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Abstract—We study the design of a dynamic auction for exchange. Indeed, in some cases the payments to the seller
sharing wireless spectrum between a primary high power user may be zero. This is further aggravated by the vulnerability

and one or more secondary low power users. In this market, the ot \ycG mechanisms to various types of misrepresentation
good being auctioned is transmission power which can be either d lusi hich all tth f th I

allocated to the secondary users for transmission or bought by and collusion w !C a_ are a € expense O_ e sefler.
the primary user to reduce her interference. In this setting, the These create an incentive for the seller to deviate from the

primary user may have a non-concave valuation, which prohibits alleged dominant strategy equilibrium. Such deviations would
applying standard designs of dynamic auctions. Moreover, a typically increase the welfare of the seller, but decrease the
policy concern in such settings is often to prevent collusion qyera| efficiency. In the formal construction of the auction,
and fraudulent bidding. Hence, Vickrey mechanisms may not this is. of . ibl th ler d tinfl th
provide the right incentives. We present a mechanism that selects IS1S, 0 Cour_se' 'mF"?SS' € as the seller does no _m uenc_e e
a core outcome that minimizes the seller revenue. Such anOutcome, butin practice the seller often has “outside” options
allocation is efficient in equilibrium, limits the incentives to use to limit participation and nullify unfavorable outcomes. This is
shills, maximizes incentives for truthful bidding, and is incentive in particular true for wireless spectrum markets, where even in
compatible when the Vickrey outcome is in the core. the most favorable circumstances there is a positive probability
|. INTRODUCTION that technical issues may come up, and there_is informationgl
ﬁymmetry that favors the seller as to the circumstances in

for allocating wireless spectrum results in poor utilization oWh'Ch r:hls hztipptlans.thMoreovter_,d glviantthz_it a ?;rateglc ?eller
this resource. One way to improve on this is to allow fop2y Choose 1o play these outside strategies, other agents may

spectrum to be allocated on a finer scale both in time ag \i/e ﬁnv\:niﬁnt'\\//ecg rgev;]atﬁi f:;)mhtk\]/elr nlri]r?rl1der nstt:?]t?g;)e”?t'
space, e.g. by a “real-time spectrum market” [1]. Auctions a atsiiq 0 ?tha com ecvan 3vhsn ?he i?\ id ?ne h rﬁam hg
a natural approach for implementing such a market (e.g. [ pact the outcome eve en the Inside mechanis S

[3]). In this paper, we consider an auction design proble pminant strategies. i
motivated by this application. One attempt to address these reservations would be to

The prime objective of auction design is to construct gesign auctions that would maximize revenue rather than

mechanism through which one or more goods are allocated §@cial Welfare. The revenue equivalence theory implies that
tween several agents in the presence of information asymnff%r- a smgle indivisible unit auction this would conflict with
try. Vickrey-Clarke Groves (VCG) theory shows that in sucROth efficiency and truthfulness. [5], [7] show that the same
settings efficient outcomes can be obtained through a truthf'u€ in the wider settings. Moreover, it would still leave in
mechanism. [4] show that this mechanism is essentially unigBiéce the sellers outside options undermining stability. Our
and the revenue equivalence theorem of [5] guarantees tlpg{)fj,ectlve is therefore to find optlmadtqble allocation and
when allocating a single good, these merits do not come at fiyment schemes und_er these constraints. ] ) )
expense of the seller, as her revenue in a second price auctiofflore precisely, consider the class of mechanisms, in which
is equal to the expected revenue in a first price auction or §&ch agent submits a valuation function. The seller can then
any other reasonable mechanism. choosg a subset of agents thgt she Would I|I§e to service,
However, in multiple unit and combinatorial auctions, whic®"d price them at a level that is below their bid. In such a
naturally arise in spectrum sharing, the merits of VCG mecflechanism, the seller has the option to turn down all agents
anisms may certainly come at the expense of the seller. Mz‘”e the agents are committed to any price below their bid.
selling through an auction, a seller is committing to both allg-"€ appropriate solution concept in this case iscitre, the set
cations and payments dictated by the mechanism, regardles8fc!l outcomes, namely, allocations and payments, for which
the share of wealth (namely, the payments) that are transferH3@re is no welfare improving deviation by a coalition of agents

to the seller from the overall value that is created by this
1see [6] for a more detailed discussion of these shortcoming of VCG
This research was supported in part by NSF under grant CNS-0519935nechanisms.

