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Abstract

In many vision applications, the practice of super-
vised learning faces several difficulties, one of which
is that insufficient labeled training data result in poor
generalization. In image retrieval, we have very few
labeled images from query and relevance feedback so
that it is hard to automatically weight image features
and select similarity metrics for image classification.
This paper investigates the possibility of including an
unlabeled data set to make up the insufficiency of la-
beled data. Different from most current research in im-
age retrieval, the proposed approach tries to cast image
retrieval as a transductive learning problem, in which
the generalization of an image classifier is only defined
on a set of images such as the given image database.
Formulating this transductive problem in a probabilis-
tic framework, the proposed algorithm, Discriminant-
EM (D-EM), not only estimates the parameters of a
generative model, but also finds a linear transforma-
tion to relax the assumption of probabilistic structure
of data distributions as well as select good features au-
tomatically. Our experiments show that D-EM has
a satisfactory performance in image retrieval appli-
cations. D-EM algorithm has the potential to many
other applications.

1 Introduction

Recent years have witnessed a rapid increase of the
volume of digital image collections, which motivates
the research of image retrieval [2, 9, 11]. Early research
of image retrieval is searching by manually annotating
every image in a database. However, these text-based
techniques are impractical for two reasons: large size
of image databases and subjective meanings of images.
To avoid manual annotating, an alternative approach
is content-based image retrieval (CBIR), by which im-
ages would be indexed by their visual contents such as
color, texture, shape, etc. Many research efforts have
been made to extract these low-level image features

[7, 12], evaluate distance metrics [10, 13], and look for
efficient searching schemes [14, 16].

However, one of the difficulties of CBIR is the gap
between high-level concepts and low-level image fea-
tures, due to the rich content but subjective concepts
of an image. The mapping between them would be
highly nonlinear such that it is impractical to repre-
sent it explicitly. A promising approach to this prob-
lem is machine learning, by which the mapping could
be learned through a set of examples. In our proposed
approach, image retrieval is cast as a statistical learn-
ing problem.

Although learning techniques offer a flexible and
tractable means to many vision applications, the gen-
eralization of learning results has to depend not only
on training algorithms but also on training data sets.
If the training data set is large and representative
enough, good generalization may be obtained. On the
other hand, if the training data set is small or not
informative, it is hard to guarantee a good generaliza-
tion. If a classifier is over-trained on the training data
set, overfitting will probably occur.

In some cases, good and large training data sets can
be easily obtained. However, in many situations in vi-
sion or image understanding, collecting a large and in-
formative training data set is not a trivial task. First,
data collecting may not be straightforward. Second,
collecting representative data may be difficult due to
the large variation in visual inputs. Third, manually
labeling a large date set is always time-consuming.

In fact, it seems that it might not be necessary to
have every sample labeled in supervised learning. A
very interesting result given by the theory of the sup-
port vector machine (SVM) [15] is that the classifi-
cation boundary is related only to some support vec-
tors, rather than the whole data set. Although the
identification of these support vectors is not trivial, it
motivates us to think about the roles of non-support
vectors. Fortunately, it is easier to collect unlabeled
data. The issue of combining unlabeled data in su-



pervised learning begins to receive more and more re-
search efforts recently and the research of this prob-
lem is still in its infancy. Without assuming paramet-
ric probabilistic models, several methods are based on
the SVM [4, 1, 5]. However, when the size of unla-
beled data becomes very large, these methods need
formidable computational resources for mathematical
programming. Another difficulty of these SVM-based
methods is that the way of selecting the kernel func-
tion is heuristic. Some other alternative methods try
to fit this problem into the EM framework and employ
parametric models [8, 6], and have some applications
in text classification. Although EM offers a systematic
approach to this problem, these methods largely de-
pend on the a priori knowledge about the probabilistic
structure of data distribution.

This paper looks into the image retrieval problem
in the view of transductive learning, and presents a
probabilistic approach to employ unlabeled data.

2 Problem Formulation

The task of image retrieval is to find as many as pos-
sible “similar” images to the query images in a given
database. The retrieval system acts as a classifier to
divide the images in the database into two classes, ei-
ther relevant or irrelevant.

