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Abstract— We study the design of a dynamic auction for
sharing wireless spectrum between a primary high power user
and one or more secondary low power users. In this market, the
good being auctioned is transmission power which can be either
allocated to the secondary users for transmission or bought by
the primary user to reduce her interference. In this setting, the
primary user may have a non-concave valuation, which prohibits
applying standard designs of dynamic auctions. Moreover, a
policy concern in such settings is often to prevent collusion
and fraudulent bidding. Hence, Vickrey mechanisms may not
provide the right incentives. We present a mechanism that selects
a core outcome that minimizes the seller revenue. Such an
allocation is efficient in equilibrium, limits the incentives to use
shills, maximizes incentives for truthful bidding, and is incentive
compatible when the Vickrey outcome is in the core.

I. I NTRODUCTION

It has become widely recognized that the current approach
for allocating wireless spectrum results in poor utilization of
this resource. One way to improve on this is to allow for
spectrum to be allocated on a finer scale both in time and
space, e.g. by a “real-time spectrum market” [1]. Auctions are
a natural approach for implementing such a market (e.g. [2],
[3]). In this paper, we consider an auction design problem
motivated by this application.

The prime objective of auction design is to construct a
mechanism through which one or more goods are allocated be-
tween several agents in the presence of information asymme-
try. Vickrey-Clarke Groves (VCG) theory shows that in such
settings efficient outcomes can be obtained through a truthful
mechanism. [4] show that this mechanism is essentially unique
and the revenue equivalence theorem of [5] guarantees that,
when allocating a single good, these merits do not come at the
expense of the seller, as her revenue in a second price auction
is equal to the expected revenue in a first price auction or in
any other reasonable mechanism.

However, in multiple unit and combinatorial auctions, which
naturally arise in spectrum sharing, the merits of VCG mech-
anisms may certainly come at the expense of the seller. By
selling through an auction, a seller is committing to both allo-
cations and payments dictated by the mechanism, regardless of
the share of wealth (namely, the payments) that are transferred
to the seller from the overall value that is created by this
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exchange. Indeed, in some cases the payments to the seller
may be zero. This is further aggravated by the vulnerability
of VCG mechanisms to various types of misrepresentation
and collusion which all are at the expense of the seller.
These create an incentive for the seller to deviate from the
alleged dominant strategy equilibrium. Such deviations would
typically increase the welfare of the seller, but decrease the
overall efficiency. In the formal construction of the auction,
this is, of course, impossible as the seller does not influence the
outcome, but in practice the seller often has “outside” options
to limit participation and nullify unfavorable outcomes. This is
in particular true for wireless spectrum markets, where even in
the most favorable circumstances there is a positive probability
that technical issues may come up, and there is informational
asymmetry that favors the seller as to the circumstances in
which this happens. Moreover, given that a strategic seller
may choose to play these outside strategies, other agents may
have an incentive to deviate from their ”inside” strategies.
This shows that VCG mechanisms have an inherent instability
that impact the outcome even when the inside mechanism has
dominant strategies.1

One attempt to address these reservations would be to
design auctions that would maximize revenue rather than
social welfare. The revenue equivalence theory implies that
for a single indivisible unit auction this would conflict with
both efficiency and truthfulness. [5], [7] show that the same
is true in the wider settings. Moreover, it would still leave in
place the seller’s outside options undermining stability. Our
objective is therefore to find optimalstable allocation and
payment schemes under these constraints.

More precisely, consider the class of mechanisms, in which
each agent submits a valuation function. The seller can then
choose a subset of agents that she would like to service,
and price them at a level that is below their bid. In such a
mechanism, the seller has the option to turn down all agents
while the agents are committed to any price below their bid.
The appropriate solution concept in this case is thecore, the set
of all outcomes, namely, allocations and payments, for which
there is no welfare improving deviation by a coalition of agents

1See [6] for a more detailed discussion of these shortcoming of VCG
mechanisms.



including the seller.2 In other words, the core consists of all
the outcomes for which there is no coalition of bidders that
could create more value than is suggested by the allocation.
This in particular implies that the allocation is efficient, the
bidders cannot benefit from shill bids or collusions, and the
seller cannot benefit from excluding bidders (though she can
of course allocate them nothing) [8].