It has become widely recognized that the current approa%



including the sellef. In other words, the core consists of allsketch the proof of Theorem 1 due to space limitation. Our
the outcomes for which there is no coalition of bidders thagsult holds in both discrete and continuous time settings.
could create more value than is suggested by the allocatidime former requires additional tie breaking rules which add
This in particular implies that the allocation is efficient, theinnecessary difficulties to the analysis. We therefore do the
bidders cannot benefit from shill bids or collusions, and trenalysis for a continuous time auction.
seller cannot benefit from excluding bidders (though she can
of course allocate them nothing) [8]. Il. WIRELESSSPECTRUMMARKETS
The core in most cases is a large set and the strategiG\Ve are interested in auctions for allocating wireless spec-
behavior of the agents depends on the way we choose a aenen on a finer scale in both time and space than un-
allocation. Whenever the VCG outcome is in the core it cafer traditional licensing. Such auctions would be run by a
be shown that it is a core outcome that minimizes the reventgpectrum manager” for a given frequency band/geographic
to the seller [8]. [8] and [9] also show that a mechanismarea (see, e.g. [2], [3]). This managers task is essentially
that selects a core allocation of tireported valuations that to allocate one or more wireless resources (e.g. bandwidth,
minimizes seller revenue, has a full information equilibriumpower) among multiple users of the spectrum. Such resource
in the core of therue valuations, which is therefore efficient.allocation problems have been well-studied within the context
Our focus in this paper is on an auction for a singlef cellular systems in which the cellular operator is responsible
divisible good. In this setting, Ausubel’s Clinching Mechanisrfor managing the resources. A key difference in spectrum
[10] provides a dynamic auction which finds a core outcommaarkets is that the potential users of the spectrum are not
that minimizes seller revenue when all agents have concak part of the same network and may have quite different
valuations? Indeed, for that case the VCG outcome is alwayiequirements of the spectrum that are not known by the
in the core and so this mechanism also finds the VCG outcomeanager. For example there may be “large” primary user who
In the wireless spectrum market considered here one of tlegjuires high power to broadcast a signal to many users and
agents may not have a concave valuation, due to interferetismall” secondary users which only need to transmit a signal
from the other users. In this case, our objective is to agaim a single nearby destination. To capture this we consider a
construct a dynamic mechanism that finds a core outconmgodel in which there is one primary agent and one or more
which minimizes seller revenue. The mechanism we presegicondary agenfs.
will be a type of dynamic ascending auction that extends theThe first question to ask in designing a spectrum market
Ausubel Clinching mechanism to the case where one biddsr“what is the good being allocated’? There are several
has a non-concave valuation. possibilities here. For example, the manager could divide the
. band up into orthogonal frequency bands and auction each
A. Main Results sub—bar?d off to on(gJ agent. (\thiIeythis makes the allocation
The non-concavity of an agent’s utility or equivalently thgyroplem relatively straightforward, it puts sever restriction on
complementarity of the commodity is a problem that has $gquency reuse. An alternative, which we adopt here, is for
far been largely ignored by the literature. Ausubel conditionsach user to spread its transmission across the entire band as
his auction on concave utility and therefore cannot apply, a code-division multiple access (CDMA) system. In this
moreover his auction uses one trajectory to discover markgfse the resource to be allocated is power and not bandwidth.
clearing price [10]. This allows for frequency reuse, but also results in externalities
We construct a new auction, termed falback auctionfor  among the users due to interference.
multiple identical goods where one designated agent may havgre precisely, we consider a model withagents, where
a non-concave valuation. It is based on Ausubel’s ascendi8gch agent is represented by a distinct transmitter-receiver pair.
auction. Our main result is stated below. An example of two such agents is shown in 1. Let agehe
Theorem 1:When all agents but one have concave utilityhe primary agent so that agerts...,n are the secondary
functions, the Fallback auction has a full information equilibagents_ As in [3], we assume that the utility derived by each
rium in the core. agent; is a function of the receive8ignal-to-Interference and

