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Abstract—To achieve the full multiplexing gain of MIMO
interference networks at high SNRs, the interference from
different transmitters must be aligned in lower-dimensional
subspaces at the receivers. Recently a distributed “max-SINR”
algorithm for precoder optimization has been proposed that
achieves interference alignment for sufficiently high SNRs. We
show that this algorithm can be interpreted as a variation of an
algorithm that minimizes the sum Mean Squared Error (MSE).
To maximize sum utility, where the utility depends on rate or
SINR, a weighted sum MSE objective is used to compute the
beams, where the weights are updated according to the sum
utility objective. We specify a class of utility functions for which
convergence of the sum utility to a local optimum is guaranteed
with asynchronous updates of beams, receiver filters, and utility
weights. Numerical results are presented, which show that this
method achieves interference alignment at high SNRs, and can
achieve different points on the boundary of the achievable rate
region by adjusting the MSE weights.

I. INTRODUCTION

The number of non-interfering data streams in a network
with interfering nodes depends on the extent to which the
interference can be aligned at each receiver. For example, with
N×N multi-input multi-output (MIMO) channels, it has been
shown that the number of non-interfering data streams can be
as many as 2N − 1 [1].

We consider a peer-to-peer network with K interfering
MIMO links, where the performance of each transmitter-
receiver pair is measured by a utility function, which depends
on the achievable rate. Our problem is to determine the
precoders that maximize the sum utility over all users. For
this purpose we seek a distributed algorithm with limited in-
formation exchange among the nodes. To simplify the problem
we will assume that each precoding matrix has rank one,
corresponding to beamforming, the receivers are linear, and
that the interference is treated as noise, so that the rate is
determined by the received Signal-to-Interference Plus Noise
Ratio (SINR).

At high SNRs the optimal set of transmitted beams give
received beams that are aligned at the receivers. Although
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general conditions for alignment are relatively easy to specify,
given complete channel knowledge for the entire network,
computing the optimal aligned solution can still be challenging
when K is large. This is because the number of aligned
solutions grows rapidly with the network size, making it
difficult to choose the best solution. Furthermore, for low to
moderate SNRs alignment does not generally maximize sum
utility, due to the associated loss in degrees of freedom.

One approach to distributed resource allocation in a peer-
to-peer network has been proposed in [2], [3], and is based on
the exchange of interference prices. Given a set of announced
prices, a transmitter selects a resource (e.g., power or beam)
to maximize its utility minus interference cost to other users.
This approach is used in [4] to optimize precoding matrices for
two interfering users, and is observed to achieve near-optimal
performance. However, we present an example with three
users, which indicates that this approach typically does not
achieve alignment at high SNRs. This is due to the behavior of
the sum rate objective, which exhibits a very steep maximum
at the optimal (aligned) solution.

We consider an alternative approach to sum utility maxi-
mization based on weighted Minimum Mean Squared Error
(MMSE) beamforming. The MMSE criterion is observed to
transform the rate objective into a “better-behaved” objective
with a broader minimum. MMSE beam updates can be iterated
with receiver updates asynchronously, and numerical results
are presented, which indicate that this algorithm finds aligned
solutions at high SNRs, and matches the performance of inter-
ference pricing at lower SNRs. This algorithm is distributed
in the sense that each transmitter must know only its direct
channel matrix and combined cross-channel-receiver gains to
neighboring receivers (same as for the pricing algorithm).

The sum MMSE approach to beamforming is compared
with the “Max-SINR” algorithm for precoder optimization
recently proposed in [5]. We observe that the Max-SINR
updates are closely related to the sum MMSE beam updates,
the difference being in how the beams are scaled to satisfy a
power constraint. The Max-SINR and sum MMSE algorithms
are observed to achieve essentially the same performance for
the examples considered. Attractive properties of the sum



MMSE algorithm are that it has provable convergence, and it
can be easily modified to account for different user priorities,
or utilities, by introducing MSE weights.1

To maximize a sum utility objective, the MSE weights can
be adapted according to the user utilites. This leads to a two-
stage algorithm in which the beams are adapted in an inner
loop with fixed weights, followed by weight updates to match
the current operating point. Conditions on the utility functions
are given, which guarantee that the sum utility converges.
Numerical results are presented for three users, which show
different points in the rate region corresponding to different
MSE weights.

