
Processing Rate Optimization by Sequential System Floorplanning ∗

Jia Wang† Ping-Chih Wu‡ Hai Zhou†
†EECS Department

Northwestern University
Evanston, IL 60208, U.S.A.

{jwa112, haizhou}@ece.northwestern.edu

‡Cadence Design Systems Inc.
555 River Oaks Parkway

San Jose, CA 95134, U.S.A.
pcwu@cadence.com

Abstract

The performance of a sequential system is usually mea-
sured by its frequency. However, with the appearance of
global interconnects that require multiple clock periods to
communicate, the throughput is usually traded-off for higher
frequency (for example, through wire pipelining or latency
insensitive design). Therefore, we propose to use the pro-
cessing rate, defined as the amount of processed inputs per
unit time, as the performance measure. We show that the
minimal ratio of the flip-flop number over the delay on any
cycle is an upper bound of the processing rate. Since the pro-
cessing rate of a sequential system is mainly decided by its
floorplan when interconnect delays are dominant, the prob-
lem of floorplanning for processing rate optimization is for-
mulated and solved. We optimize the processing rate bound
directly in a floorplanner by applying Howard’s algorithm
incrementally. Experimental results confirm the effectiveness
of our approach.

1. Introduction

The performance of a sequential system is usually mea-
sured by its frequency, or equivalently, its clock period. Se-
quential optimizations such as minimal period retiming [1]
and clock skew scheduling [2] can be used to optimize the
clock period by balancing the combinational path delay be-
tween consecutive flip-flops. When interconnect delays be-
gin to dominate the performance because of the aggressive
scaling down of geometries in Deep Sub-Micron (DSM)
VLSI technology, things become much more complicated.
Unlike gate delays, interconnect delays are only available
until very late in the current design flow and always after
floorplanning and placement. Different floorplans or place-
ments give different minimal clock periods after sequential
optimizations. Ignoring such optimization possibilities in the
design flow may result in sub-optimal solutions. The work
[9] addressed this problem by considering the optimization
potential in physical placement. In their work, the maximum
ratio of the delay over the flip-flop number along any cycle in

∗This work is supported in part by the NSF under award CCR-0238484

and a gift from Cadence.

the circuit is known to bound the minimal clock period that
can be achieved through sequential optimizations. To opti-
mize the ratio in the placement, they identified the cycle with
the maximum ratio in the current placement and used it as a
constraint to find a new placement with a smaller maximum
ratio.

When the operating frequency of the sequential system
is given, it is possible that one clock period is too small to
propagate a signal from one end of a long wire to the other
end in one clock period. In this case, wire pipelining is vi-
tal to allow multi-cycle communication over a long wire. As
suggested in [4], retiming can be used to pipeline the long
wires. However, if the frequency is higher than the best
one that could be achieved by retiming, more wire-pipelining
units like flip-flops must be introduced on those long wires
to pipeline them. The side effect is that these additional units
may change the latency of some parts of the circuit so that the
functionality is different from the original one. Both the la-
tency insensitive design (LIS) [6, 7] and the wire-pipelining
correcting method [5] addressed this problem. In these two
approaches, the throughput, which is defined as the amount
of the processed inputs per clock cycle, is traded for higher
frequency and is no longer one as in retiming or clock skew
scheduling. In both cases, the throughput is bounded by the
minimum ratio of the flip-flop number to the number of the
required wire-pipelining unit along any cycle. The work [8]
optimized the throughput bound in LIS with floorplanning.
They used a heuristic throughput evaluation method in the
simulated annealing (SA) floorplanner Parquet [13] based
on an assumption that an exact throughput evaluation is too
time-consuming in SA. The heuristic method estimates the
throughout by assigning different weights to different wires
according to their contributions to the throughput.

We find that by looking at the bound of the process-
ing rate, we can unify the situations where the throughput
is fixed and the frequency is optimized and where the fre-
quency is fixed and the throughput is optimized. In any case,
the processing rate is bounded by the minimum ratio of the
flip-flop number over the delay along any cycle. Since this
bound is independent of the operating frequencies and the
afterward optimization/wire pipelining methodologies, it is
more general than the clock period bound or the throughput
bound.