B. Paper Structure Noise Ratio (SINR)

In section Il we describe the specific setting which motivates vi(q) = Gihii
. . . . 7 -
our main result. Section Il introduces the Fallback auction 02+ 37,2 ahji
along with Ausubel’s ascending auction. Examples of the

Fallback auction follow in Section IV. In Section V we onlyWhereq = {a} is vector of transmission powers across all

, fori=1,2 (1)

agents,o? is the noise power andl;; is the channel gain for

2In our setting, any coaliion to which goods are allocated must clearfj@nsmitteri to receiverj. The externality that agent causes
include the seller. Hence, when we refer to a coalition of bidders, we implicitly
assume that the seller is included. 40ne possibility is that the primary agent has an exclusive license that
3By a dynamic auction, we mean an auction in which the outcome [sohibits other large users from using the spectrum but does allow smaller
determined by a dynamic bidding process as in the traditional Englisecondary agents. In our model if multiple primary agents where allowed
(ascending bid) auction as opposed to a one-shot sealed bid auction. Seetfi€)j they could free ride on each other. In that case efficiency could only be
for a discussion of the advantages of such auctions. obtained through additional contracting.



@ h, @ [1l. THE MODEL
- h } We next give a model for an auction setting which abstracts

. the key features of the spectrum market described in the
previous section. A seller wishes to allocate one unit of
divisible good among: agents. Agent obtains utility U, (x)

by, from consuminge < 1 units of the good. Utilities are assumed
™ ' ” RD to be private and quasi-linear with derivative. When all
h,, U; are concave, Ausubel’s ascending auction can be used to

allocate the good [10]. In this auction, sincere bidding is a
Fig. 1. Interference channel with two transmitter-receiver pairs ~ dominant strategy that leads to ar post perfect equilibrium
and the VCG outcome is obtained. We describe this ascending
auction in detail before we introduce our Fallback auction. For
expositional convenience we assume {igs to be strictly

agent; is due to the interference tergah;; in this expression.
concave.

Letting U;(~;) denote agent’s utility, an efficient allocation
of powerq maximizes) ., U (7). A. Ausubel's Ascending Auction

We assume that the primary user transmits at a fixed power
q1 and is guaranteed that the interference from the secondaryf p is the per unit price of the good, strict concavity of
users does not exceed a given levgl*®. The spectrum U;(x) implies that
manager’s task is then to allocate this total received power at
the primary user’s receiver i.e. the total power of the secondary z;(p) = arg Jnax Ui (x)—p-z 3)
users is constrained to satis}y;- , ¢ihi1 < ¢"™**. We also
allow the primary use to participate in this auction. Eaci$ unique for any pricev. Let z;(p) be agenti’'s demand at
unit of power the primary user is allocated corresponds topsicep. Notice thatz;(p) is continuous and strictly decreasing.
reduction in the total interference it will see, i.e. if it receivedn addition,z;(0) = 1 andxz;(p) — 0 asp — oo.
a unlts of power, its total interference will bg**® — ¢1. Let Initially the price is set to) and increased continuously.

x1 = qmm andz; = g i represent the normalized resourceét each pricep, each bidder; is asked to report her de-

max )

allocated to each agent, so that the resource constraint carifi@d. We assume that each agent reports her demgpil

written as) ", z; < 1. obtained from (3) truthfully. We show later that this truthful
The utility function U;(v;) is assumed to be a monotonid€Port is incentive compatible in Ausubel's ascending auction.

