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Bounds on e ra t e  for Linear, Time-Invariant, 
Mu1 t iinpu t / Mu1 tiou tpu t Channels 

DAN HAJELA AND MICHAEL L. HONIG 

Abstract --Suppose that a multiinput/multioutput channel i s  de- 
scribed by a time-invariant, linear operator H ,  which maps an input 
vector waveform U(.) to an output vector waveform y ( . ) .  The input U(.) 
is assumed to be bounded in energy ( L ,  norm) on the time interval 
[O,T]. Let N,,,,,(T,e) denote the maximum number of inputs to H for 
which any pair of distinct outputs are separated by at least E in L 2  
norm. The limit of [log, N,,,,,(T, E ) ] /  T as T + 3~ is known as ‘‘€-rate.” 
Here we extend the bounds on €-rate given by Root for single-input/ 
single-output channels to multiinput/multioutput channels. This exten- 
sion uses a result due to Lerer on the eigenvalue distribution of a 
convolution operator with a matrix kernel (impulse response). Our 
results are used to assess the increase in data rate attainable by 
designing input signals which exploit the multidimensional nature of the 
channel, relative to treating each constituent channel in isolation. Nu- 
merical results based upon a simple model for two coupled twisted-pair 
wires are presented. 

I .  INTRODUCTION 

IVEN A COMMUNICATIONS CHANNEL that G can be modeled as a multiinput/multioutput 
(MIMO) time-invariant linear system, we attempt to esti- 
mate the maximum data rate that can be reliably commu- 
nicated in certain situations. In particular, it is assumed 
that the statistics of any perturbations to the received 
signal are not easily modeled, so that Shannon theory 
cannot be applied. The primary motivation for this model 
is the telephone subscriber loop, which typically consists 
of twisted-pair wire within a binder group containing 
many such pairs. The primary channel impairments in this 
case are crosstalk between wires, typically caused by in- 
ductive and capacitive imbalance, and impulse noise. Since 
crosstalk is a linear effect, however, the entire bundle of 
wires can be treated as a single linear MIMO channel [4]. 
If we further assume that coding is used to correct errors 
due to impulse noise, as proposed in [5], then the remain- 
ing thermal noise level due to the wire itself is the 
primary channel impairment. Since this noise level is 
quite low, it is anticipated that inaccuracies at the re- 
ceiver (i.e., imperfect timing recovery, A/D conversion, 
etc.) will be the dominant cause of transmission errors. 

We assume that any perturbations to the received sig- 
nal caused by the channel and receiver can be modeled by 

an additive noise process, the statistics of which are 
unknown, but which is bounded by ~ / 2  in L ,  norm. Two 
channel outputs are therefore distinguishable if they are 
separated in L ,  norm by E .  Let N,,,,,(T,e) denote the 
maximum number of distinguishable channel outputs, 
subject to the constraint that the corresponding inputs are 
bounded in L ,  norm over the interval [0, TI, where T > 0. 
The limit of [log, N,,,,,(T, E ) ] /  T as T - CC has been called 
both ‘‘€-rate” and ‘‘€-capacity,” and can be used to esti- 
mate the maximum achievable data rate for the situation 
just described. In this paper we will refer to this quantity 
as the ‘‘€-rate,” since it has been pointed out to the 
authors that “E-capacity” has other meanings in the con- 
texts of both information theory and approximation the- 
ory. Upper and lower bounds on e r a t e  for linear time- 
invariant single-input/single-output (SISO) channels are 
given in [l]. Here we extend these results to MIMO 
channels. In the case of a diagonal M X M channel 
transfer matrix with different diagonal entries, we com- 
pare the €-rate bounds for the MIMO channel with the 
sum of the bounds for the constituent SISO channels, 
assuming that in the latter case input power is allocated 
so as to maximize the bounds. 

The Shannon capacity for a MIMO channel with addi- 
tive Gaussian noise was derived by Brandenburg and 
Wyner [3] and was used to estimate the capacity of two 
coupled twisted-pair wires. The same transfer function 
model for the two coupled channels considered in [31 is 
used here to estimate €-rate, and we compare our results 
with the analogous results from [3]. We also demonstrate 
the increase in €-rate that can be obtained by treating the 
coupled channels as a single MIMO channel, rather than 
as two independent SISO channels. In the latter case, 
crosstalk between the two channels is treated as noise 
uncorrelated with the transmitted signals. 

