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Abstract

Multibody structure from motion could be solved
by the factorization approach. However, the noise
measurements would make the segmentation difficult
when analyzing the shape interaction matriz. This
paper presents an orthogonal subspace decomposition
and grouping technique to approach such a problem.
We decompose the object shape spaces into signal sub-
spaces and noise subspaces. We show that the signal
subspaces of the object shape spaces are orthogonal to
each other. Instead of using the shape interaction ma-
triz contaminated by noise, we introduce the shape sig-
nal subspace distance matriz for shape space grouping.
Outliers could be easily identified by this approach. The
robustness of the proposed approach lies in the fact that
the shape space decomposition alleviates the influence

of noise, and has been verified with exrtensive experi-
ments.

1 Introduction

Most realistic vision tasks involve multibody mo-
tions. A simple scenario of tracking a car with a mov-
ing camera already involves two moving objects (ig-
noring the wheels). Multibody tracking and segmen-
tation are essential for many applications including
structure from motion, human-computer interaction,
surveillance, and video coding. In this paper, we only
consider the problem of segmentation, assuming track-
ing is done, e.g., with the KLT feature tracker [9]. We
allow outliers in the matches, though.

Among many techniques proposed in the literature,
factorization is particularly interesting for three rea-
sons: no knowledge of the number of objects is re-
quired; no initial segmentation is necessary; and a mea-
surement matrix is globally factorized into two matrices
(one for motion, and the other for structure), achiev-
ing higher robustness to data noise. Factorization was
originally developed by Tomasi and Kanade for struc-
ture from motion of a single object under orthographic
projection (11}, and was later extended to paraperspec-
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tive or affine cameras in [8]. A sequential version was
proposed in [7]. Attempts were made to generalize the
technique for full perspective [10}, but due to the inher-
ent nonlinearity of camera projection, some preprocess-
ing (especially depth estimation) is necessary, which
leads to a sub-optimal solution.

Costeira and Kanade proposed a first algorithm
for multibody segmentation based on factorization [2].
Similar approaches were later developed for linearly
moving objects [4] and for deformable objects [1]. In
this paper, we only consider Costeira and Kanade’s
original problem: Given p feature points tracked over
T frames with an affine camera, determine the num-
ber of moving objects in the scene, their motions and
their structures. This is a formidable problem because
of the inherent combinatorial property and data noise.
Costeira and Kanade [2] based their segmentation al-
gorithm on a so-called shape interaction matrix Q (see
below). If two features belong to two different objects,
their corresponding element in Q should be zero; other-
wise, the value should be non-zero. They then grouped
features into objects by thresholding and sorting Q.
Gear (3] formulated the problem as graph matching by
placing appropriate weights on the graph edges, which
are difficult to determine. Unfortunately, the perfor-
mance of both techniques degrades quickly when data
points are corrupted with noise; the reason is that the
relationship between data noise and the coefficients of
Q (or weights of the graph edges) is very complicated,
making it hard to determine an appropriate thresh-
old. Ichimura [5] proposed an improved algorithm by
applying a discriminant criterion for thresholding, but
the discriminant analysis is still performed on the el-
ements of Q, resulting in a similar degradation with
noise. To avoid this problem, Kanatani [6] proposed to
work in the original data space by incorporating such
techniques as dimension correction (fitting a subspace
to a group of points and replacing them with their pro-
jections onto the fitted subspace) and model selection
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(using a geometric information criterion to determine
whether two subspaces can be merged).

In this paper, we propose a new grouping technique
based on orthogonal subspace decomposition. After
performing a singular value decomposition (SVD) of
the measurement matrix, we decompose the object
shape spaces into signal subspaces and noise subspaces.
We show the signal subspaces of the object shape
spaces are orthogonal to each other. Instead of using
the shape interaction matrix contaminated by noise, we
introduce the shape signal subspace distance matriz (or
subspace distance matriz for short), D, for shape space
grouping, based on a distance measure defined over the
subspaces. The values of most entries of D are around
0 or 1, making the grouping procedure much easier.
Outliers are easily identifiable because their distances
to all object subspaces are comparable. The robustness
of the proposed approach lies in the fact that the shape
space decomposition alleviates the influence of noise.
This has been verified with extensive experiments.