The core in most cases is a large set and the strategic
behavior of the agents depends on the way we choose a core
allocation. Whenever the VCG outcome is in the core it can
be shown that it is a core outcome that minimizes the revenue
to the seller [8]. [8] and [9] also show that a mechanism
that selects a core allocation of thereported valuations that
minimizes seller revenue, has a full information equilibrium
in the core of thetrue valuations, which is therefore efficient.

Our focus in this paper is on an auction for a single
divisible good. In this setting, Ausubel’s Clinching Mechanism
[10] provides a dynamic auction which finds a core outcome
that minimizes seller revenue when all agents have concave
valuations.3 Indeed, for that case the VCG outcome is always
in the core and so this mechanism also finds the VCG outcome.

In the wireless spectrum market considered here one of the
agents may not have a concave valuation, due to interference
from the other users. In this case, our objective is to again
construct a dynamic mechanism that finds a core outcome,
which minimizes seller revenue. The mechanism we present
will be a type of dynamic ascending auction that extends the
Ausubel Clinching mechanism to the case where one bidder
has a non-concave valuation.

A. Main Results

The non-concavity of an agent’s utility or equivalently the
complementarity of the commodity is a problem that has so
far been largely ignored by the literature. Ausubel conditions
his auction on concave utility and therefore cannot apply,
moreover his auction uses one trajectory to discover market
clearing price [10].

We construct a new auction, termed theFallback auction, for
multiple identical goods where one designated agent may have
a non-concave valuation. It is based on Ausubel’s ascending
auction. Our main result is stated below.

Theorem 1:When all agents but one have concave utility
functions, the Fallback auction has a full information equilib-
rium in the core.

B. Paper Structure

In section II we describe the specific setting which motivates
our main result. Section III introduces the Fallback auction
along with Ausubel’s ascending auction. Examples of the
Fallback auction follow in Section IV. In Section V we only

2In our setting, any coalition to which goods are allocated must clearly
include the seller. Hence, when we refer to a coalition of bidders, we implicitly
assume that the seller is included.

3By a dynamic auction, we mean an auction in which the outcome is
determined by a dynamic bidding process as in the traditional English
(ascending bid) auction as opposed to a one-shot sealed bid auction. See [10]
for a discussion of the advantages of such auctions.

sketch the proof of Theorem 1 due to space limitation. Our
result holds in both discrete and continuous time settings.
The former requires additional tie breaking rules which add
unnecessary difficulties to the analysis. We therefore do the
analysis for a continuous time auction.

II. W IRELESSSPECTRUMMARKETS

We are interested in auctions for allocating wireless spec-
trum on a finer scale in both time and space than un-
der traditional licensing. Such auctions would be run by a
“spectrum manager” for a given frequency band/geographic
area (see, e.g. [2], [3]). This managers task is essentially
to allocate one or more wireless resources (e.g. bandwidth,
power) among multiple users of the spectrum. Such resource
allocation problems have been well-studied within the context
of cellular systems in which the cellular operator is responsible
for managing the resources. A key difference in spectrum
markets is that the potential users of the spectrum are not
all part of the same network and may have quite different
requirements of the spectrum that are not known by the
manager. For example there may be “large” primary user who
requires high power to broadcast a signal to many users and
“small” secondary users which only need to transmit a signal
to a single nearby destination. To capture this we consider a
model in which there is one primary agent and one or more
secondary agents.4

The first question to ask in designing a spectrum market
is “what is the good being allocated”? There are several
possibilities here. For example, the manager could divide the
band up into orthogonal frequency bands and auction each
sub-band off to one agent. While this makes the allocation
problem relatively straightforward, it puts sever restriction on
frequency reuse. An alternative, which we adopt here, is for
each user to spread its transmission across the entire band as
in a code-division multiple access (CDMA) system. In this
case the resource to be allocated is power and not bandwidth.
This allows for frequency reuse, but also results in externalities
among the users due to interference.

More precisely, we consider a model withn agents, where
each agent is represented by a distinct transmitter-receiver pair.
An example of two such agents is shown in 1. Let agent1 be
the primary agent so that agents2, . . . , n are the secondary
agents. As in [3], we assume that the utility derived by each
agenti is a function of the receivedSignal-to-Interference and
Noise Ratio (SINR)

γi(q) =
qihii

σ2 +
∑

j 6=i qjhji
, for i = 1, 2 (1)

whereq = {q1} is vector of transmission powers across all
agents,σ2 is the noise power andhij is the channel gain for
transmitteri to receiverj. The externality that agentj causes

4One possibility is that the primary agent has an exclusive license that
prohibits other large users from using the spectrum but does allow smaller
secondary agents. In our model if multiple primary agents where allowed
then they could free ride on each other. In that case efficiency could only be
obtained through additional contracting.
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Fig. 1. Interference channel with two transmitter-receiver pairs

agenti is due to the interference termqjhji in this expression.
Letting Ui(γi) denote agenti’s utility, an efficient allocation
of powerq maximizes

∑
i Ui(γi).