Although [l], [6], [8], and [ l l ]  are the only references 
known to the authors that give estimates on €-rate, re- 
lated work on MIMO channels is given in [3], [41, and [71. 
Optimization of transmitter and receiver filters for MIMO 
channels is studied in [7], and the design of a MIMO 
communications system for the telephone subscriber loop 
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general class of bandpass channels are given in [81. 
The next section describes the space of input and 

output signals in terms of the eigenfunctions and singular 
values of the channel model. This discussion parallels that 
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given in [l], with the main distinction being that in our 
case inputs, outputs, and eigenfunctions are vector-valued 
rather than scalar-valued. Upper and lower bounds on 
E-rate for MIMO channels are subsequently given in 
Sections 111 and IV, and Section V presents the numerical 
results. 

11. PRELIMINARIES 

Let H denote the time-invariant linear operator which 
models the MIMO channel, and let H ( . )  denote the 
associated complex M X M matrix impulse response. Let 
U ( . )  be any complex-valued function in (L,[O, TI)"", that 
is, 

write 
3c 

= C bj$j( t )  (7) 
j =  I 

where the scalars b, = ( u , $ ~ )  and 
m 

IlUll: = b; <Co. (8) 

+. J = A T ' / ~ H  [$,I (9) 

j =  1 

If we let 

then it is easily verified that HH*[Gj]  = the t,bj's are 
orthonormal, and that the output y of H in response to 
the input given by (7) can be written as 

m 

y(  t )  = A)/'bjt,bj( t ) .  (10) 
j =  I 

where u j  is the j th  component of U .  If U ( . )  is the input to 
H ,  then the output vector y ( t )  is given by 

y (  t )  = H [  .I( t )  = H * ~ (  t )  = / H (  t - s ) U (  s) ds. (2) 

Let ai = A:.I2bj. If we further restrict the inputs to be 
constrained in energy, i.e., Ilull: I E 2 ,  then the output 
space can be represented by the space of real-valued T 

0 sequences {a,] such that 
In addition, we assume that for some T > 0, 

h i j ( t ) = O ,  f o r t > ~ a n d t < O  

and Because of the properties of A,, the output space is 
therefore a compact ellipsoid with semiaxes EA>/2. 

UPPER AND LOWER BOUNDS ON GRATE 

hij  E L,(  -m,m) n L2( -m,m) (3b) 

where h,, = [HIij, 1 I i, j I M. These conditions imply 
that y ( t )  = 0 for t > T + T and t < 0, and that H is a 
Hilbert-Schmidt operator that maps d m ~ e n t s  in Let N,,,(T, E )  denote the maximum number of inputs 
( ~ [ O Y  TI)"" to elements in (L2[0, T -k 73)"". Let H *  de- to H for which any pair of distinct outputs are separated 
note the adjoint of H ,  which maps (L,[O,T + TI)"" to by at least E in L ,  norm, i.e., 
(L,[O, TI)"". Then H*H maps (L,[O,TI)"" to (L2[0, TI)"", 

111. 

N :  min llH*( U ;  - 2 E,  
i + j  

I s i , j s N  

and is compact and self-adjoint. It is easily verified that 
for U E (L,[O,  TI)"": 

H * H [ U ] ( t )  = l T R ( t - s ) u ( s ) d s  0 (4) 

R ( t )  =Im H * ( s ) H ( t  + s) ds 

where 

( 5 )  
- m  

and H *  is the conjugate transpose of H .  
In analogy with the SISO case, since (L,[O,T])"" is a 

Hilbert space, the spectral theorem can be applied to 
show that there exists an orthonormal (vector) sequence 
(4,) containing at least one element, where 4j  E 
(L,[O,T])"" for each j, such that 

H * H [  4 j ]  = j = 1,2, . . (6)  

where the A j  are the (scalar) singular values of H and 
have the following properties: (1) A j  is real and positive, 
(2) A, has finite multiplicity for each j ,  and (3) limj+m A j  
= 0, assuming infinitely many singular values. Further- 
more, if we augment the sequence {4j]  with an orthonor- 
mal basis for the null space of H * H ,  then the result- 
ing sequence forms a complete orthonormal basis for 
(L,[O, TI)"". Given any U E (L,[O, TI)"", we can therefore 

The €-rate for the channel H is defined as 

We remark that N,,,(T, E )  and C ( E )  can be defined using 
norms other than the L ,  norm [91. 