We optimize the processing rate bound directly in a SA

Home
Text Box
0-7695-2523-7/06 $20.00 ã 2006 IEEE

based floorplanner. Unlike the previous approaches where
the bounds were handled indirectly, Howard’s algorithm
[15, 14] is applied to compute the bound exactly inside the
inner loop. The resulted floorplans are evaluated under dif-
ferent frequencies to obtain the throughputs and the process-
ing rates. To show that our approach achieves better solution
quality and running time, we apply our algorithm to GSRC
benchmarks as in [8] and compare our results with theirs. We
need to point out that the results in [8] are optimized under
different frequencies separately so our one-floorplan-fit-all
approach is more universal and less time consuming.

The Adjacent Constraint Graph (ACG) [10, 11] is used
as our floorplan representation. It preserves the geometrical
adjacency information and its operations map to local per-
turbations in physical space. To exploit those local pertur-
bations, we apply Howard’s algorithm incrementally, which
speeds up the floorplanner by 29% on average. In addition,
we show that addressing the fixed-outline constraint explic-
itly in the cost function is possible and effective in the ACG
representation.

The rest of this paper is organized as follows. In Sec-
tion 2, we show how the minimal cycle ratio bounds the pro-
cessing rate of a sequential system and formulate the Floor-
planning for Processing Rate (FPR) problem. The SA based
floorplanner incorporating processing rate optimization is
presented in Section 3. Experimental results are shown in
Section 4. Finally, Section 5 concludes the paper.

2. Processing Rate and Floorplan Problem

2.1. Processing Rate Bound

We define the processing rate of a sequential system as
follows.

Definition 1 (Processing Rate) In a sequential system, the
processing rate is defined as the length of processed input
sequence per unit time.

Considering the frequency and the throughput in a syn-
chronous system, we have the following observation.

Observation 1 For a synchronous system, the processing
rate is equal to the product of the frequency and the through-
put.

A synchronous system is modeled by a directed graph
G = (V,E). In the simplest case, each vertex is a combina-
tional gate and each edge is an interconnect wire with signal
direction. When the system contains modules that could not
be treated as gates, we will follow the method in [4], where
vertices are pins of modules and edges represent either the
interconnects or the fan-in fan-out timing constraints inside
modules. Let the number of the flip-flops along a wire e ∈ E
be w(e) and the interconnect delay along the wire be d(e).
By optimal buffer insertion [3], the interconnect delay is lin-
ear to its wire length. For any cycle C in the graph, we define
w(C) =

∑
e∈C w(e) and d(C) =

∑
e∈C d(e).

Minimal period retiming optimizes a system by relocating
the flip-flops so that the clock period of the system, which

is equal to the longest combinational path delay between
two consecutive flip-flops, is minimized. On the other hand,
clock skew scheduling assigns non-zero skews to the clocks
driving the flip-flops. The flip-flops act like that they are
moved around to balance the combinational path delay so
that the minimal clock period can be achieved. If there is a
cycle C in the system, when applying minimal period retim-
ing or clock skew scheduling, the flip-flops along C divide
C into w(C) combinational parts. So there must be a com-
binational path between two consecutive flip-flops C whose

delay is at least
d(C)
w(C) . Therefore, the minimal clock period

is bounded by

λG = max
cycle C in G

d(C)
w(C)

(1)

As the throughput is always one here, the processing rate is
the same as the frequency. So it is upper bounded by 1

λG
.

When the operating frequency is fixed, either latency in-
sensitive design (LIS) [6] or wire-pipelining with correction
[5] can be applied to pipeline the long wires.