II. SYSTEM MODEL

We consider an interference network consisting of K
transmitter-receiver pairs; we refer to each pair as a user. The
receiver for user k only decodes the signal from transmitter
k and treats interference from all other transmitters as noise.
Each transmitter and receiver has N antennas. The channel
matrix Hjk ∈ CN×N contains the complex channel gains
between the N antennas of transmitter k and the N antennas
of receiver j.

Even though each transmitter-receiver pair is a MIMO link,
we do not consider multiplexing, i. e., each user transmits
only one beam. The beamforming vector used by transmitter
k is denoted as vk ∈ CN and is subject to the transmit
power constraint ‖vk‖

2
2 ≤ 1. Furthermore, we assume linear

receivers, i.e. the receiver of user k forms the symbol estimates

ŝk = gH
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where sj is the unit variance data symbol of transmitter j
(intended for receiver j) and gk is the linear receive filter of
user k. The additive noise nk is assumed to be white with
covariance matrix E[nknH

k ] = σ2
I.

Each user’s overall performance is given by a utility uk(γk)
that is an increasing function of the SINR
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2
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2
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The problem is to maximize the sum utility over the beam-
forming vectors vk’s and receive filters gk’s:

max
v1,...,vK
g1,...,gK

K
∑

k=1

uk(γk) s. t.: ‖vk‖
2

2 ≤ 1 ∀k ∈ {1, . . . , K}.

(3)
Example utility functions include the achievable data rate
uk(γk) = log(1 + γk) and the “α-fair” utility γα

k .

1Proving convergence of the Max-SINR algorithm appears to be more
difficult due to the lack of a specified global objective.

A. Interference Alignment
In the regime of asymptotically high SNR, i. e., as σ2 → 0,

it is generally optimal to avoid interference completely so that

gH

k Hkjvj = 0 ∀ (k, j) k 6= j. (4)

For random i. i. d. channels, this is conjectured to be possible
without shutting off users (i. e., vk 6= 0 and gk 6= 0 ∀k ∈
{1, . . . , K}) with high probability as long as K ≤ 2N−1 [6].

Let us examine the “fully loaded” case K = 2N − 1.
According to (4), all interference coming from the K−1 unin-
tended transmitters must be orthogonal to the N -dimensional
receive filter vector. Consequently, the K − 1 = 2N − 2
interference components must be aligned in an (N − 1)-
dimensional subspace at each receiver, leaving one dimension
free for identifying the intended signal [1].

While for two antennas (N = 2) it is possible to compute
the solutions to (4) explicitly, finding aligned solutions by
solving (4) directly appears to be intractable for N > 2.
A natural approach to finding such a solution would be to
apply a gradient algorithm to (3) in the high SNR regime.
This turns out to be problematic, since for the sum rate utility,
the “good” local optima corresponding to aligned solutions
have very narrow regions of attraction, and are not easily
found by following the direction of the steepest ascent from
arbitrary initializations. Instead, a gradient algorithm typically
converges to another local optimum with either substantial
interference, or with a fewer number of active users (below
2N − 1).

B. Distributed Algorithms
In [5], an iterative Min Leakage algorithm is proposed that

converges toward an aligned solution from arbitrary initializa-
tions, if alignment is possible. This can be used to solve (3)
for high SNRs when K ≤ 2N−1. Furthermore, this algorithm
is distributed in that it requires the nodes to exchange limited
information. Our focus is on distributed algorithms for solv-
ing (3) across a range of SNRs. In particular, for finite SNR,
the conditions in (4) may not be optimal, i.e., tolerating some
interference may be advantageous.