increasing concave function of for all i. However, it is more Whenever the sum of demands from all agents is larger

useful to consider this as a function of. For each agent than supply (one unit of good), namely.;" , z;(p) > 1,

i > 1, we assume that the interference from the primary usée auctioneer or the seller increases the price. The auction

is much larger than the interference from any secondary ust@rmmates when the market clearing prige is reached, at

so that which p* SatISfIESEZ 1 z;(p*) = 1. Notice that the existence
T Qm}a;hn of such a price follows from the the fact that(p) for every
Yi(wi) ~ %, agent is continuous and decreasing.
0%+ qiha;

As the price increases fromp to p + Ap, each agent
in which case clearlyU;(z;) will also be a monotonically i clinches, i.e., is allocated additional quantityC;(p) =
increasing concave function af;.> On the other hand for C;(p + Ap) — C;(p) with the paymentp - AC;(p) to the
Agent 1, we have auctioneer. Here(;i(p) = [0,1 — ., z; (p)]* is the total
clinched quantity of agent at pricep. If p~* is the market
clearing price when ageritis excluded, it is easy to see that
Ci(p) = 0 for all p < p~*. Hence, the total payment of agent
in which casel/; (1) will again be an increasing function ofi for the clinched quantity”;(p) up to the pricep > p~* is
x1. However, U, (z;) can be a convex function of; if the the following:

following relation holds:
g PM(p) = / Ty, / e L)
d?Uy (z1) hiigi(¢™")? {d2U1 dUy } <0 ’ 0 dp pi dp '

q1hi1
0-2 + qmax(l _ xl)’

71(551) =

9 ¢Y1
d’y2 nt dm

dm% (0-2 + qmam(l _ xl))3

k)
(2) Notice also thap~* < p* andz;(p~*) > z;(p*) for all j # i.
or equwalently if the coefficient of relative risk aversion, When Ausubel's ascending auction ends with the market
“U[{l(ﬁ)l , is less thar2 for all ;. clearing pricep*, the final allocation of one unit of good
among agents is socially optimal, nhamely maximizes sum of

5 there is more than one secondary user and the interference from @l@ agents’ utilities. Now we show that the total payment
other secondary users is not negligible, this once again users may free ridé/(p*) of agenti after the auction ends is the same as the




VCG payment. The VCG payment for agenis given by ~ Algorithm 1 Ausubel’s Ascending Auction

4 Initialization :
PYC =N "U(a;(p7) = Y Uyl (p7)- G pe0; UL U 0 a2 1 forij=1,...,n
i i# Dynamic:
Using information revealed from the agents during the auctionwhile _7" | z; > 1 do
and the first order condition;(z;(p)) = p for all j, the VCG p—p+Ap
payment becomes Ask each agent her demang for price p.
2y (o) x; «— max{x;, 1 — Zj#a:j_ ;ox; — xy fori =
PiVCG — Z/ UJ(.’E)dLU (6) 1,...,n
j#i 2w () Uz — U +p- Az,
o iz, if Eij# zj=1 t.hen.
= - [ wlwen e @ UL U, for j A
j#i p—* P end if
P s end while
= - / »pd—jdp (8) Pﬂ—Ej#(Uj—UJ’?) fori=1,...,n
G ot AP Return (x1,...,x,) and(Py,...,P,)
PAY, )
= —/ == dp, ©)
i p

. , of her utility function. Hence agent 1's demand at price that
which is the same as the payment (4) at pyice Therefore, exceed®'® can be less than what she has clinched. In Ausubel’s

the ascending auction with concave utilities generates the V%g’cending auction an agent is not allowed to relinquish her
outcome. Moreover, the truthful report of demandp) atthe  gjincpy it agent 1's utility is convex, her surplus is forced to be

given price is incentive compatible for all agents [4]. zero or negative creating an incentive to deviate from sincere
So far we have not considered the payment of an ageﬁ?&ding

appropriately in (3). When the auctioneer asks ageénmtreport

‘ The Fallback auction surmounts this difficulty by allowing
her demand at the current price, we assume that each a

o . nt 1 and only agent 1 to relinquish some of the units she
reports thez; (p) that maximizes;(z) —p - . However, this paq aiready clinched. If a Fallback price (defined below) is

ignores the fact that agentmay already have clinched som&g,ched, we allow agent 1 to choose some smaller quantity
quantities by the time the price in the auction has reaghétl i cheqd earlier and the auction terminates. The relinquished

fact, _agentz' has clinched”;(p) > 0 V\_/i'_[h the paymentP/(p) units from from agent 1 must then be reallocated to the other
at pricep. She only pays for the additional amount of deman&gents.