Section 2 reviews the factorization method. Sec-
tion 3 describes our orthogonal subspace approach.
Section 4 provides experimental results with both sim-
ulated and real data.

2 The Factorization Method

Suppose there are n independently moving objects
in a scene, and the structure of each object is repre-
sented by a set of px 3D points, i.e.,

Tkl Tk2 .-+ Tkp
Sk=| Y1 Yr2 --- Ykps (1)
Zk1 Rk2 .- Zkpy

So, the 3D structure of the whole scene could be rep-
resented by

S
S= . @)
Sn

where the off-block-diagonal elements are equal to zero.
When we assume affine projection (orthographic, weak
perspective or paraperspective), the projection of the
scene on the image plane is:

ur ... Up _
['Ul Up:l—[Mle...Mn]S-l-t (3)
where M (k = 1,...,n) is the projection matrix re-

lated to object k, t is the camera translation, and
p = Y .Px. t could be eliminated by subtracting
the mean of the 2D projections. When considering T

frames, we have:
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And we can also write:
M MP | [ s
W= (5)
MO MO Sn

For each rigid object, its structure and motion could be
solved by the factorization method [11] based on SVD
decomposition, i.e.,

Wi =USiVE (6)

And its motion M and structure S could be factorized
by: '

M=USiA and §=47'SiVT  (7)

where 4 is an invertible matrix and can be solved using
the fact that M must have certain properties. There-
fore, we could write:

o v
W =[U;...Un

Let

Wi
V =
Va

For multibody structure from motion problem, the
identities of the set of feature points are unavailable,
except the correspondences are given. Therefore, V
would not be a block diagonal matrix, instead, struc-
ture vectors of different objects would be mixed up. In
order to solve the structure and motion, we have to re-
veal the identities of each feature points, i.e., solve the
multibody grouping problem.

Fortunately, it is easy to show that the shape inter-
action matrix Q, defined by

Q=VvVv” (8)
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is motion invariant [6]. More interestingly, Q has a
very nice property:

Qi = 0 if point 7 and j belong to different objects
71 * if point i and j belong to the same object

9)

where * indicates any possible value. Such a property
provides a clue for the segmentation of multiple ob-
jects, i.e., if VT'V; # 0, the i-th and j-th feature points
should be grouped together; otherwise, they may be-
long to different objects. Therefore, the segmentation
could be achieved by permuting V to make Q block
diagonal. This was the basic idea in [2] for multibody

- structure from motion. It could be illustrated in Figure
1, where (a) displays the original Q, while (b) displays
the Q after permutation.

(b)

Figur e 1: The shape interaction matrix Q before and after per-
mutation -

It is noticed that the nice property of the shape in-
teraction matrix Q is valid only for the ideal case where
there are no noise and outliers. Unfortunately, in prac-
tice, the extraction and tracking of feature points would
incur some inaccuracy, thus the measurement noise is
unavoidable. Thus, even if two feature points belong
to different objects, Q;; may not be equal to zero. This
will be illustrated in Figure 3.

3 Orthogonal Subspace Approach

This section describes our approach to this prob-
lem based on orthogonal subspace decomposition and
grouping methods.
3.1 Orthogonal Subspace Decomposition

Any vector z in a Hilbert space R™ could be repre-
sented by a summation of two projection vectors from
two subspaces M and ML, i.e., z = Pyz + (I — Py)z,
where Py is the projection matrix of the subspace
M and I — Py is that of the subspace M*. At the
same time, if a Hilbert space is spanned by a set of
m linearly independent vectors X = [z;...Zm)}, i€,
M = span{zi,...,zm}, then the projection matrix
onto the space M will be given by:

Py = X(X,X)"'XxT (10)

where (X1, X2) defines the inner product of X; and
X5 in the Hilbert space, and the projection is given by

Pyz = X{(X,X)"1XTz,Yz € R". Usually, we could
write Py = X(XTX)"*X7T. Obviously, if zx’s are
orthogonal to each other, Py will be given by Py =
XXT. It is also very easy to show some properties of
Py, such as Py Py = Py, PAT/} = Py, PAJ,‘, =J - Py
and PA",}PM = 0.