In image retrieval, an image can be represented by a
feature vector x and its label y. Since the image space
is huge, it is practical to represent images in lower di-
mensional feature space instead of raw image space.
Physical features and mathematical features are two
typical representations. Many research efforts have
been made to extract physical features such as color
features, texture features, edge features, structure fea-
tures, or combination of these features [2, 7, 12]. How-
ever, images are too rich to represent by these physical
features. An alternative representation is mathemati-
cal features, which only performs dimension reduction
in mathematical senses. Principal component analysis
(PCA) is a typical technique to obtain such mathemat-
ical features [14]. Generally, it is up to us to determine
how many principal components we would use.

Both representations are facing the same problem:
automatic feature weighting, which is partly the rea-
son of the gap between high-level concepts and low-
level image features. For example, if images are rep-
resented as a set of physical features, sometimes color
features such as color histogram or color moments are
more suitable for retrieval, but sometimes a combi-
nation of color and texture features will have better
performance. A possible approach is to specify a set
of rules to select better features. However, it is im-

practical to construct such rules for every possible im-
age class. If mathematical features are used, it would
be difficult to understand the meaning of important
features. In this situation, learning approaches can
be taken into account to obtain the rules implicitly
and dynamically. However, the difficulty facing many
learning approaches is that the labeled training sample
set may be very small. In the application of image re-
trieval, there are a limited number of labeled training
samples given by the query and relevance feedback, so
that it is difficult to learn some concepts. Pure super-
vised learning from such a small training data set will
have poor generalization performance.

However, there are a large number of unlabeled im-
ages in the given database, which can be used to help
supervised learning. Unlabeled data contain informa-
tion about the joint distribution over features. If the
probabilistic structure of data distribution is known,
parameters of probabilistic models can be estimated
by unsupervised learning alone, but it is still impos-
sible to assign class labels without labeled data [3].
This fact suggests that labeled data (if enough) can
be used to label the class and unlabeled data can be
used to estimate the parameters of generative models.

In such circumstance, the hybrid training data set
D consists of a labeled data set £ = {(x;,y;),i =
1,..., N}, where x; is its feature vector, y; is its label
and N is the size of the set, and an unlabeled data
set U = {x;,i=1,..., M}, where M is the size of the
set. In image retrieval, the query images act as the
labeled data, and the whole database or a subset can
be treated as the unlabeled set.

In this sense, image retrieval is formulated as a
Transductive Problem, which is to generalize the map-
ping function learned from the labeled training data
set £ to a specific unlabeled data set U/. We make
an assumption here that £ and U are from the same
distribution. This assumption is reasonable, because
the query images are drawn from the same image
database. Essentially, image retrieval is to classify the
images in the database by:

Yyi =arg Trllaxcp(yﬂxi, LU :Vx; € U) (1)
Jj=1,...,

where C' is the number of classes, and C = 2 for im-
age retrieval. In this sense, we do not care the perfor-
mance of the classifier over images outside the given
database.

3 Using Unlabeled Data

The Expectation-Maximization (EM) approach can
be applied to this transductive learning problem, since



the labels of unlabeled data can be treated as miss-
ing values. We assume that the hybrid data set is
drawn from a mixture density distribution of C' com-
ponents {c;,j7 = 1,...,C}, which are parameterized
by ® = {6;,j =1,...,C}. The mixture model can be
represented as:

p(x|®) = Zp x|cj; 05)p(c;10;) (2)

where x is a sample drawn from the hybrid data set
D = LJU. We make another assumption that each
component in the mixture density corresponds to one
class, ie. {y; =¢;,5=1,...,C}.

Since the training data set D is a union of a set of
labeled data set £ and a set of unlabeled set U, the
joint probability density of the hybrid data set can be
written as:

p(D|®) = HchﬂG) (xi]cj; ©) o

x; €U j=1

11 pwi = cil®)p(xilyi = ci;©) (3)
x; €L
This equation holds when we assume that each sample
is independent to others. The first part of Equation
3 is for the unlabeled data set, and the second part is
for the labeled data.
The parameters ® can be estimated by maximizing
a posteriori probability p(®|D). Equivalently, this can
be done by maximizing 1g(p(®|D)). Let I(®|D) =
lg(p(®)p(D|O®)), and we have

C
+ > 180> ple

I(®|D) = O)p(xilc;; ©))
x;, €U Jj=1
+ Y le(y: = cl®p(xly: = ci;©))  (4)
x;, €L
Since the log of sum is hard to deal with, a binary
indicator z; is introduced, z; = (z1,...,2ic). And
zij = 1 iff y; = ¢;, and z;; = 0 otherwise, so that
I(®[D, 2) =1g(p(®))
c
+ 30> 2, 18(p(05]©)p(x:]05; ©))
x,€D j=1

The EM algorithm can be used to estimate the
probability parameters @ by an iterative hill climbing
procedure, which alternatively calculates E(Z), the
expected values of all unlabeled data, and estimates
the parameters © given E(Z). The EM algorithm
generally reaches a local maximum of [(®|D). It con-
sists of two iterative steps:

e E-step: set Z(-+1) = B[Z|D; 6%)]

o M-step: set O+ = grg mamep(®|D;Z(k+1))

where Z(*) and ©*) denote the estimation for Z and
© at the k-th iteration respectively.

