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Abstract

Tracking the articulated hand motion in a video sequence
is a challenging problem in which the main difficulty arises
from the complexity of searching for an optimal motion esti-
mate in a high dimensional configuration space induced by
the articulated motion. Considering that the complexities of
this problem may be reduced by learning the lower dimen-
sional manifold of the articulation motion in the configura-
tion space, we propose a new representation for the non-
linear manifold of the articulated motion, with a stochas-
tic simplex algorithm that facilitates very efficient search.
Contrary to traditional methods of representing the mani-
folds through clustering and transition matrix construction,
we maintain the set of all training samples. To perform the
search of best matching configuration with respect to the
input image, we combine sequential Monte Carlo technique
with the Nelder-Mead simplex search which is efficient and
effective when the gradient is not readily accessible. This
new approach has been successfully applied to hand track-
ing and our experiments show the efficiency and robustness
of our algorithm.

1. Introduction

Capturing the articulate hand motion from visual input is an
important task in many fields with various applications in-
cluding human motion understanding, gesture recognition,
and motion capture for animation synthesis. Currently, the
most reliable methods still require external sensors attached
to the human body such as the special markers for the mo-
tion capture systems, data gloves for hand motion capturing,
and magnetic sensors for virtual environment interactions.
These devices are generally expensive and cumbersome.

On the other hand, vision-based techniques offer an in-
expensive and non-invasive alternative for capturing the ar-
ticulate body motions. In this paper we present an approach
for tracking the highly articulate human hand motion. The
difficulties of tracking the human hand arises mainly from
the large degrees of freedom (DOF) involved in the motion.
As a result, estimating the correct hand motion and con-

figuration parameters is equivalent to a search in the high
dimensional space. Other difficulties include the self oc-
clusions of different fingers, and clutters from the image
background which introduce additional uncertainties for the
estimation.

One strategy for tracking the hand motion is using the
appearance-based approach [2, 7, 16, 17, 23], which at-
tempts to estimate the hand states directly from the im-
age features. A nonlinear mapping is learned from a large
amount of training images. This approach can quickly es-
timate the hand configuration once the mapping is learned.
However, it is difficult to determine the structure of the map-
ping function and the set of optimal training data.

Model-based approach is another alternative for estimat-
ing hand articulations [10, 11, 13, 14, 15, 18, 20, 24, 19].
The idea is to compare image features between 3D hand
model projections and real hand images. The hand state
is recovered from the configuration that generates the best
match. With a well initialized hand model, this approach
can produce a very accurate estimate. However, model-
based tracking involves the estimation of parameters in high
dimensional space. The hand motion generally consists of
27 DOF, 6 for the global motion and 21 for the finger artic-
ulation.

The computational complexity can be reduced by ob-
serving that the hand motion is highly constrained. Pre-
vious work has shown that by incorporating motion con-
straints, the dimensionality of the feasible space can be
significantly reduced [10, 11, 15]. To take advantage of
the motion constraints for the model based approach, we
must address two key issues: 1) the representation of the
feasible configuration space, and 2) an efficient and effec-
tive searching algorithm associated with this representation.
Previous work [3, 4, 8, 6] generally represents the manifold
using piecewise linear assumption. A clustering algorithm
is first applied to identify locally similar patches, which is
then approximated by a linear manifold in a lower dimen-
sional space determined by PCA or other dimensionality re-
duction techniques. For the case of object recognition, an
affinity measure is defined between manifolds that would
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maximize the class separability[3, 8]. For tracking, a tran-
sition probability table is constructed to model the motion
dynamics[4, 6]. It is generally a difficult problem in deter-
mining a suitable clustering algorithm and to construct an
accurate manifold approximation.

In this paper, we propose a novel representation for the
feasible configuration space using a set of discrete sam-
ples collected from CyberGlove. Each sample corresponds
to one set of joint angle parameter that defines the hand
shape. By using the entire set of samples directly, we
do not attempt to find an approximated parametrization of
the lower dimensional manifolds embedded in the feasible
space, thereby avoiding the estimation error due to incorrect
assumptions and lossy dimensionality reduction techniques.

For searching in this discrete space, we propose to use a
stochastic Nelder-Mead (NM) simplex search. NM method
is a classical direct search algorithm that is used for the
cases when gradients can not be accessible or evaluated.
However, like all other bottom-up approaches, it is often
trapped in local minima for nonconvex objective functions.
Therefore we propose to combine the top-down multiple
hypothesis approach and estimate the optima with several
simplices.

In Sec 2 we describe the representation of the feasible
configuration space in greater details. Sec 3 gives the basic
form of NM simplex search and how we adapt it to search
in our new representation. Then multiple hypothesis version
of NM simplex is presented in Sec 4. Sec 5 and 6 describe
how we combine global and local motion and how we ob-
tain the objective function values. Finally, experiment re-
sults are shown in Sec 7 and conclusions are given in Sec 8.