A distributed algorithm for beam allocation, based on the
exchange of interference prices, has been proposed in [3],
[4]. This has been shown to perform well for Multiple-
Input/Single-Output (MISO) interference networks as well as
for two-user MIMO interference channels [4]. For MIMO
interference networks, it operates as follows: in each iteration,
receiver k announces an interference price

πk = −
∂uk(γk)

∂Ik

(5)

to all transmitters, which is the marginal decrease in utility
for an increase in received interference. The transmitters
asynchronously update their beams to maximize their own
utility minus the “cost” of the interference they produce, i.e.,
they solve

max
vk

uk(γk)−
∑

j 6=k

πj |g
H

j Hjkvk|
2

2 s. t: ‖vk‖
2

2 ≤ 1. (6)



Fig. 1. Sum rate versus SNR for interference pricing and alignment.

A stationary point of this algorithm can be shown to fulfill
the Karush-Kuhn-Tucker (KKT) conditions of the optimization
in (3).

Figure 1 shows an example of the performance of this
algorithm in a MIMO network with K = 3 users and M = 2
antennas at each transmitter and receiver. Each user k has
a rate utility function uk(γk) = log2(1 + γk). The plot
shows the average sum rate in bits per channel use versus
SNR, defined as 1/σ2. The performance is averaged over
100 channel realizations where the channel coefficients are
i.i.d. complex Gaussian with unit variance. Also, shown is the
sum rate achieved by an aligned solution obtained from the
Min Leakage algorithm. It can be seen that for low SNRs
pricing performs better, while for higher SNRs pricing does
not achieve the optimal slope and performs worse than the
aligned solution. As with a (centralized) gradient algorithm, it
appears that at high SNRs, the pricing algorithm is attracted
to non-aligned local optima.2

In [5], a second distributed algorithm called the Max-
SINR algorithm was also proposed. This is a variation of the
Min Leakage algorithm, modified with the aim of finding a
“good” set of beams for finite SNR. The Max-SINR algorithm
iteratively exchanges the role of transmitters and receivers in
the network; in the reverse direction, the beamformers act as
receive filters and the receive filters are used as beamformers.
The update procedure consists of computing the receive filters
that maximize the received SINR. In the original direction of
communication, the receive filter update for user k is

gk = θk

(

∑

j

Hkjvjv
H

j HH

kj + σ2
I

)−1

Hkkvk (7)

with θk such that ‖gk‖
2
2 = 1, and the beamformer update is

vk = βk

(

∑

j

HH

jkgjg
H

j Hjk + σ2
I

)−1

HH

kkgk (8)

2Indeed, the interference prices essentially convey gradient information to
each user.

where βk is chosen to fulfill ‖vk‖
2
2 = 1.

Numerical results in [5] show that this algorithm has good
performance in terms of sum-rate over a range of SNR values.
However, no convergence proof is given and it is not clear how
to modify it to account for other utility functions. Next, we
introduce a closely-related distributed algorithm based on min-
imization of the mean squared error (MSE) to addresses these
difficulties. In particular, it is straightforward to show that this
algorithm converges. Moreover, we extend the algorithm to
accommodate different utility functions.

III. MSE MINIMIZATION

The MSE for user k is defined as
εk = E

[

|ŝk − sk|
2
]

=
∣

∣gH

k Hkkvk − 1
∣

∣

2
+

K
∑

j=1

j 6=k

∣

∣gH

k Hkjvj

∣

∣

2
+ ‖gk‖

2

2σ
2 (9)

Instead of maximizing the total utility in (3), we first
consider minimizing the sum MSE:

min
v1,...,vK
g1,...,gK

K
∑

k=1

εk s. t.: ‖vk‖
2

2 ≤ 1 ∀k ∈ {1, . . . , K}.

(10)
The optimal receive filter for user k is given by

gMMSE,k =

(

K
∑

j=1

Hkjvjv
H

j HH

kj + σ2
I

)−1

Hkkvk. (11)

Optimizing the beamformers, subject to the transmit power
constraint, gives

vMMSE,k =

(

K
∑

j=1

HH

jkgjg
H

j Hjk + λkI

)−1

HH

kkgk (12)

where the Lagrange multiplier λk ≥ 0 is chosen so that
‖vk‖

2
2 ≤ 1. Note that given a set of receive filters, a particular

user’s beamformer does not depend on the other beamformers.
An explicit expression for λk cannot be given; it can be shown,
however, that ‖vMMSE,k‖

2 is convex and decreasing in λk, so
that there exists a unique solution, which can be efficiently
found (e. g., via Newton iterations).