When the size of the labeled set is small, EM basi-
cally performs an unsupervised learning, except that
labeled data are used to identify the components. If
the probabilistic structure, such as the number of com-
ponents in mixture models, is known, EM could esti-
mate true parameters of the probabilistic model. Oth-
erwise, the performance can be very bad.

Generally, when we do not have such a prior knowl-
edge about the data distribution, a Gaussian distribu-
tion is always assumed to represent a class. However,
this assumption is often invalid in practice, which is
partly the reason that unlabeled data hurt the classi-
fier.

Figure 1 shows a simple example. In Figure 1.a,
there are two classes of data drawn from two Gaussian
distributions respectively, and only six samples are la-
beled. EM assumes Gaussian for both classes. The
iteration begins with a weak classifier learned from
these labeled samples. This weak classifier is used to
estimate the labels of all the other unlabeled samples.
Then, all these data are employed to learn a new classi-
fier, which labels the unlabeled samples again in next
iteration. In this special case, EM converges to the
Bayesian classifier. On the other hand, if the guess of
probabilistic structure is not correct, EM may not give
a good estimation. In Figure 1.b, one class of data are
drawn from a 3-component Gaussian mixtures, but the
model still assumes Gaussian distribution. EM fails to
give a good classifier.

4 D-EM Algorithm

EM often fails when structure assumption does not
hold. One approach to this problem is to try every
possible structure and select the best one. However,
it needs more computational resources. An alternative
is to find a mapping such that the data are clustered
in the mapped data space, in which the probabilistic
structure could be simplified and captured by simpler
Gaussian mixtures.

4.1 Multiple Discriminant Analysis
Multiple Discriminant Analysis (MDA) [3] is a nat-
ural generalization of Fisher’s linear discrimination
(LDA) in the case of multiple classes. MDA offers
many advantages and has been successfully applied to
many tasks such as face recognition. The basic idea
behind MDA is to find a linear transformation W to
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Figure 1: “” represents unlabeled sample. “+” and “*”
denotes labeled sample. Six samples are labeled. Solid
lines are Bayesian classifier, and dash lines are the itera-
tion results of EM. (a) Data are drawn from two Gaussian
distributions. EM converges to the Bayesian classifier. (b)
One class of data is drawn from a 3-component Gaussian
mixture, but EM still assumes Gaussian. One component
is mislabeled. EM fails and unlabeled data do not help.

map the original d; dimensional data space to a new
dsy space such that the ratio between the between-class
scatter and within-class scatter is maximized in the
new space.

IWTS,W|

W = arg mV%x m (5)

Suppose x is an m-dimensional random vector drawn
from C' classes in the original data space. The ith
class has a probability P;, a mean vector m;. The
within-class scatter matrix S, is defined by

Sw =Y PE[(x—m;)(x —m;)|c;] (6)

i=1

where ¢; denotes the i-th class. The between-class
scatter matrix Sy defined by

where the grand mean m is defined as m = E[x] =
Ziczl Pym,;. Details can be found in [3].

MDA offers a means to catch major differences be-
tween classes and discount factors that are not related
to classification. Some features most relevant to clas-
sification are automatically selected or combined by
the linear mapping W in MDA, although these fea-
tures may not have substantial physical meanings any
more. Another advantage of MDA is that the data
are clustered to some extent in the projected space,
which makes it easier to select the structure of Gaus-
sian mixture models.

4.2 D-EM Algorithm

It is apparent that MDA is a supervised statisti-
cal method, which requires enough labeled samples
to estimate some statistics such as mean and covari-
ance. However, when the available labeled data are
not enough, it is difficult to expect MDA to output
good results.

By combining MDA with the EM framework, our
proposed method, Discriminant-EM algorithm (D-
EM), supplies MDA enough labeled data by combin-
ing supervised and unsupervised paradigms. The ba-
sic idea of D-EM is to identify some “similar” samples
in the unlabeled data set to enlarge the labeled data
set so that supervised techniques are made possible in
such an enlarged labeled set.