2 Non-Parametric Representation of
the Hand Configuration Space

The hand motion consists of global MG and local ML finger
motions. Global motion includes the 3D translation t and
rotation R of the entire hand. ML is represented by the set
of joint angles θi, which has roughly 20 degrees of freedom
(DOFs) [10]. Exhaustive searching in this space without
any prior knowledge of the feasible space is a nearly impos-
sible task. How to model natural configuration distribution
of the feasible states is the key in successfully reducing the
computational complexity. One way to model the feasible
space is by observing the piecewise smooth linear manifold
structures that lie in a lower dimensional space. Wu et al.
[24] learned the local manifold structure by collecting real
hand motion data and apply PCA and other anatomical con-
straints to reduce the dimensionality to 7. Observing the
linear manifold for motion representations, they were able
to effectively track finger motions. Stenger[20] on the other
hand, also made use of the linear manifold approximation

to help generate templates for constructing the tree struc-
ture representation of the configuration space. However, to
obtain a good manifold parametrization is generally diffi-
cult. Furthermore, PCA can only model the global charac-
teristics. It is not capable of identifying the local manifold
structures and their true dimensionality.

We propose to adopt a nonparametric representation and
model the entire feasible space directly from the set of N
collected CyberGlove data. The entire feasible space Ψ is
defined by the set of θi, i = 1 . . . N , where each θ ∈ R20

represents one sampled configuration. Then a kd-tree struc-
ture is constructed so that given any point θ ∈ R20, we can
quickly find an approximated nearest neighbor θ′ ∈ Ψ. One
of the benefits of using this representation is that no learning
is required to find a closed form of the manifold representa-
tion of Ψ. Therefore, this approach avoids the error induced
by incorrect approximations of the representation. Further-
more, the motion constraints are automatically embedded
in this discrete model. Clearly, the model can be refined
when more samples are collected. This advantage is gained
as a trade off for the cost of the computer memory, which is
inexpensive nowadays.

3 The Direct Search Algorithm

This section presents the basic Nelder-Mead search method,
and the adaptation for searching in the feasible configura-
tion space Ψ defined in sec. 2

3.1 Nelder-Mead Simplex Algorithm

With the feasible configuration space Ψ defined, a search al-
gorithm must be designed that is appropriate for this struc-
ture. Given the estimated state x∗

t at time t, the goal is to
identify x∗

t+1 which minimizes certain objective function
f(x). However, Ψ has several properties that make it un-
favorable for the numerical optimization. First, because Ψ
uses a nonparametric representation in a high dimensional
space, it is difficult to estimate the derivative of the objective
function f(x). Second, although we could define f(x) for
every x, it is difficult to obtain the closed form of f(x) due
to its nonlinear nature. Third, the representation has several
discontinuities due to the existence of many infeasible con-
figurations. Because of these properties, it is impossible to
obtain the gradient and we must rule out the gradient de-
scent algorithms which require first or second derivatives,
such as Newton methods.

Having only the access to the function values f(x), one
alternative is the Nelder-Mead (NM) search method [21]
which belongs to the class of direct search methods. The
NM method attempts to minimize a scalar-value nonlin-
ear function of n real variables using only function values,
without any derivative information, whether explicit or im-
plicit. The NM method maintains at each iteration a nonde-

2

Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR’04) 
0-7695-2122-3/04 $ 20.00 © 2004 IEEE 



generate simplex S, which is a geometric object defined by
a convex hull of n + 1 points {x0, . . . , xn}in Rn.

Through a sequence of elementary geometric transfor-
mations, the initial simplex moves, expands, or contracts
towards the minimum. At each step, The worst vertex with
highest cost xmax = arg max

x∈S
f(x) is replaced by one with

smaller function value. In the case of visual hand tracking,
the objective function is defined as the negative of the like-
lihood function −p(z|x), where z is the image observation
and x is the hand state.

The procedure for performing NM search at each itera-
tion is described in the following steps (See [21] for details).
At the beginning of each iteration, the worst vertex xmax is
selected and the centroid x = 1

n (
∑n

i=0 xi − xmax) is com-
puted. Then depending on f(xr), we perform the follow-
ing operations to obtain the new vertex xnewwhich replaces
xmax.

• Reflect xr = (1 + α)x − αxmax.

• Expand xe = γxr + (1 − γ)x.

• Contract xc = βxmax + (1 − β)x

The iteration for NM-method typically terminates for a suf-
ficiently small simplex or when a maximum number of iter-
ation is reached.