We assume that the primary user transmits at a fixed power
q1 and is guaranteed that the interference from the secondary
users does not exceed a given levelqmax. The spectrum
manager’s task is then to allocate this total received power at
the primary user’s receiver i.e. the total power of the secondary
users is constrained to satisfy

∑n
i=2 qihi1 ≤ qmax. We also

allow the primary use to participate in this auction. Each
unit of power the primary user is allocated corresponds to a
reduction in the total interference it will see, i.e. if it receives
q1
1 units of power, its total interference will beqmax− q1

1 . Let
x1 = q1

1
qmax andxi = qihi1

qmax , represent the normalized resources
allocated to each agent, so that the resource constraint can be
written as

∑n
i=1 xi ≤ 1.

The utility function Ui(γi) is assumed to be a monotonic
increasing concave function ofγi for all i. However, it is more
useful to consider this as a function ofxi. For each agent
i > 1, we assume that the interference from the primary user
is much larger than the interference from any secondary user,
so that

γi(xi) ≈
xi

qmaxhii

hi1

σ2 + q1h1i
,

in which case clearlyUi(xi) will also be a monotonically
increasing concave function ofxi.5 On the other hand for
Agent 1, we have

γ1(x1) =
q1h11

σ2 + qmax(1− x1)
,

in which caseU1(x1) will again be an increasing function of
x1. However,U1(x1) can be a convex function ofx1 if the
following relation holds:

d2U1(x1)
dx2

1

=
h11q1(qmax)2

(σ2 + qmax(1− x1))3

{
d2U1

dγ2
1

γ1 + 2
dU1

dγ1

}
> 0,

(2)
or equivalently if the coefficient of relative risk aversion,
−γ1U ′′

1 (γ1)
U ′

1(γ1)
, is less than2 for all γ1.

5If there is more than one secondary user and the interference from the
other secondary users is not negligible, this once again users may free ride.

III. T HE MODEL

We next give a model for an auction setting which abstracts
the key features of the spectrum market described in the
previous section. A seller wishes to allocate one unit of
divisible good amongn agents. Agenti obtains utilityUi(x)
from consumingx ≤ 1 units of the good. Utilities are assumed
to be private and quasi-linear with derivativeui. When all
Ui are concave, Ausubel’s ascending auction can be used to
allocate the good [10]. In this auction, sincere bidding is a
dominant strategy that leads to anex post perfect equilibrium
and the VCG outcome is obtained. We describe this ascending
auction in detail before we introduce our Fallback auction. For
expositional convenience we assume theUi’s to be strictly
concave.

A. Ausubel’s Ascending Auction

If p is the per unit price of the good, strict concavity of
Ui(x) implies that

xi(p) = arg max
0≤x≤1

Ui(x)− p · x (3)

is unique for any pricep. Let xi(p) be agenti’s demand at
pricep. Notice thatxi(p) is continuous and strictly decreasing.
In addition,xi(0) = 1 andxi(p)→ 0 asp→∞.

Initially the price is set to0 and increased continuously.
At each pricep, each bidderi is asked to report her de-
mand. We assume that each agent reports her demandxi(p)
obtained from (3) truthfully. We show later that this truthful
report is incentive compatible in Ausubel’s ascending auction.
Whenever the sum of demands from all agents is larger
than supply (one unit of good), namely,

∑n
i=1 xi(p) > 1,

the auctioneer or the seller increases the price. The auction
terminates when the market clearing pricep∗ is reached, at
which p∗ satisfies

∑n
i=1 xi(p∗) = 1. Notice that the existence

of such a price follows from the the fact thatxi(p) for every
agent is continuous and decreasing.