x; — C;(p) at the unit pricep, wherez! is agenti’s demand

)€ ; Definition 1: p* is called a fallback price if
that maximizes the following surplus;(z, p):

limy, ~pt >oi; 2;(p) > 1 andq(p) = 0 for all p > p'.

mi(z,p) = Ui(z)—p-[z— Ci(p),0]" (10) To gnderstand when a fallback occurs, suppose that agent
P dCy(p) 1 decides to fall back at some prige At this price agent
- / dp dp. 1 is free to choose any quantity clinched earlier, i@.(p’)
0

o wherep’ < p. Agent 1's surplus from choosing (p’) would
As we can seeg;(p) = xz;(p). This is because the paymenie U(Ch () — [7, pdffg(p) dp. Clearly, she would choose
of agent does not depend on her bidding strategy (demangy yrice L ; ; ;
ade ] pricep’ that maximizes this surplus. This motivates the
This is the main reason that the truthful report of demangiowing definition.
is incentive compatible in the ascending auction. Note thatpefinition 2: The pricep* that solves
concavity of the utility function means that;(p) > C;(p)
throughout the auction. The following algorithm 1 describes max  m(p)

) ! pt>p>p~!
the ascending auction. P dCi(p)

= max U1(Cl(p>)_/7lp dp ap

B. The Fallback Auction pt>p>p~t »

The Fallback auction modifies Ausubel's ascending auctids called thesecurityprice.
to account for the presence of a single agent with a non-The security price is the price that agent 1 chooses to
concave utility function, henceforth called agent 1. All othemaximize the surplus; when she falls back. Therefore, the
agents have strictly concave utilities. In this case there mégllowing equality holds at the fallback price:
be no pricep such thaty_;" , z;(p) = 1. The difficulty arises — X
becauser; (p) while non—inc}easing, may have discontinuities. mp) =m@), (11)
Namely, there may be g such thatim, -, >, z;(p) > 1 where7 is the potential surplus agent 1 would receive if she
and Y !, z;(p) < 1 for all p > p’. This means there is anwas allocated her entire demand(p’) (see the example in
excess supply when the auction reaches the pricept. I Section 1V). Note that in the definition of the security price,
addition, z1(p) = 0 for all p > p' because of non-concavitythe surplus maximization could be taken over the interval




[p~1, 00). If the Fallback auction terminates at prige where Algorithm 2 Fallback Auction

S xi(p*) = 1, the resulting allocation and payments Initialization : '

coincide with those of the ascending auction. In particular, thefallback flag down ;p < 0 ; U;,U; < 0 ; zj,z; < 1 for
VCG outcome is obtained. If the Fallback auction terminates at,j = 1,...,n

a fallback price, namely* = p', then the auctioneer allocates Dynamic:

the quantityz;(p*) to each agent > 2 and the amount while 37, z; > 1 and fallback flag downdo

