section 111. The latter gain was explicitly evaluated as 
K +CO and depends only on the information rate and the 
channel transfer function. For the channels considered, 
the coding gain of the BSC, relative to single-step detec- 
tion, is positive, and approaches zero monotonically as 
R +CO. For large R and K ,  optimal signal sets for the PR 
channels considered therefore give approximately the 
same coding gain as optimal signal sets for the identity 
channel. 

For fixed R ,  the coding gain of optimal signal sets as 
K -00 can be evaluated by computing the asymptotic 

normalized distance J* for which the d-rate of the chan- 
nel, c(Z*)= R. Unfortunately, C ( z * )  cannot be com- 
puted exactly for channels of interest, although upper and 
lower bounds are available. Plots of normalized squared 
distance, d2 /K,  vs. K were shown in Section IV, and 
were generated by combining the results in [ l ,  Section IV] 
with results in the literature [3] on coding gains offered by 
dense lattices relative to the integer lattice. For the cases 
considered, the results are consistent with the upper and 
lower bounds on asymptotic minimum distance computed 
from bounds on the d-rate, and indicate that these 
asymptotic bounds are useful for K 2 10. 

The plots of d 2 / K  vs. K also illustrate the decomposi- 
tion of coding gain. Specifically, the maximum coding gain 
of a length K code for the 1 - D channel at R = 2 bits/ T 
for K 2 5 was estimated by adding the coding gain ob- 
tained from using a dense lattice with optimal shaping, 
assuming the identity channel, to the coding gain of the 
BSC. The resulting normalized distance for large K was 
found to lie between the upper and lower bounds on 
asymptotic normalized distance computed from the d-rate 
of the channel. The decomposition of coding gain is again 
illustrated in Fig. 6, which shows upper and lower bounds 
on asymptotic coding gain vs. rate for some different PR 
channels. 

Comparative plots of d-rates for some PR channels 
show that at low rates optimal signal sets with longer 
lengths are needed for the identity channel, as compared 
with the PR channels considered, to obtain the same 
minimum distance between outputs. This is due to the 
greater impulse response energy for the PR channels 
considered relative to the identity channel. If, however, 
the PR channels_are normalized so that /,,‘lH(f)l2 df = 1, 
then for fixed d* the bounds on d-rates for the PR 
channels considered are less than the corresponding 
bounds for the identity channel. That is, subject to an L ,  
constraint on H(f), the identity channel is the best among 
those considered in the sense that this channel maximizes 
the asymptotic minimum distance corresponding to opti- 
mal signal sets. 

As in Part I of this paper [l], we make the final remark 
that a similar approach to that used here to analyze 
asymptotic coding gain might be applicable to other signal 
design problems, i.e., the f q / Z p  problem defined in [l]. 
Specifically, the d-rate is easily generalized so that it 
corresponds to this larger class of problems, and, if it can 
be computed, could similarly be used to study asymptotic 
minimum distance vs. rate. Of course, even upper and 
lower bounds on this generalized d-rate, or “maximum 
channel throughput,” may be quite difficult to obtain for 
specific p and q. 
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