It is easy to verify that the projection matrix Py is
unique for any linearly independent vector set which
spans M, since Py = XA(ATXTXA)"1ATX =
X(XTX)~1XT. Therefore, we can use the projec-
tion matrix Py to characterize the space M. In this
sense, we could define the distance between two sub-
spaces. Suppose S and S; are two subspaces of R",
and dim(S)) = dim(Sy), then the distance between S
and S; could be defined by:

D(S1, S2) = ||P1 — Py||2 (11)

where P, and P, are two projection matrix onto S; and
S, respectively.

3.2 Signal Subspace vs. Noise Subspace

Given a set of vectors X = [z1...Z,,], where €
R™, we could decompose X by SVD, ie., X = UXVT,
where ¥ = diag(o1,... ,0r,0r+1,.-. ,0m), and o1 >
0922 ...2 Om.

When the data are clear and the actual rank of X
is 7, then we should observe o; = 0,5 =2 r+1. On
the other hand, if x, was contaminated by noise, there
would be many small singular values, but o, > oy41.
In this case, {01, ... ,0,} belong to the signal subspace
Ss, and {0r41,... ,0m} belong to the noise subspace
Sn. The singular values suggest a way to decompose
the data space into signal subspace and noise subspace.
Thus,

X =X, + Xn =UE, VT + U, S, VT (12)

And the projection matrix P; onto the signal subspace
S, would be given by P, = X,(XTX,)"1XT, where
X s is a set of independent vectors from X;. Similarly,
the projection matrix P, onto the noise subspace S,
could be written as P, = X, (XTX,) 1 XT. It is easy
to show that S, and S,, are orthogonal to each other
(Ss L S,),and Py + P, =1,
3.3 Our Multibody Grouping Approach

Let us first assume that we have grouped fea-
ture points of different objects, we could write W =
USVT by SVD, where V = [V ... V(®] and V) =
PP e SO = span{v?, ... ,u$D} defines the
shape space for object i.

Theorem I If no noise is present, we have S L
S Vi #£ j. It means that the shape spaces of each
object spanned by V(® are orthogonal to each other.
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This theorem is easy to show. void € V® and
v € VO, we have v9Tv® = 0 according to
the nice property of the shape interaction matrix Q
in equation 9. Thus, suppose we have selected r =
rank(V®)) independent vectors V*) = [ﬁgk)...ﬁik)]
for the k-th object, we could write the projection ma-
trix onto the k-th shape space by

P = YR (RTHE)=15®T

So, we easily have PO P =0, and

n
S PR =1

k=1

Theorem II If measurements contain noise, the sig-
nal subspaces of each shape space are still orthogonal
to each other, i.e., Ss9 1 S§j),\7’i # 7, where the signal
subspace S is separated by SVD from equation 12.

Again, when a set of independent vectors is selected
for each signal subspace, we can describe the projection
matrix onto the signal subspace of the k-th object by

P® = YO (7 OTH®) 170 T

‘We have Ps(i)Ps(j) =0, and

i P*) = nl - Zn: P®
k=1 k=1

The shape interaction matrix Q could be used for
grouping the feature points for different objects if the
measurements are not contaminated by noise. Unfor-
tunately, noisy data would make use of Q difficult for
grouping. Noticing such a nice property that the signal
subspaces of shape space for each object are orthogo-
nal to each other even under noisy measurements, we
could make use of the signal subspaces to alleviate the
noise influence. Instead of using the shape interaction
matrix Q, we shall introduce the shape signal subspace
distance matrix D, which would be cleaner than Q.