LIS makes the system functionally insensitive to the la-
tency of the long wires by a latency insensitive communica-
tion protocol and additional control logics around computa-
tional blocks in the original system. In LIS, signals propagat-
ing in the system are divided into two categories: informa-
tive events corresponding to the signals in the original sys-
tems and stalling events asking the receiving entities, called
pearls, to stall a cycle waiting for the informative ones. To
pipeline long wires, wire pipelining units, called relay sta-
tions, are placed on those wires. Relay stations act like flip-
flops but can handle the communication protocol. In addi-
tion to the area overhead introduced by the additional control
logics, the throughput is affected by the stalling events intro-
duced to the system. As discussed in [7], the throughput is
bounded by the minimum cycle mean among all cycles in the
system where the cycle mean is defined as the pearl number
plus the relay station number divided by the pearl number
along a cycle.

According to [6, 7, 8], we use G to model a system
such that every vertex corresponds to a computational block
which could be treated as gates and every edge corresponds
to a communication channel. w(e)s are all 1 now because
initially there is no flip-flops on the communication chan-
nels and every computational block latches its outputs in flip-
flops every clock cycle. Let the clock period be φ under the

target frequency. We need at least w∗(e) = �d(e)
φ � wire-

pipelining units to pipeline the wire e. Among them, one is
the original flip-flop latching the output and all the others are
relay stations. Therefore, the throughput is bounded by

min
cycle C in G

w(C)
∑

e∈C w∗(e)
≤ min

cycle C in G
φ

w(C)
d(C)

=
φ

λG

So processing rate is bounded by 1
λG

.

Another approach [5] applies the wire-pipelining correct-
ing method after inserting extra flip-flops to pipeline the long
wires. We still use the φ to represent the clock period. The
minimal number of flip-flops needed to pipeline a wire is

Home
Text Box
0-7695-2523-7/06 $20.00 ã 2006 IEEE

wp(e) = �d(e)
φ �. We cannot feed a new input every clock

cycle without affecting the functionality if there is the ad-
ditional latency caused by extra flip-flops in a cycle. With
ρ-slow transformation [5], we feed a new input every ρ cy-
cles where

ρ = max
cycle C in G

�
∑

e∈C wp(e)
w(C)

�

The throughput of the system is 1
ρ . The processing rate is

bounded by 1
λG

again since

1
ρφ

≤ min
cycle C in G

w(C)
∑

e∈C wp(e)φ

≤ min
cycle C in G

w(C)
∑

e∈C d(e)
=

1
λG

From the above discussions, we have the following theo-
rem.

Theorem 1 1
λG

is the upper bound of the processing rate of
a synchronous system no matter what technique is used for
wire pipelining.

This bound is independent of the operating frequency
and afterward optimization methodologies and affected only
by the interconnect configurations. Intuitively, designs with
larger bounds are superior to the ones with smaller bounds
since the afterward optimization methodologies could possi-
bly achieve those bounds.

2.2. Problem Definition

We formulate the Floorplanning for Processing Rate
(FPR) problem as follows.

Problem 1 (Floorplanning for Processing Rate) In a di-
rected graph G = (V,E), every vertex represents a pin in
a module with given width and height; every edge e repre-
sents a wire connecting two pins. Two weights are assigned
to each wire e: w(e) is the number of the flip-flops on e;
d(e) is the delay of the wire e. It is asked to find a floorplan
to maximize the processing rate bound,

1
λG

= min
cycle C in G

∑
e∈C w(e)

∑
e∈C d(e)

(2)

3. Floorplanning for Processing Rate Optimiza-
tion

3.1. ACG Floorplanning

Adjacent Constraint Graph (ACG) [10] is a representa-
tion for general floorplans. It is a constraint graph contain-
ing horizontal and vertical constraint edges. ACG simplifies
the classical horizontal and vertical constraint graph by re-
moving redundancies through three conditions: first, there is
exactly one relation between any pair of modules; second, no

transitive edge is allowed; third, there is no cross which is an
edge configuration as shown in Figure 1. Allowing crosses
in the graph may introduce quadratic number of edges as
shown in Figure 2.

Figure 1. (1) Horizontal cross; (2) vertical
cross.

Figure 2. A constraint graph with quadratic
number of edges.