As the price increases fromp to p + ∆p, each agent
i clinches, i.e., is allocated additional quantity∆Ci(p) =
Ci(p + ∆p) − Ci(p) with the paymentp · ∆Ci(p) to the
auctioneer. Here,Ci(p) = [0, 1 −

∑
j 6=i xj(p)]+ is the total

clinched quantity of agenti at pricep. If p−i is the market
clearing price when agenti is excluded, it is easy to see that
Ci(p) = 0 for all p ≤ p−i. Hence, the total payment of agent
i for the clinched quantityCi(p) up to the pricep ≥ p−i is
the following:

P AA
i (p) =

∫ p

0

ρ
dCi(ρ)

dρ
dρ = −

∫ p

p−i

ρ
d(

∑
j 6=i xj)
dρ

dρ. (4)

Notice also thatp−i ≤ p∗ andxj(p−i) ≥ xj(p∗) for all j 6= i.
When Ausubel’s ascending auction ends with the market

clearing pricep∗, the final allocation of one unit of good
among agents is socially optimal, namely maximizes sum of
all agents’ utilities. Now we show that the total payment
P ′

i (p
∗) of agenti after the auction ends is the same as the



VCG payment. The VCG payment for agenti is given by

P VCG
i =

∑
j 6=i

Uj(xj(p−i))−
∑
j 6=i

Uj(xj(p∗)). (5)

Using information revealed from the agents during the auction
and the first order conditionuj(xj(p)) = p for all j, the VCG
payment becomes

P VCG
i =

∑
j 6=i

∫ xj(p
−i)

xj(p∗)

uj(x)dx (6)

= −
∑
j 6=i

∫ p∗

p−i

uj(xj(ρ))
dxj

dρ
dρ (7)

= −
∑
j 6=i

∫ p∗

p−i

ρ
dxj

dρ
dρ (8)

= −
∫ p∗

p−i

ρ
d(

∑
j 6=i xj)
dρ

dρ, (9)

which is the same as the payment (4) at pricep∗. Therefore,
the ascending auction with concave utilities generates the VCG
outcome. Moreover, the truthful report of demandxi(p) at the
given price is incentive compatible for all agents [4].

So far we have not considered the payment of an agent
appropriately in (3). When the auctioneer asks agenti to report
her demand at the current price, we assume that each agent
reports thexi(p) that maximizesUi(x)− p · x. However, this
ignores the fact that agenti may already have clinched some
quantities by the time the price in the auction has reachedp. In
fact, agenti has clinchedCi(p) ≥ 0 with the paymentP ′

i (p)
at pricep. She only pays for the additional amount of demand
x′i − Ci(p) at the unit pricep, wherex′i is agenti’s demand
that maximizes the following surplusπi(x, p):

πi(x, p) = Ui(x)− p · [x− Ci(p), 0]+ (10)

−
∫ p

0

ρ
dCi(ρ)

dρ
dρ.

As we can see,x′i(p) = xi(p). This is because the payment
of agent does not depend on her bidding strategy (demand).
This is the main reason that the truthful report of demand
is incentive compatible in the ascending auction. Note that
concavity of the utility function means thatxi(p) ≥ Ci(p)
throughout the auction. The following algorithm 1 describes
the ascending auction.

B. The Fallback Auction

The Fallback auction modifies Ausubel’s ascending auction
to account for the presence of a single agent with a non-
concave utility function, henceforth called agent 1. All other
agents have strictly concave utilities. In this case there may
be no pricep such that

∑n
i=1 xi(p) = 1. The difficulty arises

becausex1(p) while non-increasing, may have discontinuities.
Namely, there may be apt such thatlimp↗pt

∑n
i=1 xi(p) ≥ 1

and
∑n

i=1 xi(p) < 1 for all p > pt. This means there is an
excess supply when the auction reaches the pricep > pt. In
addition,x1(p) = 0 for all p > pt because of non-concavity

Algorithm 1 Ausubel’s Ascending Auction
Initialization :
p← 0 ; Ui, U

i
j ← 0 ; xj , x

−
j ← 1 for i, j = 1, . . . , n

Dynamic:
while

∑n
i=1 xj > 1 do

p← p + ∆p
Ask each agent her demandxi for price p.
xi ← max{xi, 1 −

∑
j 6=i x−j } ; x−i ← xi for i =

1, . . . , n
Ui ← Ui + p ·∆xj

if
∑

j 6=i xj = 1 then
U i

j ← Uj for j 6= i
end if

end while
Pi ←

∑
j 6=i(Uj − U i

j) for i = 1, . . . , n
Return (x1, . . . , xn) and (P1, . . . , Pn)

of her utility function. Hence agent 1’s demand at price that
exceedspt can be less than what she has clinched. In Ausubel’s
ascending auction an agent is not allowed to relinquish her
clinch. If agent 1’s utility is convex, her surplus is forced to be
zero or negative creating an incentive to deviate from sincere
bidding.