Since the space of output signals can be described by a 
compact ellipsoid in Hilbert space, the definition (12) can 
be rewritten as 

min 
i # j  

s i , j s  

where a; is the (infinite) vector of coefficients corre- 
sponding to H [ u i ] ,  the norm is the Euclidean norm, and 
the components of a; satisfy (11). Upper and lower bounds 
on N,,,(T,E) in terms of the singular values {A,], based 
on volume arguments, have been obtained by Root [l]. 
These bounds ((20) and (22) in [l]) are repeated here for 
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easy reference, 

and 

1 + L ]  
+ n log, (4- 

where (Y is a constant between zero and one chosen to 
minimize the upper bound, E is the smallest integer for 
which I a ~ / 2 E ,  and is the largest integer such 
that > E / E .  

It will also be useful to consider the following approxi- 
mation to N,,,. In particular, we can approximate N,,, 
as the volume of a compact ellipsoid in R" containing all 
possible channel outputs divided by the volume of the 
sphere in R" with radius ~ / 2 ,  where n is chosen to 
maximize N,,,. In particular, 

n 

or 

where f i  is the largest integer for which 2EA',/, 2 E .  Note 
that this approximation is not a bound on log,N,,,, but 
lies between the preceding upper and lower bounds. 

Since N,,, is given by (14) in both the SISO and 
MIMO cases, the bounds (15) and the approximation (16) 
must also apply to the MIMO case, where the singular 
values are defined by (6). To obtain upper and lower 
bounds for C ( E ) ,  given by (13), it is necessary to study the 
distribution of singular values (Aj (T))  as T +w.  This has 
been done by Lerer [2], who proved the following result. 
Consider the integral equation 

L T K (  t - s)&( s) ds = A&( s)  (17) 

where the Fourier transform of K ,  i.e., 

P ( w )  = / y m K ( t )  e-'"'dt, 

is bounde? and absolutely integrable; Denote the eigen- 
values of K ( w )  for any fixed w as p j [ K ( 0 ) l ,  j = 1,2; e ,  M. 
Let G be a compact set that contains the set of eigenval- 
ues 

p j [ K ( w ) ] ,  f o r j = 1 , 2 ; . . , M a n d  - w < w < ~  

and the set of eigenvalues 

Ai( T ) ,  for all j =  1 , 2 ; .  * ,  and 0 < T < w .  

Also, the complement of G must be connected. For any 
function W z )  defined on the complex z-plane such that 
@ ( z ) / z 2  is continuous and holomorphic on G, 

m 

(18) 
Observe that in the SISO case ( M  = 11, K is a scalar 
function, and (18) reduces to the well-known Kac- 
Murdock-Szego theorem [2l. 

Consider now the case of inte:est, in which the kernel 
K ( t )  = R( t ) ,  given by (5).  Let R ( w )  denote the Fourier 
transform of R(t ) ,  and let 

M 

Fl, = [ill, = Lr*kLk,. 
k = l  

Note that ?,,(w) is bounded, i.e., 
M 

W W 

< Ji, < w  ( 19) 

since hi, E L,( - 03, w). Consequently, the eigenvalues 
A,(T), defined by (6) with K = R ,  are also real and satisfy 

( 2 0 )  
1 ,k .w  r , k  

for each j and for all T > 0. SinceA i ( w )  is positive 
definite for all w ,  its eigenvalues p , [ R ( w ) ]  are real and 
positive. Furthermore, 

A,( T )  I sup IF lk(  w ) l  < max Jlk J 

suppI(w) I sup t r i ( w )  
1.w W 

~ M s u p l i ? ~ , ( w ) l < M J .  (21) 
1,w 

Consequently, the set G can be taken to be the interval 
[O, MJ I. 