To maintain those conditions, Reduced ACG is proposed
in [11] according to the following property of ACG. As
shown in Figure 3, the edges starting from a vertex are di-
vided into four classes: class 1, edge to the adjacent vertex;
class 2, edges in the same group (horizontal or vertical) as
the class 1 one to the following vertices; class 3, the first
edge in the group different from the class 1 one; class 4, the
remaining edges, where every edge must be in the group dif-
ferent from the previous one. Reduced ACG is obtained by
removing all the class 4 edges from ACG and there is an
one-to-one mapping between ACG and Reduced ACG. Op-
erations on Reduced ACG make only local changes to the
graph and map to local perturbations in physical space. Fig-
ure 4 shows an example for the floorplan, ACG, and Reduced
ACG.

Figure 3. Edges starting from a are divided
into 4 classes in ACG.

The SA based floorplanner used in [11] is extended to op-
timize the processing rate by combining the processing rate
bound into the cost function. When a floorplan is obtained
during SA, the physical locations of modules are computed
and the delays of the interconnects are calculated as the Man-
hattan distance between modules. The bound 1

λG
is com-

puted directly as described in the following sections. We

Home
Text Box
0-7695-2523-7/06 $20.00 ã 2006 IEEE

Figure 4. An example shows (1) floorplan; (2)
ACG; (3) Reduced ACG.

also develop a method to address the fixed-outline constraint
in the cost function.

3.2. Direct Bound Evaluation

Computing 1
λG

is actually solving the minimum cycle ra-

tio problem.

Given a strongly connected directed graph G = (V,E)
with two edge weight w1(e) and w2(e) > 0 for each e ∈ E,
the minimum cycle ratio problem is to compute the following
minimum cycle ratio

φmin = min
cycle C in G

∑
e∈C w1(e)∑
e∈C w2(e)

(3)

When w2(e) = 1 for any edge e, it becomes the minimum
cycle mean problem. According to [14], Howard’s algorithm
is the fastest one in practice to solve the minimum cycle
mean problem. The version presented in their work is a sim-
plified one from [15]. Based on the discussions in [15], we
modify the implementation of Howard’s algorithm in Sec-
tion 2.5 of [14] to solve the minimum cycle ratio problem.

The intuition behind Howard’s algorithm is to maintain a
policy graph Gπ through the computation. A policy graph
is a sub-graph of G where there is exactly one edge starting
from any vertex. The cycles in a policy graph can be enu-
merated since there is exactly one cycle in each weakly con-
nected component of Gπ . The minimum cycle ratio φ of Gπ

is obtained then, which is obviously an upper bound of φmin.
It can be asserted that φ = φmin if there is no negative cycle
in G regarding to the edge weights w1(e)−w2(e)φ. If there
are negative cycles, one of them is identified in a newly con-
structed policy graph; this cycle has a cycle ratio less than φ.
A vertex labeling is maintained to interleave the above two
steps, i.e., to check for the negative cycles and to construct a
new Gπ .

In order to evaluate 1
λG

of a system G given its floorplan,

the graph G is first decomposed into strongly connected
components (SCC). Only one such computation is needed
per benchmark and the Strongly–Connected–Components al-
gorithm in [16] works well here. We assign d(e) to be the
w2(e) and w(e) to be the w1(e). By applying Howard’s al-
gorithm for minimum cycle ratio in each SCC and picking
up the minimum among them, we obtain 1

λG
.

3.3. Incremental Bound Evaluation

In Howard’s algorithm, different initial Gπ’s affect the
number of the iterations and thus the running time. Intu-
itively, an initial Gπ with a smaller φ tends to converge
quicker than the one with a larger φ.

In our floorplanners, the floorplan does not change too
much between successive steps in SA because of those local
Reduced ACG perturbations. The final Gπ’s of the previous
floorplan obtained by Howard’s algorithm give near-optimal
φ’s. We reuse those final Gπ’s as our initial policy graphs
for each SCC. For the first floorplan when those Gπ’s are
not available, we follow [14] to construct it by choosing the
edge with the minimum w1 weight starting from each vertex.

As shown in Section 4, this incremental technique speeds
up the floorplanner by 29% on average.