Based on the preceding observations, we propose the fol-
lowing iterative procedure for solving (10) (cf. [7]):

1) Initialize the beams v1, . . . , vK arbitrarily.
2) Optimize the receive filters g1, . . . , gK assuming fixed

beamformers according to (11).
3) Optimize beamformers v1, . . . , vK assuming fixed re-

ceivers according to (12).
4) Repeat from 2) until convergence.
By noting that at each step the sum MSE is decreased or

stays the same we have the following lemma.
Lemma 1: The sum MSE for the preceding algorithm con-

verges. Moreover any stationary point corresponds to a local
optimum.



Comparing the transmitter and receiver updates (11)
and (12) with those of the Max-SINR algorithm, (7) and (8),
we notice that they are nearly identical. The two differences
are the regularization with λk instead of σ2 inside the inverse
in the beamformer update and the absence of the normalization
factors θk and βk.

A. Weighted Sum MSE Minimization
The MSE cost function can be easily extended to allow

different priorities to be assigned to the users by means of
weights αk, yielding the optimization problem:

min
v1,...,vK
g1,...,gK

K
∑

k=1

αkεk s. t.: ‖vk‖
2

2 ≤ 1 ∀k ∈ {1, . . . , K}.

(13)
Compared to the unweighted optimization problem in (10),

the solution for the optimal receive filters remains the same
(cf. (11)). The necessary condition for the beamformers must
be modified as

vWMMSE,k =

(

K
∑

j=1

αj

αk

HH

jkgjg
H

j Hjk + λkI

)−1

HH

kkgk (14)

with λk ≥ 0 so that ‖vk‖
2
2 ≤ 1. Lemma 1 also applies to this

extension.

IV. WEIGHTED SUM MSE AND GENERAL SUM UTILITIES

We now use the weighted MSE optimization with adaptive
weights to solve the original utility optimization problem (10).
With MMSE receive filters given by (11), we note that the
SINR γk = 1

εk
−1, so that we can express the utility functions

in terms of the MSE, i.e.,

ūk(εk) = uk

(

1

εk

− 1

)

. (15)

Expanding the sum utility in a Taylor expansion around the
operating point εk,0 and dropping all but the linear term gives

K
∑

k=1

ūk(εk) =

K
∑

k=1

−αkεk + C + O(ε2k) (16)

where C does not depend on any εk and

αk = −
∂ūk(εk)

∂εk

∣

∣

∣

∣

∣

εk=εk,0

. (17)

For example, the rate utility uk(γk) = log(1+γk) becomes
ūk(εk) = − log(εk), so that the sum rate behaves locally as
weighted sum MSE with weights αk = 1/εk,0.

The resulting Adaptively Weighted-MSE (AW-MSE) algo-
rithm follows:

1) Initialize the beamformers v1, . . . , vK arbitrarily, and
compute the optimal receive filters g1, . . . , gK from (11)
and the weights α1, . . . , αK from (17).

2) Iterately update the beamformers from (14) and the
receivers from (11) until convergence. After each beam-
former update, rescale the beamformer to have a unit
norm.

3) Update the weights α1, . . . , αK according to the new
operating point ε1,0, . . . , εK,0 using (17).

4) Repeat from 2) until the weights α1, . . . , αK have
converged.

The re-normalization in step 2 implies that λk in (14) is
chosen so that ‖vk‖

2
2 = 1 (instead of an inequality constraint).

Without this modification at high SNRs the algorithm tends to
shut-off some users in a fully-loaded system, and does not
achieve aligned solutions.3

When the algorithm has converged, clearly (11) and (14)
(with the preceding modification) are fulfilled for all k. Fur-
thermore, since the weights αk’s correspond to the current
value of εk, the necessary optimality conditions for the original
sum utility maximization problem (3) are fulfilled, where
the inequality power constraints are replaced with equality
constraints. Hence if the algorithm converges, it finds a locally
optimal solution. A similar algorithm has been proposed for
MIMO broadcast channels in [8].

A. Convergence

Conditions under which the AW-MSE algorithm converges
are stated in the following proposition.