1—>,5,zi(p*) to agent 1. p—p+Ap
Once the auction ends, the payment that agent 1 makes for ask each agent her demangfor price p.
the allocationC (p*) is if 21 >1-3%,,,2; then
. x; — max{x;, 1 -3 . a }; x; — x; fori =
0 dp Uy—U;+p Ax; fori=1,...,n
To describe the payment for agent 2, we first modify the if Z#i z; =1 then
definition of p~*. If the Fallback auction was applied only to U}' — U forj#i
the agents among \ ¢ and terminates in a market clearing end if
price, thenp~ is that market clearing price. Otherwise, it else
is the relevant security price. The payment that agent 2 fallback flag up
makes is then P — Z#I(U; _ U;')
P o P—pax,+U, —-Uffori=2,....n
pPf® = p' lim wi(p)*/ p——dp (13) g —atfori=1,....n
P Jpe - dp endif
= 7 '1}22,, zi(p) + Ui(@:(p")) = Us(wi(p")). ask agentl if p is secure.
The payment consists of two terms. The first is the demand, i y*es ¢ :f b Fhen
charged at a rate gf per unit and the second is the increase Ii*(_ i for e = L.
in agenti’s utility for the quantity re-allocated to her when Ui. —Uifori=2,....n
agent 1 falls back. A pseudocode description of the complete end nf
Fallback auction is given in Algorithm 2.. gnd while
if fallback flag downthen
IV. EXAMPLES P —32,4(Uj = U;)fori=1,...,n
We explain the Fallback auction with the following example. €nd if
Example 1:Consider the allocation of one unit of a di- Return (z1,...,z,) and (P, ..., Py)
visible good between three agents with the following utility
functions:
1, 11
U(e1) = 321+ 3571 (14)  clinch. Agents 2 and 3 demand the quantities for which their
Us(zy) = 29 — a2, (15) margir.1als. exceed the price, arp(p) = x3(p) = 1 — L. If
Us(zs) = 2a5— a2 (16) the price is0 < p < 1, sum of demands for any two agents

exceeds the supply and therefore no agent clinches to anything.
VCG Outcome: The efficient allocation is the solution to theFor 1 < p < 2 the total demand of agents 2 anda3,(p) +
following maximization problem: z3(p) = 2 — p drops below 1, and agent 1 begins to clinch
1, 9 9 C1(p) = p — 1. This continues until agent 1 falls back or the
max oy + o1+ 202 — 25 + 225 — 73 (A7) price reacheg = 2 for which the demand of 2 and 3 drops
st. x1+xot+w3=1; x1,29,23 >0 (18) to zero and the market clears. The clinch rate in this interval

. o . is constant, namely2<1() — 1,
Since agents 2 and 3 have identical concave utility, the solution 9p

should bezy = 25 = 1—73” andz; = z. The maximization ~ Assuming agent 1's demand,(p) = 1) is satisfied without

problem is then equivalent to fallback, the potential surplus of agent 1 at pricis therefore
1 11 1-— 1-—
max x3+x+2{2( x)_( 33)2}7 (29)

0<z<1 3 10 2 2 _

o . . Ti(p) = Ui(zi(p)) —p- [z1(p) — Ci(p)]
which gives the optimal allocatiom; = 0.1127 and z, = P 9C (p)
z3 = 0.44365. Moreover, the VCG payments of all the agents - / 5, P (20)
can be calculated easily and are given®y-® = 0.1191 and 43 ! p »
PYCC — pYyCG — (.6184. = 5P 2-p)- / pdp (21)

e . 1

Fallback Outcome Agent 1 has a convex utility function and 1, 29

her demand is:; (p) = 1 until she falls back to her security = P —2pt (22)



On the other hand, the surplus of agent 1 given her actsgller is not inS, thenz; = @. That is, a bidder can have

clinch is given by a non-null assignment when coalitiof forms only if that
P 90 (p) bidder and the seller are both in the coalition. The coalition
m(p) = Ui(Ci(p)) — / P R dp (23) value function or characteristic function is defined by
1
(p—1)3% 11 p? 1 wy(S) = max Uj(z;). (34)
The security price is then obtained by If the payment of the auctio®; is made to the seller by each
p* = argmax{m(p):st1<p<?2} (25) agentj, then the assouated payoffs are given W_

for the seller andr; = U;(z,;) — P; for each bldde['] The
_ 3- F =1.1127. (26) payoff profile is individually ratlonal ifr; > 0 for all j.
An imputationis a feasible, non-negative payoff profile. An
The Fallback auctlon, therefore, has the following dynamicsnputation is in the core if it is efficient and unblocked:
As the price rises above = 1, agent 1 begins to clinch. Her