3.2 Two Stage NM Method

Given the hand state θt, the NM method begins by gen-
erating an initial simplex S0

t around θt, and the iterative
procedure guides the search towards a minimum. Although
NM method is suitable for searching when the gradient is
not easily accessible, the basic form of NM does not take
advantage of the motion constraints embedded in the fea-
sible space Ψ. To incorporate the constraints in the search
process, instead of performing the unconstrained simplex
search in the continuous domain, we propose a two stage
hierarchical NM search. In the coarse level, we restrict the
simplex vertices θi to be one of the samples θj ∈ Ψ. At the
kth iteration, a new vertex θnew is generated as described
in section 3.1, and a nearby configuration θ′ is located to
replace θmax ∈ Sk+1

t .

θ′ = [θnew]+ = arg min
θ∈Ψ

‖ θnew − θ ‖

There are many algorithms and data structures designed for
locating a nearest sample point in a set from any given lo-
cation, such as Voronoi diagram, kd-tree, and ANN. In our
experiment, we implemented the kd-tree structure. Since
NM method will converge towards a minimum, the nearest
neighbor does not need to be very exact. By constraining
the searching to the discrete space Ψ, the hand motion con-
straints are automatically applied to the searching.

Since the data we collected can not possibly cover the
entire feasible space, there exist gaps and discontinuities in
Ψ. Searching only in the discrete domain will not guarantee
an optimal convergence; therefore, a second stage is needed
to refine the search. In the first stage, the NM method begins
with a larger simplex and ends with a more relaxed termi-
nation condition in the discrete domain. Then in the second
stage the algorithm continues the iteration in the continuous
domain with a more strict termination condition.

4 Stochastic Simplex Tracking

Like all bottom-up search algorithm, the NM simplex algo-
rithm presented in the previous section fails when the cost
function has multiple minima. Because of the noise pre-
sented in image feature extraction and the nontrivial def-
inition of the cost function (see Sec 6), the cost function
can not be convex. Furthermore, the result of the search
algorithm outputs only the maximum likelihood estimate
x∗

t = arg max
x

p(zt|x) when the cost function is defined

as ft(x) = −p(zt|x).
One way to tackle the multiple minima problem is to em-

ploy the multiple hypotheses approach. In the tracking liter-
ature, particle filtering has been widely used as an effective
multiple hypotheses tracker to reduce ambiguities. The par-
ticle filter [1, 9] uses a probabilistic approach that estimates
x∗ from a time evolving pdf p(x|z) through the Bayes for-
mulation:

p(xt+1|zt+1) ∝ p(zt+1|xt+1)p(xt+1|zt) (1)

where xt is the target state at time t and zt = {z1, . . . zt}
is the history of image observations. The posterior den-
sity p(xt|zt) is represented using Monte Carlo simulation,
with a set of n random samples and weights {s(n)

t , π
(n)
t }

to approximate arbitrary nonlinear multi-modal pdf. How-
ever, particle filtering techniques becomes impractical for
high dimensional state space as the number of samples re-
quired grows exponentially with respect to the number of
dimensions. To cope with this problem, Cham[5] proposes
to use a semi-parametric representation, and Wu[24] uses
importance sampling from an underlying distribution. An-
other problem with the particle filter is the degeneracy phe-
nomenon where sample weights become insignificant over
time [1].

We propose a stochastic simplex search algorithm by
combining the NM algorithm with the particle filtering
tracking scheme. Instead of using a set of random sam-
ples to model the pdf evolution, we use a set of simplices
each generated from a mode of the pdf at t to locate the
new modes at t + 1 through NM method. The new algo-
rithm combines the advantages of each approach to reduce
the limitations induced by employing NM or particle filter-
ing alone. First, the implementation of multiple hypothe-
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ses increases the chances of reaching the global minimum.
Second, the prior p(xt+1|zt) (Eq. 1) is included in estimat-
ing a more accurate current hand state. Third, since each
simplex will converge to a local minimum, the converged
samples will have more significant weights. Cham [5] also
employed an iterative Gauss-Newton method to locate the
modes of the likelihood p(zt|xt). In our case, since we do
not have access to the gradient, NM simplex search is em-
ployed.

To approximate the tracking prior p(xt+1|zt), we first
draw random samples x̃i

t from p(xt|zt). Then an initial sim-
plex Si0 is generated from each x̃i

t, which corresponds to a
mode in p(xt|zt). Next the two stage simplex search is car-
ried out to obtain a local minimum corresponding to a mode
of the pdf:

Si∗′ = NMd(Si0)

Si∗ = NMc(Si∗′) (2)

where NMd and NMc denotes the discrete and continu-
ous NM operations respectively. Each operation takes an
initial set of vertices and outputs a converged simplex. The
search terminates when

n∑

j=0

‖ xk
j − xk+1

j ‖2< ε (3)

where xk
j ∈ Sk and Sk is the simplex generated at the kth

iteration. The new sample xi
t+1 is the centroid of the con-

verged simplex:

xi
t+1 =

1
n + 1

∑

xj∈Si∗
xj (4)

πi
t+1 = p(zt+1|xt+1) is computed as described in sec.

