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1 Pinhole Camera Model

1.1 Perspective Projection
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Figure 1: Illustration of perspective projection of a pinhole camera

From Figure 1, we can easily figure out:

{

x′ = f ′x/z
y′ = f ′y/z

(1)

Note: Thin lenses cameras has the same geometry as pinhole cameras. Thin lenses camera
geometry:

1

z′
−

1

z
=

1

f

1.2 Weak-Perspective Projection

{

x′ = (f ′/z0)x
y′ = (f ′/z0)y

(2)

When the scene depth is small comparing to the average distance from the camera, i.e.,
the depth of the scene is “flat”, weak-perspective projection is a good approximation of
perspective projection. It is also called scaled-orthographic projection.

1.3 Orthographic Projection

{

x′ = x
y′ = y

(3)
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When camera always remains at a roughly constant distance from the scene, and scene
centers the optic axis, orthographic projection could be used as an approximation. Obviously,
orthographic projection is not real.

2 Homogeneous Coordinates

A 3D point is

P =





x
y
z





and a plane can be written by ax + by + cz − d = 0. We use homogeneous coordinates to
unify the representation for points and lines by adding one dimensionality, i.e., we use

P =









x
y
z
1









for points and

Π =









a
b
c
−d









for planes, where the plane Π is defined up to a scale. We have

Π · P = 0

3 Coordinate System Changes and Rigid Transforma-

tions

For convenience, We use the “Craig notation”. FP means the coordinates of point P in
frame F.

3.1 Translation

BP =A P +B OA (4)

where BOA is the coordinate of the origin OA of frame A in the new coordinate system B.
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3.2 Rotation

B
AR = (BiA

BjA
BkA) =





AiTB
AjTB
AkT

B



 (5)

where BiA is the coordinate of the axis iA of frame A in the new coordinate system B. Then
we have,

BP =B
A RAP

3.3 Rigid Transformation

BP =B
A RAP +B OA (6)

Let’s see here an advantage of the homogeneous coordinates. If we make two consecutive
rigid transformation, i.e., from A→ B → C, the coordinate of point P in frame C will be
written by:

CP =C
B R(B

ARAP +B OA) +C OB =C
B RB

ARAP + (C
BRBOA +C OB)

It looks very awkward. If we present it by homogeneous coordinates, it looks very concise.

[

BP
1

]

=

[

B
AR BOA

0T 1

] [

AP
1

]

and
[

CP
1

]

=

[

C
BR COB

0T 1

] [

BP
1

]

So,
[

CP
1

]

=

[

C
BR COB

0T 1

] [

B
AR BOA

0T 1

] [

AP
1

]

3.4 Summary

We could write a transformation by:

T =









m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44









We call it a projective transformation. If we can write:

T =

[

A t
0T 1

]
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It becomes an affine transformation. If A = R, i.e., a rotation matrix (RTR = I),

T =

[

R t
0T 1

]

it becomes a Euclidean transformation or a rigid transformation. Obviously, Euclidean
transformation preserves both parallel lines and angles, but affine preserves parallel lines
but not angles.

4 Image Formation (Geometrical)

In this section, we discuss the process of image formation in terms of geometry. For a 3D
point pw = [xw, yw, zw]T in the world coordinate system, its will be mapped to a camera
coordinate system (C) from the world coordinate system (F), then map to the physical retina,
i.e., the physical image plane, and get image coordinates [u, v]T . We shall ask how this 3D
point is mapped to its image coordinate.

camera coordin.

world
coordin.

u

v

p

u’

v’

p’

P

x

y

z

normalized
image plane

image
coordin.

physical retina

Figure 2: Illustration of the geometry of the image formation process under perspective
projection of a pinhole camera

For convenience, we introduce a normalized image plane located at the focal length f = 1.
In such a normalized image plane, the pinhole (c) is mapped to the origin of the image plane
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(ĉ), and p is mapped to p̂ = [û, v̂]T .

p̂ =





û
v̂
1



 =
1

zc

[

I 0
]

[

pc

1

]

=
1

zc

[

I 0
]









xc

yc

zc

1









And we also have





u
v
1



 =
1

zc





kf 0 u0

0 lf v0

0 0 1









xc

yc

zc



 =
1

zc





kf 0 u0

0 lf v0

0 0 1





[

I 0
]









xc

yc

zc

1









Let α = kf and β = lf . We call these parameters α,β,u0 and v0 intrinsic parameters, which
present the inner camera imaging parameters. We can write





u
v
1



 =
1

zc





α 0 u0 0
0 β v0 0
0 0 1 0













xc

yc

zc

1









=
1

zc





α 0 u0 0
0 β v0 0
0 0 1 0





[

R t
0T 1

]









xw

yw

zw

1









We call R and t extrinsic parameters, which represent the coordinate transformation between
the camera coordinate system and the world coordinate system. So, we can write,





u
v
1



 =
1

zc
M1M2p

w =
1

zc
Mpw (7)

We call M the projection matrix.