The Fallback auction surmounts this difficulty by allowing
agent 1 and only agent 1 to relinquish some of the units she
has already clinched. If a Fallback price (defined below) is
reached, we allow agent 1 to choose some smaller quantity
clinched earlier and the auction terminates. The relinquished
units from from agent 1 must then be reallocated to the other
agents.

Definition 1: pt is called a fallback price if
limp↗pt

∑n
i=1 xi(p) > 1 andx1(p) = 0 for all p > pt.

To understand when a fallback occurs, suppose that agent
1 decides to fall back at some pricep. At this price agent
1 is free to choose any quantity clinched earlier, i.e.,C1(p′)
wherep′ < p. Agent 1’s surplus from choosingC1(p′) would
be U1(C1(p′)) −

∫ p′

p−1 ρdC1(ρ)
dρ dρ. Clearly, she would choose

the pricep′ that maximizes this surplus. This motivates the
following definition.

Definition 2: The pricep∗ that solves

max
pt≥p≥p−1

π1(p)

= max
pt≥p≥p−1

U1(C1(p))−
∫ p

p−1
ρ
dC1(ρ)

dρ
dρ

is called thesecurityprice.
The security price is the price that agent 1 chooses to

maximize the surplusπ1 when she falls back. Therefore, the
following equality holds at the fallback price:

π1(pt) = π1(p∗), (11)

whereπ1 is the potential surplus agent 1 would receive if she
was allocated her entire demandx1(pt) (see the example in
Section IV). Note that in the definition of the security price,
the surplus maximization could be taken over the interval



[p−1,∞). If the Fallback auction terminates at pricep∗ where∑n
i=1 xi(p∗) = 1, the resulting allocation and payments

coincide with those of the ascending auction. In particular, the
VCG outcome is obtained. If the Fallback auction terminates at
a fallback price, namelyp∗ = pt, then the auctioneer allocates
the quantityxi(p∗) to each agenti ≥ 2 and the amount
1−

∑
i≥2 xi(p∗) to agent 1.

Once the auction ends, the payment that agent 1 makes for
the allocationC1(p∗) is

P FB
1 =

∫ p∗

0

ρ
dC1(ρ)

dρ
dρ. (12)

To describe the payment for agenti ≥ 2, we first modify the
definition of p−i. If the Fallback auction was applied only to
the agents amongn \ i and terminates in a market clearing
price, thenp−i is that market clearing price. Otherwise, it
is the relevant security price. The payment that agenti ≥ 2
makes is then

P FB
i = pt · lim

p↗pt
xi(p)−

∫ pt

p∗
ρ
dxi

dρ
dρ (13)

= pt · lim
p↗pt

xi(p) + Ui(xi(p∗))− Ui(xi(pt)).

The payment consists of two terms. The first is the demand,
charged at a rate ofpt per unit and the second is the increase
in agenti’s utility for the quantity re-allocated to her when
agent 1 falls back. A pseudocode description of the complete
Fallback auction is given in Algorithm 2..

IV. EXAMPLES

We explain the Fallback auction with the following example.
Example 1:Consider the allocation of one unit of a di-

visible good between three agents with the following utility
functions:

U1(x1) =
1
3
x3

1 +
11
10

x1, (14)

U2(x2) = 2x2 − x2
2, (15)

U3(x3) = 2x3 − x2
3. (16)

VCG Outcome: The efficient allocation is the solution to the
following maximization problem:

max
1
3
x3

1 +
11
10

x1 + 2x2 − x2
2 + 2x3 − x2

3 (17)

s.t. x1 + x2 + x3 = 1 ; x1, x2, x3 ≥ 0 (18)

Since agents 2 and 3 have identical concave utility, the solution
should bex2 = x3 = 1−x

2 and x1 = x. The maximization
problem is then equivalent to

max
0≤x≤1

1
3
x3 +

11
10

x + 2
{

2(
1− x

2
)− (

1− x

2
)2

}
, (19)

which gives the optimal allocationx1 = 0.1127 and x2 =
x3 = 0.44365. Moreover, the VCG payments of all the agents
can be calculated easily and are given byP VCG

1 = 0.1191 and
P VCG

2 = P VCG
3 = 0.6184.