surplus increases until = p*, at whichm (p*) = 0.0054. As Core(n, w) 7> 0] Z” — w(
the auction continues, however, the security price of agent 1 em !
remainsp* = 1.1127 since the surplus decreases with- p*.
The price continues to increase until it reaches the fallback and(VS C n) Zﬂj > w(S)} (35)
price p’. At this price,71(p') = m1(p*), or ics
1.( 2 —2.pt+ 2 _ = m1(p*) = 0.0054, (27) Now we consid_er the Fallbgck auct.ion. If the Fallback
2 15 auction (i.e. Algorithm 2) terminates with the fallback flag

which gives the fallback price! = 1.6202. Once agent 1 down, it is equivalent to Ausubel's Ascending auction. We
falls back to the allocation at the security price, the auctidgherefore assume the algorithm terminates with the fallback
terminates and the final allocations among agents are ftag up, and prove that we obtain an equilibrium outcome in
following: the core. This is done in several steps. First, we show that the
resulting allocation of the Fallback auction is efficient under

a(p®) = p . = 0.1127, (28)  truthful bidding. Second, for two agents, the VCG outcome is
zo(p*) = 1-— r _ — 0.4436, (29) obtained. Especially, the payments of all agents are the same
2* as the VCG payments. From a standard argument (see for
z3(pt) = 1-— P _ 4 .4436. (30) example [6] or [11]).it .follows., that bidding truthfully is an
2 ex-post perfect equilibrium. Finally, we show that for> 2
At the fallback price, the demands of agent 2 and 3 aegents, the truthful bidding outcome of the Fallback auction
xo(pt) = w3(p') = 1 — & = 0.1899 and the payments of lies in the core with the seller's minimum payoff. From [12],
the agents when the auctlon ends are then: the bidding strategies of the agents according touacation
r a0 profile is a full information equilibrium.
PB = / p 1(p)dp:0,1190’ (31) Lemma 2:Assuming truthful bidding among agents, the
1 Ip allocation of the Fallback auction is efficient.
Py® = 2x5(p*) — (x2(p"))* — 222(p") Proof: We show thatrs(p*),...,z,(p*) andzy(p*) =
+(za(p))2 +pt - o (ph) = 0.6543, (32) 1-— 2722 x;(p*) are solutions to the following maximization
P = 0.6543. (33) ProblemIL
V. FALLBACK AUCTION AS A CORE-SELECTING AUCTION max U (z1) + Z Ui (z) (36)
As shown in Section 1V, the final allocations of the Fallback i=2
auction are the same as the VCG allocations, which maximizes
the sum utilities of the agents. This is only possible when St Z”‘V =1

agents reveal their demand truthfully. However, the payment
of every agent except agent 1 is not the VCG payment, and
therefore sincere bidding (truthful reporting) is not a dominastor given@ < [0, 1], consider the following problem.
strategy. Instead, we prove that the Fallback auction with "
truthful bidding leads to a core allocation with minimum total FQ) = maxz Us(a; 37)
payment to the seller.

We repeat some of concepts from [8] since we heavily rely
on those to prove Theorem 1 in the Fallback auction. For any s.t. in =Q
coalition S, an assignmenit is feasible for coalitior, written —
xe F(S),if (1) Y ,z; <1 and (2) for allj, if j ¢ S or the x; >0Vien\ {1}

z; > 0Vien.



There is a Lagrange multiplierthat corresponds to the markets anex post perfect equilibriurof the Fallback auction that
clearing price such thaf) units are distributed among thereturns the VCG outcome. ]

agentsn \ {1}. Therefore, F(Q) = > ", U;(z;(p)). For

In [8], Day and Milgrom argue that core-selecting auctions

example, wherf) = 1, the corresponding Lagrange multipliethat minimize the seller's payoff maximize incentives for

is p~1. Now the problemII can be reformulated as
max Uy (1 — > wi(p) + Y Uilai(p)). (38)
p=p i>2 i>2

The objective function can be expressed as

0= o) + 3 [ o) g

i>2 i>2 P
P dCi(p)
P dp

— UL(Cu(p) — / dp.  (39)

p—1
and this is maximized by the security prige (See Definition
2). ]

truthful reporting and they produce the Vickrey outcome when
it lies in the core. Theorem 3 in [8], especially, shows that a
truncation report is a full information equilibrium. For a given
a > 0, a truncation report for agentcorresponds to that agent
reporting ana-truncation of her true utility, i.eU;(z;) — o
From the following Lemma, we show that the Fallback auction
minimizes the seller’s payoff and the payoffs of all agents lies
in the core.