3.4. Handle the Fixed-outline Constraint

Following [13], the fixed-outline constraint is modeled
with two constants. One is the maximum white-space frac-
tion γ and the other is the aspect ratio α ≥ 1. Suppose the
total area of all the modules are A. The desired width and
height of the fixed-outline floorplan are computed as

H∗ =
√

(1 + γ)Aα, W∗ =
√

(1 + γ)A/α (4)

In [13], several approaches were proposed to handle the
fixed-outline constraint. Addressing the constraint directly
in the cost function was shown to be not successful for a clas-
sical SA based sequence-pair floorplanner. Adding slack-
based moves was proposed to solve this problem. These
moves change the aspect ratio of the floorplan toward the
desired one. By applying these moves when the aspect ratio
is not the desired one, a floorplan satisfying the fixed-outline
constraint may be obtained during SA.

Instead of designing a new move and mixing it to the ex-
isting ones, we propose a way to handle the fixed-outline
constraint directly in the cost function. For a floorplan with
width W and height H where H ≥ W , the cost associated
with the fixed-outline constraint is defined as

outline cost = emax(W
W∗ ,1)+max(H

H∗ ,1)−2 (5)

This cost is larger than 1 if the constraint is not met; when
the constraint is satisfied, the cost becomes 1. The total cost
of a floorplan is calculated as the product of the outline cost
and the other cost. The intuition is that the exponential func-
tion is very sensitive when the outline difference is large but
less sensitive when the outline difference is small. So the
floorplanner will push the floorplan hard toward the desired
outline when there is enough whitespace. When the outline
constraint is almost or totally satisfied, optimizing other cost
becomes the priority.

It is possible during SA some floorplans meet the fixed-
outline constraint but the final floorplan do not meet the con-
straint. So the best floorplan meeting the fixed-outline con-
straint is recorded during SA and is reported at the end.

Home
Text Box
0-7695-2523-7/06 $20.00 ã 2006 IEEE

4. Experimental Results

4.1. Experimental Setup

The experiments are conducted on a Windows machine
with 1.4GHz Pentium M processor and 512M memory
where the floorplanner is implemented using C++ and com-
piled with GCC 3.4.2.

Following the experimental setup in [8], we pick up
GSRC benchmarks including n10, n30, n50, n100, n200, and
n300. The signal directions and flip-flops are derived as fol-
lows according to [8]. The last pin of a net is treated as the
source of the net and then the net is broken into two-pin nets.
All the pins belong to one module are treated as one pin lo-
cated at the center of the module so that the modules could
be treated as gates. There is exactly one flip-flop on each
edge to represent the situation where each module latches its
outputs.

Classical MCNC benchmarks were used in [8] as well.
However, as the sources of the nets were determined ran-
domly in their work, we cannot generate the same configu-
ration and thus we only experiment on GSRC benchmarks.

4.2. Results for Floorplanning for Process-
ing Rate

We first test the floorplanner without fixed-outline con-
straint. The cost function used is 4

√
area + λG and the in-

cremental bound evaluation method is employed. We run
each benchmark for ten times and the best one is reported in
Table 1 where the “ws (%)” column shows the white space
in percentage.

For each floorplan, we record the random seed used and
use it to perform another SA floorplanning without the incre-
mental bound evaluation. The resulting floorplan is the same
but the running time is different. The experimental results
are reported in Table 2. For the incremental one and the non-
incremental one (under “non-incre.”), we report the running
time as well as the total number of iterations (in “#iter.”) of
Howard’s algorithm. Improvements in running time are re-
ported in “impr.” column and the average improvement is
29%.

circuit area ws (%) λG time (sec)

n10 240.6K 7.9 292.8 47.9

n30 220.9K 5.6 296.0 46.5

n50 217.1K 8.5 239.5 45.7

n100 196.0K 8.4 185.0 56.2

n200 195.6K 10.2 373.9 475.9

n300 312.7K 12.7 497.3 540.4

Table 1. Floorplanning for processing rate.