Fallback Outcome: Agent 1 has a convex utility function and
her demand isx1(p) = 1 until she falls back to her security

Algorithm 2 Fallback Auction
Initialization :
fallback flag down ;p← 0 ; Ui, U

i
j ← 0 ; xj , x

−
j ← 1 for

i, j = 1, . . . , n
Dynamic:
while

∑n
j=1 xj > 1 and fallback flag downdo

p← p + ∆p
ask each agent her demandxi for price p.
if x1 > 1−

∑
j 6=1 x−j then

xi ← max{xi, 1 −
∑

i 6=j x−j } ; x−i ← xi for i =
2, . . . , n
Ui ← Ui + p ·∆xi for i = 1, . . . , n
if

∑
j 6=i xj = 1 then

U i
j ← Uj for j 6= i

end if
else

fallback flag up
P1 ←

∑
j 6=1(U

∗
j − U i

j)
Pi ← p · xi + Ui − U∗

i for i = 2, . . . , n
xi ← x∗i for i = 1, . . . , n

end if
ask agent1 if p is secure.
if ’yes’ (ι = 1) then

x∗i ← xi for i = 1, . . . , n
U∗

i ← Ui for i = 2, . . . , n
end if

end while
if fallback flag downthen

Pi ←
∑

j 6=i(Uj − U i
j) for i = 1, . . . , n

end if
Return (x1, . . . , xn) and (P1, . . . , Pn)

clinch. Agents 2 and 3 demand the quantities for which their
marginals exceed the price, or,x2(p) = x3(p) = 1 − p

2 . If
the price is0 ≤ p ≤ 1, sum of demands for any two agents
exceeds the supply and therefore no agent clinches to anything.
For 1 ≤ p ≤ 2 the total demand of agents 2 and 3,x2(p) +
x3(p) = 2 − p drops below 1, and agent 1 begins to clinch
C1(p) = p− 1. This continues until agent 1 falls back or the
price reachesp = 2 for which the demand of 2 and 3 drops
to zero and the market clears. The clinch rate in this interval
is constant, namely,∂C1(ρ)

∂ρ = 1.

Assuming agent 1’s demand (x1(p) = 1) is satisfied without
fallback, the potential surplus of agent 1 at pricep is therefore

π1(p) = U1(x1(p))− p · [x1(p)− C1(p)]

−
∫ p

1

ρ
∂C1(ρ)

∂ρ
dρ (20)

=
43
30
− p · (2− p)−

∫ p

1

ρ dρ (21)

=
1
2

p2 − 2 p +
29
15

. (22)



On the other hand, the surplus of agent 1 given her actual
clinch is given by

π1(p) = U1(C1(p))−
∫ p

1

ρ
∂C1(ρ)

∂ρ
dρ (23)

=
(p− 1)3

3
+

11
10

(p− 1)− p2

2
+

1
2
. (24)

The security price is then obtained by

p∗ = arg max{π1(p) : s.t. 1 ≤ p ≤ 2} (25)

=
3−
√

0.6
2

= 1.1127. (26)

The Fallback auction, therefore, has the following dynamics.
As the price rises abovep = 1, agent 1 begins to clinch. Her
surplus increases untilp = p∗, at whichπ1(p∗) = 0.0054. As
the auction continues, however, the security price of agent 1
remainsp∗ = 1.1127 since the surplus decreases withp > p∗.
The price continues to increase until it reaches the fallback
price pt. At this price,π1(pt) = π1(p∗), or

1
2
· (pt)2 − 2 · pt +

29
15

= π1(p∗) = 0.0054, (27)

which gives the fallback pricept = 1.6202. Once agent 1
falls back to the allocation at the security price, the auction
terminates and the final allocations among agents are the
following:

x1(p∗) = p∗ − 1 = 0.1127, (28)

x2(p∗) = 1− p∗

2
= 0.4436, (29)

x3(p∗) = 1− p∗

2
= 0.4436. (30)

At the fallback price, the demands of agent 2 and 3 are
x2(pt) = x3(pt) = 1 − pt

2 = 0.1899 and the payments of
the agents when the auction ends are then:

P FB
1 =

∫ p∗

1

ρ
∂C1(ρ)

∂ρ
dρ = 0.1190, (31)

P FB
2 = 2x2(p∗)− (x2(p∗))2 − 2 x2(pt)

+(x2(pt))2 + pt · x2(pt) = 0.6543, (32)

P FB
3 = 0.6543. (33)

V. FALLBACK AUCTION AS A CORE-SELECTING AUCTION

As shown in Section IV, the final allocations of the Fallback
auction are the same as the VCG allocations, which maximizes
the sum utilities of the agents. This is only possible when
agents reveal their demand truthfully. However, the payment
of every agent except agent 1 is not the VCG payment, and
therefore sincere bidding (truthful reporting) is not a dominant
strategy. Instead, we prove that the Fallback auction with
truthful bidding leads to a core allocation with minimum total
payment to the seller.