Suppose N groups of feature points have been iden-
tified. This could be done by analyzing the Q ma-
trix. We can simply threshold the Q matrix or use
the discriminant analysis method described in [5]. If
Qi; > tg, the i-th and j-th feature point will be put in
the same group. If the measurements contain no noise
and Q is very clean, the threshold tg is easy to set.
Unfortunately, this is not apparent under noisy data.
But we could generally set a higher threshold, which
would result in several group fragments corresponding
to the same object. And these group fragments should
be grouped together later. Meanwhile, there would be
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some feature points that may not be grouped to any
other group fragments. We will also handle them later.
Each of such group fragments V) = [ch) e vgz)
would span a space S*) = span{ugc) .. .v,(l’;c)}. Since
the space S®*) contains noise, we could identify its sig-
nal subspace s by the method described before, and
we could also calculate the projection matrix P,(k) to
represent the k-th group fragment. So, the shape signal
subspace distance matriz is defined by:

D = {D;; : D;j = D(P, PM),Vi,j < N}  (13)

where Dy; = D(P{?, PY) is the distance between the
signal subspaces of the i-th and j-th group fragments.
We notice that if Ps("') and s(j ) are orthogonal, then
D;; =0; if P and PP characterize the same space,
then D;; = 1; otherwise, 0 < D;; < 1. Since the sig-
nal subspace excludes the noise, we would see that the
D matrix is cleaner than Q. We have observed such
a property of the D matrix in our extensive experi-
ments. The values of most entries of D are around 1
or 0. Consequently, further grouping of the fragments
based on D would be performed easily. We simply set
a threshold for D. Our approach tolerate a large vari-
ation in the value of this threshold because it is more
discriminating in D for different group fragments. The
procedure is simple: if D;; < tp, then we merge the
i-th and j-th group fragments together.

After these fragments are grouped together into ob-
ject groups, we calculate and update the signal sub-
space and its projection matrix Ps(k) for each object.
Outliers could be simply identified if the orthogonal
projections of such feature point onto all the object
spaces are nearly equal or comparable, because such
feature point could not be confidently classified into
any of the object spaces.

The outline of the proposed multibody segmentation
method is summarized below:

1. Decompose measurement matrix W by SVD and get
V={v;:1<j<m,vy; ER"}

2. Calculate the shape interaction matrix Q = VV7;

3. Group v; into group fragments Fi(1 < k < Py) based
on Q;

4. Calculate signal subspace
P¥)(1 < k < Py) for each Fy;

5. Calculate signal subspace distance matrix D = {d;; :
dij = D(P, POY;

6. Group F}; into objects O;(1 < i < P) based on D;

projection matrices

7. Calculate signal subspace of each object O; and iden-
tify outliers, classify all feature points and update all
signal subspaces;



8. Calculate motion and structure for each object O;
based on segmentation.

We shall ask the intuition why the grouping based
on D is more robust than that based on Q. The basic
difference between D and Q is that Q is point-level in-
teraction, while D is group-level interaction. Based on
Q, a single outlier could even fool the grouping because
such grouping is based only on point similarities and
the relationship between data noise and the coefficients
of Q is very complicated. Matrix D, however, intro-
duces more robustness because the grouping depends
on a number of feature points, instead of one. Further-
more, since signal subspaces are used, the entries of
D are more or less around 0 or 1, which considerably
facilitates the grouping decision.

4 Experiments

We provide in this section experimental results with
both simulated and real data.

4.1 Simulation

We have performed some simulations and quantita-
tive analysis on a synthetic scene. The scene consists
of two sets of 3D points. One set of 60 points describes
a 3D cube, and the other set of 40 points represents
the background. We permute the orders of the data
points, and we know their identities. The image reso-
lution is 160x120 pixels. Figure 2 shows two views of
the synthetic scene. These two sets of points undergo
different and independent motions, and we capture 4
frames. We introduce noise to the measurement data
by adding a zero-mean Gaussian noise to the coordi-
nates of the projected points.