To compare our results with those in [8], the throughput
for our final floorplans under different frequencies are com-
puted. The frequencies are modeled by the critical length,
which is the distance that a signal travels in one clock cy-
cle. The corresponding critical lengths are 30%, 50%, 70%,

circuit incremental non-incre. impr. (%)

time #iter. time #iter.

n10 47.9 8.9M 56.9 9.6M 15.8

n30 46.5 4.1M 65.0 5.3M 28.5

n50 45.7 3.8M 69.2 4.9M 34.0

n100 56.2 4.4M 75.4 5.5M 25.5

n200 475.9 5.1M 740.6 7.0M 35.7

n300 540.4 4.5M 827.6 6.7M 34.7

average improvement 29.0

Table 2. Incremental vs. non-incremental
bound evaluation.

circuit u.b. 100% 70% 50% 30%

n10 3.42 ∗ 1.70 2.43 2.83 2.65

n30 3.38 1.82 1.95 2.43 2.55

n50 4.18 1.87 2.40 2.69 3.08

n100 5.41 2.36 2.74 3.15 3.93

n200 2.67 1.52 1.66 1.91 2.21

n300 2.01 1.15 1.37 1.45 1.59
∗ All the numbers shown are in the unit ×10−3.

Table 4. Processing rate vs. upper bound.

and 100% of the square root of the total area of all the mod-
ules. According to Section 2, we calculate w∗(e) first. Then
by applying Howard’s algorithm the same way as computing
1

λG
, the throughput is obtained.

In [8], the experiments were conducted on a 1.4GHz
Pentium III machine. For each circuit among n10, n30,
n50, n100 and each of those critical lengths, they ran
the experiment for 60 seconds ten times and we copy the
best ones. They did not report the results for n200 and
n300 but we report our results for these two benchmarks.
The results are compared in Table 3 with the format 1 −
throughput/white space (%), which means that the smaller
the number, the better. The dominating solutions in through-
put and white space are highlighted. It can be seen that our
results dominate theirs for about half of the cases and are not
dominated by theirs for the other half. Moreover, since the
machine configurations are comparable, our running times
are much better considering [8] spent 60× 4 = 240 seconds
for each benchmark.

In Table 4, we report the processing rates for each critical
lengths as well as the bounds 1

λG
(in “u.b.”). Although the

bounds tend to be looser for larger critical lengths, we be-
lieve that the fidelity of the bound to the throughput makes
our approach effective.

4.3. Results for Fixed-outline Floorplanning
for Processing Rate

The fixed-outline constraint is handled explicitly by the
cost function. The cost function used is outline cost ×
(w

√
area + λG). The area weight w is set to 0.5 for n10,

n30, n50, and n100 and 2 for n200 and n300. Small w gives

Home
Text Box
0-7695-2523-7/06 $20.00 ã 2006 IEEE

circuit method 100% 70% 50% 30% time (sec)

n10 FPR 0.200/7.9 0.200/7.9 0.333/7.9 0.625/7.9 47.9

[8] 0.166/8.9 0.250/7.2 0.500/4.0 0.636/6.2 60.0

n30 FPR 0.167/5.6 0.375/5.6 0.444/5.6 0.650/5.6 46.5

[8] 0.200/6.9 0.375/8.3 0.500/6.8 0.636/8.5 60.0

n50 FPR 0.167/8.5 0.250/8.5 0.400/8.5 0.588/8.5 45.7

[8] 0.133/7.2 0.375/6.9 0.473/6.7 0.636/7.2 60.0

n100 FPR 0.000/8.4 0.188/8.4 0.333/8.4 0.500/8.4 56.2

[8] 0.000/9.1 0.200/9.1 0.375/8.6 0.500/9.7 60.0

n200 FPR 0.364/10.2 0.514/10.2 0.600/10.2 0.722/10.2 475.9

[8] - - - - -

n300 FPR 0.400/12.7 0.500/12.7 0.620/12.7 0.750/12.7 540.4

[8] - - - - -

Table 3. Throughput, white space, and running time: FPR (PM 1.4GHz) vs. [8] (PIII 1.4GHz).