We repeat some of concepts from [8] since we heavily rely
on those to prove Theorem 1 in the Fallback auction. For any
coalitionS, an assignment̂x is feasible for coalitionS, written
x ∈ F (S), if (1)

∑
i xi ≤ 1 and (2) for allj, if j /∈ S or the

seller is not inS, then xj = ∅. That is, a bidder can have
a non-null assignment when coalitionS forms only if that
bidder and the seller are both in the coalition. The coalition
value function or characteristic function is defined by

wU (S) = max
x∈F (S)

∑
j∈S

Uj(xj). (34)

If the payment of the auctionPj is made to the seller by each
agent j, then the associated payoffs are given by

∑n
j=1 Pj

for the seller andπj = Uj(xj) − Pj for each bidderj. The
payoff profile is individually rational ifπj ≥ 0 for all j.
An imputation is a feasible, non-negative payoff profile. An
imputation is in the core if it is efficient and unblocked:

Core(n, w) =

{
π ≥ 0 |

∑
j∈n

πj = w(n)

and
(
∀S ⊆ n

) ∑
j∈S

πj ≥ w(S)

}
. (35)

Now we consider the Fallback auction. If the Fallback
auction (i.e. Algorithm 2) terminates with the fallback flag
down, it is equivalent to Ausubel’s Ascending auction. We
therefore assume the algorithm terminates with the fallback
flag up, and prove that we obtain an equilibrium outcome in
the core. This is done in several steps. First, we show that the
resulting allocation of the Fallback auction is efficient under
truthful bidding. Second, for two agents, the VCG outcome is
obtained. Especially, the payments of all agents are the same
as the VCG payments. From a standard argument (see for
example [6] or [11]) it follows that bidding truthfully is an
ex-post perfect equilibrium. Finally, we show that forn > 2
agents, the truthful bidding outcome of the Fallback auction
lies in the core with the seller’s minimum payoff. From [12],
the bidding strategies of the agents according to atruncation
profile is a full information equilibrium.

Lemma 2:Assuming truthful bidding among agents, the
allocation of the Fallback auction is efficient.

Proof: We show thatx2(p∗), . . . , xn(p∗) andx1(p∗) =
1−

∑
i≥2 xi(p∗) are solutions to the following maximization

problemΠ.

max U1(x1) +
n∑

i=2

Ui(xi) (36)

s.t.
n∑

i=1

xi = 1

xi ≥ 0 ∀i ∈ n.

For givenQ ∈ [0, 1], consider the following problem.

F (Q) = max
n∑

i=2

Ui(xi) (37)

s.t.
n∑

i=2

xi = Q

xi ≥ 0 ∀i ∈ n \ {1}.



There is a Lagrange multiplierp that corresponds to the market
clearing price such thatQ units are distributed among the
agentsn \ {1}. Therefore,F (Q) =

∑n
i=2 Ui(xi(p)). For

example, whenQ = 1, the corresponding Lagrange multiplier
is p−1. Now the problemΠ can be reformulated as

max
p≥p−1

U1(1−
∑
i≥2

xi(p)) +
∑
i≥2

Ui(xi(p)). (38)

The objective function can be expressed as

U1(1−
∑
i≥2

xi(p)) +
∑
i≥2

∫ p

p−1
ui(xi(ρ))

dxi(ρ)
dρ

dρ

= U1(C1(p))−
∫ p

p−1
ρ
dC1(ρ)

dρ
dρ, (39)

and this is maximized by the security pricep∗ (See Definition
2).

Lemma 3:Supposen = 2 and agent 1 has an increasing
convex utility function. Then truthful bidding is anex post
perfect equilibriumof the Fallback auction that charges the
VCG payment to each agent.