Figure 2: Two views of a synthetic scene for simulation. The scene
consists of a set of points representing background, and another set
of points from a 3D cube.

Our first simulation set the standard deviation of
the Gaussian noise to 2 pixels. Figure 3(a) shows the Q
matrix of the shape space after the factorization. Ob-
viously, the data points are not clustered. We perform
a segmentation method based on a linear discriminate
analysis, which is similar to the method in [5], then
permute the order of Q. From Figure 3(b), we can
see that the data are partially clustered, but not ail.
Figure 3(c) illustrates the Q matrix after the grouping
by our proposed method. The two groups represent-
ing two objects become pretty clear in the permuted

Q matrix. We can see that many Q;; (¢ and j be-
long to different objects) are not zeros. Furthermore,
we project the data of each object onto its signal sub-
space. We have verified that the signal subspaces of
the two objects are indeed orthogonal (PS(I)P,@) = 0},
which is illustrated by Figure 3(d). Almost all Q;; (¢
and j belong to different objects) are zeros.

Figure 3: Experiments. (a) The noisy Q matrix; (b) The permuted
Q matrix based on Ichimura’s method; (c) The permuted Q matrix
of our method; (d) The permuted Q matrix of de-noised data.

The second simulation compares three methods un-
der noisy measurements. The first one is a simple
thresholding method for grouping based on Q. The
second one is the method based on a linear discrimi-
nant analysis similar to [5]. And the third one is our
method. The noise level ranges from 0 to 5 pixels with
interval of 0.1 pixels (50 noise levels in total). We per-
form 30 runs for each noise level and compute the av-
erage of the mis-grouping error. The result is shown in
Figured. It clearly shows that the proposed subspace
decomposition method performs the best. It is very ro-
bust to noise measurements. Only when the noise level
goes up to more than 4.5 pixels, our method outputs
small mis-grouping error. The other two methods are
not at all robust to noise.

We have also constructed another synthetic scene
with 3 independent moving objects, and we have ob-
served a similar result.

4.2 Real Video

We have also applied our algorithm to some real
video sequences. The first sequence contains a moving
hand taken by a moving camera. We detect and track
20 feature points in 15 frames. The segmentation of
the hand and the background is shown in Figure 5.

Another sequence contains two independent moving
objects. The camera motion is not large. We detect
and track 26 feature points in 20 frames. A couple
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Figure 4: Comparison results. We compare the mis-grouping error
rate against noise levels of three methods. Our method works the
best.

F igure 5: Motion segmentation. 20 feature points are detected and
tracked in 15 frames. Feature points that belong to the background
and the hand are shown by black “o” and red “+”.

of points were occluded during tracking. The segmen-
tation of two hands and the background is shown in
Figure 6. Our algorithm performed very well on these
two sequences.

5 Conclusions

The factorization method proposed by Costeira and
Kanade provides a flexible way for multibody structure
from motion and motion segmentation. The segmenta-
tion is based on the shape interaction matrix Q that in-
dicates whether two feature points belong to the same
object or not. However, their method is plagued by
measurement noise. Measurement noise contributes to
the distortion of the coefficients of Q in a very compli-
cated way. It is not robust for grouping in point level.
In this paper, we have proposed a grouping based on
the shape signal subspace distance matrix D that de-
scribes the relations among different groups of feature
points. The shape signal subspace for a group of points
is obtained by the subspace decomposition technique.
We have shown that the signal subspaces for different
objects are orthogonal to each other. Since signal sub-
spaces are separated from noise, D is more robust for
grouping. Extensive experiments have confirmed the
robustness of our approach.

Figure 6: The scene contains two moving object and a moving
background represented by 26 feature points. Background is shown
by black “o”, and the two moving hands by red “4+” and blue “x”
respectively.

It would be interesting to investigate the incremen-
tal method for multibody motion analysis. We shall
also extend our approach to multiple persons tracking
and articulated object analysis.
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