better processing rate bound but if meeting the fixed-outline
constraint is a problem, w is increased to emphasize better
area. We run our floorplanner with the maximum white-
space of γ = 15% and the aspect ratio of α = 1, α = 1.5,
and α = 2 respectively. The best results from ten run-
nings are reported in Table 5. The numbers are in the format
λG/running time (sec).

circuit α = 1.0 α = 1.5 α = 2.0
n10 282.0/51.9 282.5/51.2 303.8/65.5

n30 248.3/60.5 254.4/55.0 269.0/55.0

n50 209.0/62.7 210.7/59.2 221.1/60.1

n100 144.2/121.9 138.0/119.4 140.7/123.1

n200 358.2/637.8 378.8/620.6 382.5/863.9

n300 494.0/1091 548.4/840.2 539.8/830.9

Table 5. Fixed-outline floorplanning for pro-
cessing rate.

5. Conclusion

We showed that optimizing the processing rate bound,
which is the minimum ratio of the flip-flop number to the
delay in any cycle, is more general than either optimizing
the clock period or the throughput for a sequential system
because the bound is independent of the operating frequen-
cies or the available design methodologies. We built a SA
based floorplanner optimizing for the processing rate bound
by evaluating it directly in the inner loop of SA without in-
troducing much overhead in running time. Moreover, ex-
ploiting the incremental structure of the evaluating algorithm
sped up the evaluating process. Experimental results con-
firmed the effectiveness of our approach.

References
[1] C. E. Leiserson and J. B. Saxe. Optimization Syn-

chronous Systems. Journal of VLSI and Computer Sys-
tems, 1:41-67, 1983

[2] J. P. Fishburn. Clock Skew Optimization. IEEE Trans.
on Computers, 39(7):945-951, July 1990.

[3] R. H. J. M. Otten and R. Brayton. Planning for Perfor-
mance. In DAC, pages 122-127, 1998.

[4] C. Lin and H. Zhou. Retiming for Wire Pipelining in
System-On-Chip. In ICCAD, pages 215-220, 2003.

[5] V. Nookala and S. S. Sapatnekar. A Method for Cor-
recting the Functionality of a Wire-Pipelined Circuit.
In DAC, pages 570-575, 2004.

[6] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L.
Sangiovanni-Vincentelli. A Methodology for Correct-
by-Construction Latency Insensitive Design. In IC-
CAD, pages 309-315, 1999.

[7] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Per-
formance Analysis and Optimization of Latency Insen-
sitive Systems. In DAC, pages 361-367, 2000.

[8] M. R. Casu and L. Macchiarulo. Floorplanning for
Throughput. In ISPD, pages 62-69, 2004.

[9] A. P. Hurst, P. Chong, and A. Kuehlmann. Physical
Placement Driven by Sequential Timing Analysis. In
ICCAD, pages 379-386, 2004.

[10] H. Zhou and J. Wang. ACG–Adjacent Constraint
Graph for General Floorplans. In ICCD, pages 572-
575, 2004.

[11] J. Wang and H. Zhou. Interconnect Estimation with-
out Packing via ACG Floorplans. In ASPDAC, pages
1152-1155, 2005.

[12] A. B. Kahng. Classical Floorplanning Harmful? In
ISPD, pages 207-213, 2000.

[13] S. N. Adya, and I. L. Markov. Fixed-outline Floorplan-
ning: Enabling Hierarchical Design. IEEE Trans. On
VLSI Systems, 11(6):1120-1135, December 2003.

[14] A. Dasdan, S. S. Irani, and R. K. Gupta. Efficient Algo-
rithms for Optimum Cycle Mean and Optimum Cost to
Time Ratio Problems. In DAC, pages 37-42, 1999.

[15] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. Mc
Gettrick, and J-P Quadrat. Numerical Computation of
Spectral Elements in Max-plus Algebra. In Proc. IFAC
Conf. on Syst. Structure and Control, 1998.

[16] T. H. Cormen, C. E. Leiserson, R. H. Rivest, and C.
Stein. Introduction to Algorithms. 2nd ed., MIT Press,
2001.

Home
Text Box
0-7695-2523-7/06 $20.00 ã 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