6. This procedure is similar to the result of p(xt+1|zt) =∫
xt

p(xt+1|xt)p(xt|zt)dxt where the dynamics p(xt+1|xt)
is often modelled as a Gaussian. In the case of NM, the iter-
ative procedures (Sec 3.1) automatically drives the simplex
towards a new mode.

5 Global and Local Motions

In [22], Wu proposed to simultaneously estimate both
global and local hand motions by a divide-and-conquer ap-
proach. Rather than estimating the optimal state parame-
ters altogether, the global motion and local motion param-
eters are estimated separately and combined in an iterative
manner. Different algorithms can be used to independently
estimate each set of parameters, such as the GA-based al-
gorithm used in [22] and the iterative closed point algo-
rithm employed in [12]. In our experiments, we apply the
stochastic NM simplex search in the continuous space for
global parameter estimation. Then the two stage simplex

search (Sec. 4) is employed to recover the finger motion.
These two steps are then repeated until the results converge.
Our experiments have shown that this approach reduces the
computational complexity while effectively estimates the
hand motion.

6 Model Matching

We employ edge and silhouette observations to measure
the likelihood of hypothesis as in [12]. The cylinder hand
model is first projected onto the image plane as described
in [19] to obtain the edge points that define the projected
shape. Assume K projected model samples are gener-
ated, edge detection is performed on the points along the
normal of these samples. Assuming that M edge points
{zm,m = 1, . . . , M} are observed, and the clutter is a Pois-
son process with density λ, then,

pe
k(z|xk) ∝ 1 +

1√
2πσeqλ

M∑

m=1

exp− (zm − xk)2

2σ2
e

We notice that with edge points alone could not provide a
good likelihood estimation; therefore, we also consider the
silhouette measurement. The segmented foreground pix-
els are XORed with the projected silhouette image, and the

likelihood is computed as ps ∝ exp− (AI−AM )2

2σ2
s

. Since a
well matched projection contributes lower cost, we define
the objective function at time t to be the negative of the
likelihood function:

f(x, z) = −p(z|x) ∝ −ps
K∏

k=1

pe
k (5)

7 Experiments

In our experiments, we use a 3D hand model and each fin-
ger phalanx is represented using a truncated cylinder. Hand
projection is generated as described in [19] and is super-
imposed on the real hand image. All experiments are per-
formed in a cluttered background. The first experiment
demonstrates the robustness of our 3D model-based track-
ing in which the hand undergoes both translation and rota-
tions (Figure 1). The sequence shows that the 3D model can
handle significant occlusions. The fingers are assumed rigid
in this case. We use 10 simplex search for each frame.

In the second video sequence, the fingers bend and ex-
tend while the hand moves simultaneously (Figure 2). This
experiment shows the robustness of our articulation track-
ing algorithm. We use 30 simplices for finger articulation
tracking and 10 simplices for global motion. We have also
tested the sequence using CONDENSATION algorithm with
5000 samples, and the algorithm fails after about 10 frames.
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In addition to the superimposed model projection, a recon-
structed 3D hand model is shown below each correspond-
ing image for better visualizations. The experiment results
show that our algorithm is robust and successful in tracking
complex hand motions in a cluttered environment.

8 Conclusions

This paper proposes to track the articulate hand motion by
addressing two key issues: 1) the representation of the fea-
sible configuration space and 2) an efficient tracking algo-
rithm associated with the representation. We propose to di-
rectly model the feasible space from real hand motion data.
The advantage of this representation is that it automatically
incorporates the motion constraints in this model. Further-
more, the errors induced from the approximation algorithms
can be avoided.

In order to utilize this discrete representation for tracking
hand motion, we propose a stochastic NM simplex search
algorithm which is modified to work for the discrete space.
One main advantage of the NM method is that it does not
require the knowledge of gradients, which in our case is
difficult to obtain. Since direct search methods are often
trapped in local optima, we incorporated particle filtering
framework with the simplex search. The experiment results
show that our algorithm is robust in tracking hand motions
in cluttered background.
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Figure 1: Tracking global hand motions involving translation and out-of-plane rotation. The projected model edge points are superimposed
on the real hand image.

Figure 2: Simultaneously tracking finger articulation and global hand motion. The projected edge points are superimposed on the real
hand image. Below each real hand image, a corresponding reconstructed 3D hand model is shown for better visualization.
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