As an example, suppose that @ ( x )  = q c , d ) ( X ) ,  the indi- 
cator function for the interval (c, d )  where 0 < c < d I MJ. 
Although @ ( x ) / x 2  is not continuous on G, we can con- 
sider a sequence of functions ( @ k ( x ) )  such that Q k ( x ) / x 2  
is continuous on G for each k ,  and Q k ( x )  converges 
uniformly to @ ( x )  except on a set of measure zero. 
Applying (18) to @,(x) and letting k + w  gives 

5 q ~ , d ) [ ~ , ( ~ ) ]  
] = I  

T 
lim 

T - m  
i M  

where "meas S" denotes the Lebesgue measure of the set 
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S. The numerator in the left-hand side of (22) is simply 
the number of singular values of the operator H that lie 
in the interval ( c ,  d). Loosely speaking, this equation has 
the following interpretation. In the SISO case each eigen- 
function of the linear operator H*H,  4k ,  converges to the 
function erwr  for some w as T +w. The eigenvalue*associ- 
ated with the eigenfunction erwr  is lh(w)I2, where h is the 
Fourier transform of the impulse response. Similarly, in 
the MIMO case, as T +CQ, the eigenfunctions of the 
operator H*H are vectors whose components are com- 
plex exponentials with different amplitudes, i.e., e'"'a, 
where the amplitude vector must satisfy 

5( w ) a  = pa ,  (23) 

4 ( t )  = eIWkfak (24) 

where p is the associated eigenvalue. Note that if 
M 

k = l  

is an eigenfunction of H * H  as T +w, then the associated 
eigenvalue p is also an eigenvalue for each term in the 
sum, erwkfak, where ak is a vector of coefficients. Conse- 
quently, if all asymptotic eigenfunctions of H*H have the 
form (241, then all eigenvalues can be generated, as 
T + w, by solving (23) for all values of w .  

We now apply Lerer's Theorem to (15a) with 

As in the preceding example, @ ( x )  is not continuous on 
G ;  however, we can again consider a sequence of func- 
tions (@.,(XI} such that @ , ( x ) / x 2  is continuous on G for 
each k ,  and @.,(x)  converges uniformly to @(XI except on 
a set of measure zero. Applying (18) to @.,(XI and letting 
k + w  gives 

(25a) 

Similarly, we can apply Lerer's theorem to (15b) using 
continuous approximations to @ ( x )  = [log, ( ~ E & / E )  + 
log, ( 1 / d m  + ~ / L Y ) ~ ~ , z , z / ~ ~ z , ~ ) ( ~ ) .  The result is 

1 
d o .  (25b) 

Note that the right most term in (15b) does not appear in 
(25b) since E increases as O(T) ,  so that for large T ,  

1 
-log, T ( ; E  + 1) 

behaves as O(log, T /  T ) .  Finally, we apply Lerer's theo- 

rem as in the preceding cases to (16b) to obtain 

(26) 
The bounds and approximation given by (25) and (26) 

are similar in form to the Shannon capacity of a MIMO 
additive-white-Gayian-noise channel with memory (i.e., 
transfer function H(w)) ,  derived in [31. In particular, if u2 
is the spectral density of the noise, then the Shannon 
capacity for this channel is 

where K is chosen to satisfy 

where E 2  is the input power, and it is assumed that 
p j ( w ) >  u 2 / K  holds for w in a set of finite measure. As 
an example, conside; an SISO additive-white-Gaussian- 
noise channel with H ( w )  = 1 for 1 0 1  I 27rW. In this case 
the Shannon capacity is 

I \ b 

C,=Wlog, 1+- [ 2WU+ 

The expected noise power is lln112 = 2Wu2, where l l f 1 I 2  = 

l i m T + m ( l / T ) ~ ~ f ~ ~ ~  for any f E L,. If we insist that the 
outputs of H ( w )  be painvise separated by twice the rms 
value of the noise, i.e., E = 2-, then the corre- 
sponding E-rate satisfies 

E2 
8Wu 

W log, 7 5 C(  E )  I W 

where the value of LY in (25b) is taken to be 0.75. We add 
that it can be shown [11], [121 that C ( E )  I C,  given by (28) 
where E' = 8Wu2. 