5 Camera Calibration – Inferring Camera Parameters

5.1 The Setting of the Problem

We are given (1) a calibration rig, i.e., a reference object, to provide the world coordi-
nate system, and (2) an image of the reference object. The problem is to solve (a) the
projection matrix, and (b) the intrinsic and extrinsic parameters. Mathematically, given
[xw

i , yw
i , zw

i ]T , i = 1, . . . , n, and [ui, vi]
t, i = 1, . . . , n, we want to solve M1 and M2, s.t.,





ui

vi

1



 =
1

zc
i

M1M2









xw
i

yw
i

zw
i

1









=
1

zc
i

M









xw
i

yw
i

zw
i

1









, ∀i
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5.2 Computing the Projection Matrix

zc
i





ui

vi

1



 =





m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34













xw
i

yw
i

zw
i

1









We can write

zc
i ui = m11x

w
i + m12y

w
i + m13z

w
i + m14

zc
i vi = m21x

w
i + m22y

w
i + m23z

w
i + m24

zc
i = m31x

w
i + m32y

w
i + m33z

w
i + m34

Then

xw
i m11 + yw

i m12 + zw
i m13 + m14 − uix

w
i m31 − uiy

w
i m32 − uiz

w
i m33 = uim34

xw
i m21 + yw

i m22 + zw
i m23 + m24 − vix

w
i m31 − viy

w
i m32 − viz

w
i m33 = vim34

Then,















xw
1

yw
1

zw
1

1 0 0 0 0 −u1x
w
1

−u1y
w
1

−u1z
w
1

0 0 0 0 xw
1

yw
1

zw
1

1 −v1x
w
1

−v1y
w
1

−v1z
w
1

...
...

...
...

...
xw

n yw
n zw

n 1 0 0 0 0 −unx
w
n −uny

w
n −unz

w
n

0 0 0 0 xw
n yw

n zw
n 1 −vnxw

n −vnyw
n −vnzw

n





































m11

m12

m13

m14

...
m32

m33























=























u1m34

v1m34

u2m34

v2m34

...
unm34

vnm34























(8)

Obviously, we can let m34 = 1, i.e., the projection matrix is scaled by m34. We have:

Km = U (9)

Where, K is a 2n×11 matrix, m is a 11-D vector, and U is a 2n-D vector. The least squares
solution of Equation 9 is obtainted by:

m = K†U = (KTK)−1KTU (10)

where K† is the pseudoinverse of K. Here, m and m34 = 1 constitute the projection matrix
M. This is a linear solution to the project matrix.

5.3 Computing Intrinsic and Extrinsic Parameters

After computing the projection matrix M, we can compute the intrinsic and extrinsic pa-
rameters from M. Please notice that the projection matrix M obtained from Equation 9
is a scaled version of the true M, since we have let m34 = 1. To decompose the projection
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matrix in order to solve M1 and M2, we need to take into account of m34, i.e., the true m34

needs to be figured out. Apparently, we have:

m34M = m34





mT
1

m14

mT
2

m24

mT
3

1



 =





α 0 u0 0
0 β v0 0
0 0 1 0













rT
1

tx
rT
2

ty
rT
3

tz
0T 1









=





αrT
1

+ u0r
T
3

αtx + u0tx
βrT

2
+ v0r

T
3

βty + v0tx
rT
3

tx



 (11)

where mT
i = [mi1,mi2,mi3], M = {mij} is computed from Equation 9, and rT

i = [ri1, ri2, ri3],
R = {rij} is the rotation matrix.

To see it clearly, we have:




αrT
1

+ u0r
T
3

αtx + u0tx
βrT

2
+ v0r

T
3

βty + v0tx
rT
3

tx



 =





m34m
T
1

m34m14

m34m
T
2

m34m24

m34m
T
3

m34



 (12)

Obviously, by comparing these two matrices, it is easy to see m34m3 = r3. In addition,
since R is a rotation matrix, we have |ri| = 1. Then, we have

m34 =
1

|m3|

Then, it is easy to figure out all the other parameters:

r3 = m34m3 (13)

u0 = (αrT
1

+ u0r
T
3
)r3 = m2

34
mT

1
m3 (14)

v0 = (βrT
2

+ v0r
T
3
)r3 = m2

34
mT

2
m3 (15)

α = m2

34
|m1 × m3| (16)

β = m2

34
|m2 × m3| (17)

After that, it is also easy to get:

r1 =
m34

α
(m1 − u0m3) (18)

r2 =
m34

β
(m2 − v0m3) (19)

tz = m34 (20)

tx =
m34

α
(m14 − u0) (21)

ty =
m34

β
(m24 − v0) (22)

Now, we have obtained all the intrinsic and extrinsic parameters. For the analysis of skewed
camera models (i.e., θ 6= 90o), please read chapter 6 of Forsyth&Ponce.

5.4 Questions to Think Over

We’v introduced a linear approach for camera calibration. Let’s think some questions over:
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• The matrix M1, representing the intrinsic characteristics of cameras, has 4 independent
variables; and the matrix M2, representing the extrinsic characteristics, has 6 indepen-
dent variables. So the projection matrix M has 10 independent variables. When letting
m34 = 1, we still have 11 parameters to determine. However, please note, these 11 pa-
rameters are not independent! But our solution by Equation 9 did not address such
dependency or constraints among these 11 parameters. Consequently, computation
errors are not avoidable. The question is that, if we can find an approach to take into
account of that to enhance the accuracy?

• The method described above assumes that we know the 2D image coordinates. How
can we get these 2D image points?

• If the detection of these 2D image points contains noise, how does the noise affect the
accuracy of the result?

• If we are not using point-corespondences, can we use lines?
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