Lemma 4:For n > 2, if all agents bid truthfully, the
Fallback auction finds an imputation in the core with minimum
payoff of the seller.

We omit the proof of Lemma 4 here due to space limitation.
The bidding strategies of the agents according to the profile

Lemma 3:Supposen = 2 and agent 1 has an increasings . truncations of U;(z;) for all i is, therefore, a full

convex utility function. Then truthful bidding is aex post information equilibrium in the Fallback auction and this leads
perfect equilibriumof the Fallback auction that charges thg, the efficient outcome.

VCG payment to each agent.

Proof: When the fallback flag is up, the payment of agent, e profile of;

1lis
7 dCi(p) . [ dCi(p)
PP = /O pdpdp—/plp iy % (40)
= Us(xa(p™")) — Uz(z2(p")), (41)

Corollary 5: The bidding strategies of the agents according
truncations ofU;(z;) for all 4 is a full
information equilibrium in the Fallback auction.

Proof: The allocation of the Fallback auction with
truthful bidding is a bidder optimal allocation according to [8].
Therefore, the bidding strategies of the agents according to the
profile of «; truncations ofU;(z;) or U(z;) = U;(x;) — m;

which is by definition the VCG payment. Moreover, thds a full information equilibrium in the Fallback auction

payment of agent 2 is given by equation (13):
P3®=p' - lim, wa(p) + Ua(22(p")) = Us(w2(p"))- (42)

From the definition of the fallback pricet; (z1(pt),pt) =
w1 (z1(p*), p*). Namely,

Ui(1) —p' - (1= Ci(p")) —/Op pdcdl;p)dp (43)
D s LI VY

or
Ui(1) = p" - z2(p") =U1(x1(p*))+/f pd(illﬁfp)dp (45)

= Ui(21(p")) + Uz(22(p")) — Ua(22(p")). (46)

Here, we use the following facts in the auction:(pt) = 1

and C; (p') = 1 — z5(p?). Therefore, the payment of agent 2

becomes

PP =U (1) = Ur(z1(p")) = Ur(z1(p~?)) — Ur (21 (p")),
(47)
and this is exactly the VCG payment of agent 2. koe 2,

(See Theorem 3 in [8]). The only part left for the proof of
Corollary 5 is whether the Fallback auction with(z;) gives
the same allocation as that witt;(z;). As the unit price
goes up from0, each agent asks for the quantityr; =
arg maxo<z,<1 Ui(2;) —p-x; = arg maxo<g, <1 U (x;) —m; —

p - x;. Therefore, each concave agent asks for the exact same
guantity as if it responds according to it's true utility except
that at a certain pricg, it's demand suddenly becomes zero.
We also need to show that> p* > p* for all concave agents,
which can be easily done sinege = U;(z;(p")) — p' - z;(p")

for Vi € n. ]

V1. CONCLUSIONS ANDOPEN PROBLEMS

We studied an auction model motivated by spectrum sharing
in which there is one bidder with a non-concave valuation and
n — 1 bidders with concave valuations. For this setting we
presented the Fallback auction, a dynamic auction which has
full information equilibrium in the core. Fat = 2 agents
this is also the VCG outcome; for > 2 agents it is the core
allocation which minimizes the seller’s revenue. This auction
dynamically elicits information from the agents to determine
an efficient outcome. It would be of interest to determine if this
is the minimal information that must be elicited for obtaining

the Fallback auction with truthful bidding reaches the efficiemn such an outcome. Though in the spectrum sharing model
allocation with the VCG payment. From [4], any incentivave presented only one agent has a non-concave valuation; it
compatible, individually rational and efficient mechanism mustould also be of interest for other applications to extend these

charge VCG payments. Therefore, for= 2, truthful bidding

ideas to models with more than one non-concave valuations.
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