IV. EXAMPLE: No CROSS-COUPLING 

For the case of M uncoupled SISO channels we now 
compare the e r a t e  of the diagonal M x M transfer ma- 
trix with the sum of the €-rates of the constituent chan- 
nels. In the latter case we assume that input power is 
allocated among the channels so as to maximize the upper 
and lower bounds on C(E). For an M X M diagonal 
transfer matrix, (26) becomes 

where 

i . ( w ) = [ k I j l a n d  B j =  J J  

If the constituent channels are treated independently, 
then the sum of the €-rates for the constituent channels is 



approximately 

where in this case 

E, is the rms value of the input to channel j ,  and the 
outputs of channel j must be separated by E,. We can 
now maximize the right side of (31) with respect to the 
E,’s subject to an input energy constraint, i.e., CK , E,? = 

E,. Assuming that 

(scalar or vector) if and only if they are separated by E in 
L ,  norm. In this case if the channels are treated indepen- 
dently, then any two distinct outputs of channel j must be 
separated by E ,  2 E for each j .  The resulting approxima- 
tion (31), where E, is determined by (33), is then always 
less than or equal to the approximation (30) for the 
MIMO case. The reason for this is that the minimum 
separation between two vector outputs must be if 
the channels are treated independently, as opposed to a 
separation of E if the channels are treated as a single 
MIMO channel. 

To illustrate the preceding discussion, consider two 
uncoupled channels with transfer functions 

101 5 2 i T y .  
j = 1 , 2 .  (35) 

otherwise 

for each j ,  then it is easily shown that the solution must 
satisfy 

For general f J J ( w )  this set of equations must be solved 
numerically. Similarly, if the bounds (25) are maximized 
with respect to {E,}, the solution is again given by (33) 
with B, = { w :  f,,<w) 2 €:/E,?} if the lower bound is maxi- 
mized, and BJ = { w :  ?,,(w) 2 a2~:/(4E,!)) if the upper 
bound is maximized. 

The set of E,’S in (31) represents the distribution of 
noise, or receiver inaccuracy, across the constituent SISO 
channels. Note that the approximations given by (30) and 
(31) are the same if E l / € ]  = E / E  for each j .  For a fixed 
distribution of input power, i.e., E,;  . .,E,, we can 
choose the set of el’s to minimize the approximation (31) 
subject to a total noise power constraint, i.e., , E,? = E’.  

Again, assuming (32) holds for each j ,  the result is 

E’ meas B, 
E ?  J M  = (34) 

meas B, 
k = l  

Combining (311, (331, and (34) gives the same approxima- 
tion for C ( E )  as (30). For any fixed set of el’s, the 
approximation (31), where the input power is allocated 
optimally, is therefore always greater than or equal to the 
approximation (30). This remains true if the bounds (25) 
are used instead of the approximations for e ra te .  Of 
course, the reason for this is that treating the set of 
uncoupled SISO channels as one MIMO channel ignores 
extra information about the distribution of noise across 
the channels. 

In contrast to the preceding discussion, we might in- 
stead assume that the receiver can distinguish two signals 

In this case the approximations (30) and (31) become 

2E 
C( E )  C , (  E )  E 2( W ,  + W2) log, - (36) 

E 

and 

2EI 2E2 
C (  E , ,  E,) = C,( E , ,  E,) = 2 w, log, - + 2 w, log, ~. 

€ 1  € 2  

(37) 

From (331, the distribution of power that maximizes the 
approximation (31) is 

independent of E ,  and E ~ ,  assuming that / E ,  < 1, j = 

1,2. To compare (36) and (37), we assume that E :  = €2’ = 

e2/2, i.e., that the noise is uniformly distributed across 
both channels. Combining (37) and (38) gives 

2w,  c, -,-- = C , ( E ) + W ,  log,- L 4 w, + w2 

+ w, log, ~ 2w2 . (39) w, + w2 

It is easily shown that the sum of the last two terms on 
the right is always nonnegative, which implies that 

Cl(€ )  .c2( WJZ E ) 
with equality if and only if W ,  = W2. 