Proposition 1: If uk satisfies (γk + 1)u′′
k + 2u′

k ≥ 0, or
equivalently, ū′′

k ≥ 0 for all feasible γk or εk and for each
k, then the sum utility given by the AW-MSE algorithm
converges.

Proof: The proof consists of showing that updating the
beamformers and receive filters, given new (updated) weights,
will increase the sum utility relative to that before the last
weight update. This is true because the condition ū′′

k ≥ 0
implies that the utility function is a convex function of the
MMSE, so that the linearization of the objective in (16) lower
bounds the sum utility objective and is tight at the current
operating point, i.e.,

K
∑

k=1

ūk(εk) ≥

K
∑

k=1

ūk(εk,0) −

K
∑

k=1

αk(εk − εk,0) (18)

where εk,0 is user k’s MMSE at the current operating point.
Given a set of new weights, αk’s, the users then update

their beamformers and receive filters according to step 2. After
those updates we must have

K
∑

k=1

αkεk,∗ <

K
∑

k=1

αkεk,0. (19)

where εk,∗ is the updated MSE for user k. Combining (19)
and (18) implies that

K
∑

k=1

ūk(εk,∗) ≥

K
∑

k=1

ūk(εk,0) (20)

3Of course, this modification may not be reasonable when the number of
users is greater than the number that can be aligned; our current work is
considering algorithms that achieve alignment without this restriction.



0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

SNR in dB

W
ei

gh
te

d 
Su

m
 R

at
e

 

 
Max SINR
Min Leakage
Weighted MMSE

Fig. 2. Performance of distributed algorithms with three users and 2 × 2

channels.

or equivalently,
K
∑

k=1

uk(γk,∗) ≥
K
∑

k=1

uk(γk,0), (21)

which means the sum utility cannot decrease after the beam-
formers and receive filters are updated. Since the sum utility
is bounded, it must therefore converge.

The proof applies when the weights, beamformers, and
receive filters are updated asynchronously, as long as the
receive filters are optimized for the current set of beams before
each weight update. That is, (19) still holds, which guarantees
that the sum utility cannot decrease over consecutive weight
updates. The condition in Proposition 1 applies to the rate
utility log(1 + γ), but excludes the α-fair utility γα/α. Al-
though the preceding proof implies convergence of the sum
utility objective, and not the beamformers, convergence of the
beams is always observed in simulations.

V. NUMERICAL RESULTS

In this section, we present numerical examples for a network
of three users with 2 × 2 channels. The utility functions
are weighted rates, i.e., uk(γk) = wk log2(1 + γk), where
w1 = 0.1, w2 = 1, and w3 = 10, reflecting an increase
in priorities for users 1, 2, and 3. The direct- and cross-
channel gains are all i.i.d. with unit variance. Fig. 2 shows the
weighted sum utility averaged over 100 channel realizations.
Results are shown for the AW-MSE algorithm, Max-SINR,
and Min-Leakage algorithm. At moderate SNRs the AW-MSE
shows a significant gain in the objective, relative to the other
algorithms, whereas at high SNRs all three algorithms exhibit
similar performance, since alignment becomes optimal.

Fig. 3 shows achievable points in the rate region obtained
by varying the MSE weights in the AW-MSE algorithm. This
example is for a particular channel realization with an SNR of
10 dB. Two additional points are shown corresponding to the
Max-SINR and min-leakage algorithms. Those are connected
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to the bottom plane by solid and dashed lines, and essentially
correspond to the two aligned solutions. Further examples
show that as the SNR increases, the points tend to cluster
around the dominant aligned solution.

VI. CONCLUSIONS

We have presented a distributed algorithm for adjusting
beamformers in MIMO networks to maximize the sum utility
over all users. Each beamformer is updated to minimize a
weighted sum MSE objective, where the weights are updated
according to the user utilities. Numerical examples show that
this algorithm achieves alignment at high SNRs, and for the
sum rate utility performs essentially the same as the Max-
SINR algorithm in [5]. Moreover, it can achieve different
points on the rate region by changing the MSE weights, and
has provable convergence. A topic for further study is to
relax the assumption of rank-one precoders, and allow for
multiplexing gains on each link.
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