Proof: When the fallback flag is up, the payment of agent
1 is

P FB
1 =

∫ p∗

0

ρ
dC1(ρ)

dρ
dρ =

∫ p∗

p−1
ρ

dC1(ρ)
dρ

dρ (40)

= U2(x2(p−1))− U2(x2(p∗)), (41)

which is by definition the VCG payment. Moreover, the
payment of agent 2 is given by equation (13):

P FB
2 = pt · lim

p↗pt
x2(p) + U2(x2(p∗))− U2(x2(pt)). (42)

From the definition of the fallback price,π1(x1(pt), pt) =
π1(x1(p∗), p∗). Namely,

U1(1)− pt · (1− C1(pt))−
∫ pt

0

ρ
dC1(ρ)

dρ
d ρ (43)

= U1(C1(p∗))−
∫ p∗

p−1
ρ
dC1(ρ)

dρ
d ρ, (44)

or

U1(1)− pt · x2(pt) = U1(x1(p∗)) +
∫ pt

p∗
ρ

dC1(ρ)
dρ

d ρ (45)

= U1(x1(p∗)) + U2(x2(p∗))− U2(x2(pt)). (46)

Here, we use the following facts in the auction:x1(pt) = 1
andC1(pt) = 1 − x2(pt). Therefore, the payment of agent 2
becomes

P FB
2 = U1(1)− U1(x1(p∗)) = U1(x1(p−2))− U1(x1(p∗)),

(47)
and this is exactly the VCG payment of agent 2. Forn = 2,
the Fallback auction with truthful bidding reaches the efficient
allocation with the VCG payment. From [4], any incentive
compatible, individually rational and efficient mechanism must
charge VCG payments. Therefore, forn = 2, truthful bidding

is an ex post perfect equilibriumof the Fallback auction that
returns the VCG outcome.

In [8], Day and Milgrom argue that core-selecting auctions
that minimize the seller’s payoff maximize incentives for
truthful reporting and they produce the Vickrey outcome when
it lies in the core. Theorem 3 in [8], especially, shows that a
truncation report is a full information equilibrium. For a given
α ≥ 0, a truncation report for agenti, corresponds to that agent
reporting anα-truncation of her true utility, i.e.Ui(xi) − α.
From the following Lemma, we show that the Fallback auction
minimizes the seller’s payoff and the payoffs of all agents lies
in the core.

Lemma 4:For n > 2, if all agents bid truthfully, the
Fallback auction finds an imputation in the core with minimum
payoff of the seller.

We omit the proof of Lemma 4 here due to space limitation.
The bidding strategies of the agents according to the profile
of πi truncations ofUi(xi) for all i is, therefore, a full
information equilibrium in the Fallback auction and this leads
to the efficient outcome.

Corollary 5: The bidding strategies of the agents according
to the profile ofπi truncations ofUi(xi) for all i is a full
information equilibrium in the Fallback auction.

Proof: The allocation of the Fallback auction with
truthful bidding is a bidder optimal allocation according to [8].
Therefore, the bidding strategies of the agents according to the
profile of πi truncations ofUi(xi) or Û(xi) = Ui(xi) − πi

is a full information equilibrium in the Fallback auction
(See Theorem 3 in [8]). The only part left for the proof of
Corollary 5 is whether the Fallback auction witĥUi(xi) gives
the same allocation as that withUi(xi). As the unit price
goes up from0, each agenti asks for the quantityxi =
arg max0≤xi≤1 Ûi(xi)−p ·xi = arg max0≤xi≤1 Ui(xi)−πi−
p · xi. Therefore, each concave agent asks for the exact same
quantity as if it responds according to it’s true utility except
that at a certain pricẽp, it’s demand suddenly becomes zero.
We also need to show that̃p ≥ pt ≥ p∗ for all concave agents,
which can be easily done sinceπi = Ui(xi(pt))− pt · xi(pt)
for ∀i ∈ n.

VI. CONCLUSIONS ANDOPEN PROBLEMS

We studied an auction model motivated by spectrum sharing
in which there is one bidder with a non-concave valuation and
n − 1 bidders with concave valuations. For this setting we
presented the Fallback auction, a dynamic auction which has
a full information equilibrium in the core. Forn = 2 agents
this is also the VCG outcome; forn > 2 agents it is the core
allocation which minimizes the seller’s revenue. This auction
dynamically elicits information from the agents to determine
an efficient outcome. It would be of interest to determine if this
is the minimal information that must be elicited for obtaining
an such an outcome. Though in the spectrum sharing model
we presented only one agent has a non-concave valuation; it
would also be of interest for other applications to extend these
ideas to models with more than one non-concave valuations.
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