The approximations C ,  and C ,  are plotted as a func- 
tion of ~ E / E  in Fig. 1 for the case W ,  = 50 kHz and 
W, = 100 kHz. The corresponding lower and upper bounds 
obtained from (25) are also shown. The constant a was 
selected to tighten the upper bound. For the case consid- 
ered the optimal value of a is approximately 0.75. Also 
shown in Fig. 1 are upper and lower bounds on e r a t e  
assuming the receiver can distinguish two vector outputs 
separated by E ,  = E ,  = E/&. In this case the approxima- 
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tion (30) becomes 

2 a E  
C (  €) = C3( €)  = 2( w, + W,) log, - 

E 

Wl =c, -,- -W,log2- (;z ;z) w, + w2 

w2 

w, + w, - w2 log, ~. 

It is easily verified that the sum of the last two terms is 
negative, so that 

and 

in bits/s where p ( w ) =  e2/E2,  and p(0) = a2e2/4E2.  
Also, evaluating (26) gives 

V. NUMERICAL RESULTS 2 2 E  2 a1 
c( E )  = - T ln2 (6 (1n - 1) - 3 6 3 / 2  

We consider the same model for two coupled twisted- 
pair wires as was considered in [3] (see also [lo]). The 
transfer matrix is given by 

f i ( w )  = e+ 

1 1 kl ' I2& 

2 kl'/' d m  + - 6 l n ( l +  k21W2) + -arcsin 

(41) where p ( 6 )  = e2/(4E2). 
Fig. 3 shows plots of the bounds given by (43) and the 

approximation (44) vs. ~ E / E  with the same parameters 
used to generate Fig. 2. It was empirically observed that 
a = 0 . 7 5  minimizes the upper bound (43b). Shannon ca- 
pacity vs. signal-to-noise ratio (SNR), assuming additive 
white Gaussian noise, is also shown in Fig. 3 for compari- 
son. This curve was computed from (27), assuming that 
the noise variance, which is the spectral density of the 
noise u2 integrated over the entire channel bandwidth, is 

where 1 is the lengtb of then wire in feet and -y = aJTS + 
ibw. The matrix R ( ~ )  = H * ( ~ ) H ( ~ )  is diagonal with 
eigenvalues 

w )  = p,( = CL( w )  = (1 + Jk21) e - Z a / & .  (42) 

Fig. 2 shows a plot of p ( w )  for k = 1 . 2 6 ~  10- '2,a = 0.23 
X (taken from [3]), and 1 = 12 kft. Evaluating the 
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Upper Bound 
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s 

I 
x ~ 0 7  

0 

10 20 30 40 50 60 70 XO 

2 6 / t  (dB) 

Fig. 3. Bounds on erate vs. ~ E / E  for two coupled twisted pairs 
12 kft. in length. Shannon capacity for same cable is also shown. 

e2/4. The SNR in this case therefore corresponds directly 
to the abscissa of Fig. 3. In all cases the channel band- 
width is assumed to be truncated to the interval F = { U :  

0 s w I 277 X lo7). The Shannon capacity shown in Fig. 3 
is therefore greater than the Shannon capacity computed 
for the same channel parameters in [3], since the results 
in [3] assumeAthat the channel bandwidth is truncated to 
the interval F = { w :  27r X 106/2 I w I 27r X lo7). This as- 
sumption was made in [3] because the chanqel model 
given by (41) is only accurate in the interval F .  Clearly, 
however, the channel frequency response for 0 I w I 
27r X 106/2 contributes significantly to both e r a t e  and 
Shannon capacity, although relatively speaking this contri- 
bution becomes less noticeable at high SNR’s, or values 
of 4 E / e 2  (i.e., 2 60 dB). 

Fig. 4 shows bounds and the approximation for e r a t e  
per channel vs. the coupling parameter k for a fixed 
~ E / E  = 30 dB. (The corresponding E-rates for the 2 x 2  
channel are twice those shown in Fig. 4.) Also shown in 
Fig. 4 are bounds on E-rate per channel along with the 
approximation assuming that the cross-channel coupling, 
or crosstalk, is treated as additive noise that is uncorre- 
lated with the transmitted signal. In particular, the output 
of Channel 1 can be written as 

yl(t> = h l l  * U l ( t ) + n X ( t ) + n b ( t >  (45) 
where n,(t) = h , ,  * u 2 ( t )  is the noise due to crosstalk, 
and nb( t )  is the background noise, where it is assumed 
that ((nb(( < ~ / 2 .  Consequently, the L ,  norm of the noise 
n,(t)+ n J t )  is upper bounded by 

. I  

I I I I I I I 

k 

Fig. 4. Bounds on erate per channel vs. coupling parameter k for 
2 E/E = 30 dB. Two sets of curves are shown assuming 1 )  coupled 
channels are treated as single two-input/two-output channel, and 2 )  
crosstalk between channels is treated as additive noise. 

where the last equality assumes that llu2112 I E2/2.  Two 
outputs of channel 1, with impulse response h,,(t), are 
tkerefore distinguishable i,f they are separated by E’ .  For 
H ( w )  given by (411, sup, Ih12(w)l occurs at w = (2/u1I2, so 
that 

(47) 

If the channels are treated independently, then the 
€-rate of both channels is given by the sum of the €-rates 
for each SISO channel, where E is replaced by E’. The 
lower set of curves shown in Fig. 4 therefore converge to 
zero as k becomes large. Note that if k is fixed, and if 
~ E / E  -00 ,  then the effective SNR, 4 E 2 / d 2 ,  converges 
to the constant la2e4/2k2, so that the upper and lower 
bounds on €-rates converge to constants. In contrast, if 
the two channels are treated as one two-input/two-out- 
put channel, then the €-rates increase with k. This is due 
to the fact that the channel output energy corresponding 
to any particular input increases with k. 

Fig. 5 shows approximate €-rates per channel given by 
(44) vs. ~ E / E  with cable length as a parameter. (A 
“cable” in this case refers to the two-input/two-output 
channel.) It is shown in the appendix that for both large 
and small 2 E / E, 

2 2 E  

C(  E )  = 3u2l27r In2 ( I n  T) ‘ (48) 

In particular, C(E) increases as the cube of log2(2E/E), 
and is inversely proportional to the square of the cable 
length. 
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Fig. 5. Approximations to €-rate per channel vs. 2 E / c  with cable 
length (in thousands of feet) as parameter. 

The results in Fig. 5 indicate that for the channel 
model considered, and for a desired rate of 1.0X106 
bits/s, the ratio of input power to output separation E / €  
should be approximately 45 dB for a 20-kft cable, and 
approximately 20 dB for a 10-kft cable. The previous 
analysis assumes, however, that transmission over the 
cable occurs in only one direction at a time (half-duplex). 
In the case of simultaneous transmission in both direc- 
tions (full-duplex), near-end crosstalk must also be taken 
into account [41, [lo]. 

It is interesting to note that the behavior of €-rate for 
large and small 2 E / c ,  as given by (481, is qualitatively 
different from the behavior of Shannon capacity for the 
same channel transfer function with additive Gaussian 
noise. In particular, it is shown in [3] that the Shannon 
capacity and cable length are linearly related for high 
SNR’s, and are logarithmically related for small SNR’s. In 
contrast, e r a t e  is inversely proportional to cable length 
squared for large ~ E / E .  In addition, Shannon capacity 
becomes a linear function of SNR as the SNR becomes 
large, and is a logarithmic function of SNR for small 
SNR, whereas €-rate varies asymptotically as the cube of 
log, 2 E / € .  

VI. CONCLUSION 

Upper and lower bounds on the €-rate of a linear, 
time-invariant MIMO channel have been derived by using 
the same volume argument previously used by Root [l l  
for SISO channels. Because these bounds are not very 
tight, we have also presented an approximation to the 
€-rate, which lies between the upper and lower bounds, 
and can be used to compare €-rates for different chan- 
nels. We add that the upper bound presented here can be 
improved upon [12]. 

The motivating application for this work is communica- 
tion in a multitwisted-pair environment in which crosstalk 
between twisted-pairs is a major channel impairment. The 
preceding bounds have been used to quantify the increase 
in €-rate that can be obtained by treating two coupled 
twisted-pairs as a two-input/two-output channel, rather 
than as two independent SISO channels. In the latter 
case, the crosstalk has been modeled as additive noise 
with unknown statistics. As shown in Fig. 4, the difference 
in €-rates for these two situations increases dramatically 
as the coupling constant k increases above the threshold 
of approximately 3 x IO-’. 

We have also considered the problem of allocating 
input power among M uncoupled SISO channels so as to 
maximize the e ra te .  The form of the optimal distribution, 
given by (33), depends on the set of receiver discrimina- 
tions, e j ,  j =  1;. . , M ,  and each SISO channel transfer 
function. This solution may be applicable to the situation 
in which the total input power to a MIMO channel is 
constrained, and the transmitter cannot coordinate the 
signals on each constituent SISO channel. 

A comparison between the e r a t e  and Shannon capac- 
ity has also been given for a model of two coupled 
twisted-pairs. The Shannon capacity was computed as- 
suming an additive white Gaussian noise with variance 
~ ~ / 4 .  The approximation to €-rate was found to be signif- 
icantly less than the Shannon capacity. The reason for 
this is that the e r a t e  assumes no statistical description of 
the noise, and therefore gives an estimate of maximum 
channel throughput that must apply to an entire class of 
noisy channels, as opposed to the Shannon capacity com- 
puted here, which specifically applies to the additive 
white Gaussian noise channel. Further comparisons of 
Shannon capacity and e r a t e  are given in [111 and [121. 

In the case of full-duplex transmission over multiple 
twisted-pairs, one of the major channel impairments is 
near-end crosstalk [4], [lo], which typically cannot be 
modeled as additive Gaussian noise. Assuming that this 
crosstalk interference is bounded in L ,  norm by E ,  then 
the e-rate can be used as an alternative to Shannon 
capacity for estimating maximum channel throughput in 
this situation. 
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APPENDIX 
BEHAVIOR OF €-RATE FOR LARGE AND SMALL ~ E / E  

We first consider the case of large 2 E / e ,  and study the 
behavior of the approximate formula (44). It is easily verified 
that (48) remains true if either the upper or lower bounds given 
in (43) are used instead. Since p ( w ) ,  defined by (42) ,  is a 
monotonically decreasing function of w for large enough w ,  
CS+m as 2 E / ~ + c o ,  where p ( & ) = e 2 / 4 E 2 .  For very large 
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2 a1 1 1 
rr In2 3 2 4 

2 E/€,  the approximation (44) therefore becomes 
I - 2 [ a 1 5 3 / 2  - (3 - - 6 3 / 2  + - k 2 1 6 3  - - k 4 [ 2 W s  

2E 2al 1 
C(€)  = - rr In2 (6 In - T 6 3 / 2  + -6 2 In62 ) (49) 

6 
where terms proportional to 6 have been discarded. Now (42) 
implies that 

a 1 6 3 / 2  - - -$/2 + (j 
3 

- € 2  

- -- 2a1 &3/2  C L ( & )  I. (50) = - 
4E2 

3rrIn2 (55) 

so that as 6 +m, where the approximations 

or 

1 1 
2 6 

In(l+ x )  = x - - x 2  and 

for x = 0 have been used. Combining (54) and (55) gives (48). It 
is easily verified that if E / €  > 1 and E/€ = 1, then the lower 
bound on €-rate given by (43a) can also be approximated by (48) 
where 2E  is replaced by E. The upper bound on C(E) ,  given by 
(43b), exhibits different behavior for small ~ E / E  since the last 
term on the right-hand side of (43b) becomes dominant as 
(I, + 0. 

arcsinx = x + - x 3  
In w - a 1 6  = In 5 (51) 2E  

1 2E  
a1 € 

&=-In-. (52) 

Substituting (52) into (49) gives REFERENCES 

2 2E  
3a2I2rr In2 ( In  t) 

2 2 E  
I I 

3a212rr In2 ( In  7) 
[41 

(53) 

[SI 

[61 

171 

for very large 2E/e. 
We now study the behavior of the approximation (44) when 

~ E / E  > 1 and ~ E / E  = 1. From the definition of (3 and (421, it 
follows that W = 0. Consequently, 

2 E  - 
(54) [81 - - ealJo - 

E 

and (44) can therefore be approximated as [91 

2 2 a1 
C(€)  = - 

rr In2 3 
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