D-EM begins with a weak classifier learned from the
labeled set. Certainly, we do not expect much from
this weak classifier. However, for each unlabeled sam-
ple x;, the classification confidence w; = {w;i, k =
1,...,C} can be given based on the probabilistic la-
bel 1; = {ljr,k = 1,...,C} assigned by this weak
classifier.

_ (W7 |k )p(ck)
S (W e )p(er)

wir, = lg(p(WTxjlep)) k=1,...,C (9)

(8)

Lik

Euqation(9) is just a heuristic to weight unlabeled
data x; € U, although there may be many other
choices.

After that, MDA is performed on the new weighted
data set D' = L|J{x;,1;,w; : Vx; € U}, by which
the data set D’ is linearly projected to a new space
of dimension C' — 1 but unchanging the labels and
weights, D = {WTx; y;:vx; € L} U{WTx;,1;,w; -
Vx; € U}. Then parameters @ of the probabilistic
models are estimated by maximizing a posteriori prob-
ability on 15, so that the probabilistic labels are given
by the Bayesian classifier according to Equation(8).
The D-EM algorithm iterates over these three steps,
“Expectation-Discrimination-Maximization”. The al-
gorithm can be terminated by several methods such
as presetting the iteration times, comparing a thresh-
old and the difference of the parameters between two
consecutive iterations, and using cross-validation. The
following is the description of the D-EM algorithm.

Discriminant-EM algorithm (D-EM)
inputs: labeled set £, unlabeled set U
output: classifier with parameters ©
begin Initialize: number of components C'
W — MDA(L)
Iset — Projection(W, L)



uset «— Projection(W,U)
© — MAP(lset)
D-E-M iteration
E-step:
plabel — Labeling(®, uset)
weight — W eighting(plabel)
D' — L|J{U, plabel, weight}
D-step:
W «— MDA(D)
lset «— Projection(W, L)
uset — Projection(W,U)
D — lset (J{uset, plabel, weight}
M-step:
© — MAP(D)
return ©
end

It should be noted that the simplification of prob-
abilistic structures is not guaranteed in MDA. If the
components of data distribution are mixed up, it is
very unlikely to find such a linear mapping.

4.3 Image Retrieval by D-EM

By the approach of relevance feedback in image re-
trieval, several relevant and irrelevant examples are
labeled by human. Generally, it is under a large risk
to weight image features by such a small labeled data
set, since the similarity among these images would be
vague. Using a random subset of the database or even
the whole database as an unlabeled data set, the D-
EM algorithm identifies some “similar” images to the
labeled images to enlarge the labeled data set. There-
fore, good discriminating features could be automati-
cally selected through this enlarged training data set
to better represent the implicit concepts.

The application of D-EM to image retrieval is
straightforward. In our current implementation, in
the transformed space, both classes are represented
by a Gaussian distribution with three parameters, the
mean p;, the covariance 3; and a priori probability of
each class P;. The D-EM iteration tries to boost an
initial weak classifier.

5 Experiments

In order to give some analysis and compare sev-
eral different methods, we manually label an image
database of 134 images, which is a subset of the
COREL database. Our dataset has 7 classes such as
airplane, bird, car, church painting, flower, mountain
view and tiger. All images in the database have been
labeled as one of these classes. In all the experiments,
these labels for unlabeled data are only used to calcu-
late classification error.

To investigate the effect of the unlabeled data used
in D-EM, we feed the algorithm a different number of
labeled and unlabeled samples. The labeled images
are obtained by relevance feedback. When using more
than 100 unlabeled samples, the error rates drop to
less than 10%. From Figure 2, we find that D-EM
brings about 20% to 30% more accuracy. In general,
combining some unlabeled data can largely reduce the
classification error when labeled data are very few.

+——+ 8labeled data
o\ o——a 12 labeled datal

+——+ 16 labeled data|
4—= 20 labeled data|

error rate

40 50 60

number of unlabeled data
Figure 2: The effect of labeled and unlabeled data in
D-EM. Error rate decreases when adding more unlabeled

data. Combining some unlabeled data can largely reduce
the classification error.

We test and compare four methods. The first one is
to weight each features by relevance feedback (WRF)
[12], in which 37 physical features which are pre-
calculated and pre-stored. The top 20 most similar
images are obtained through ranking each image by
comparing the Mahalanobis distances to the means of
query images. The second method is a simple proba-
bilistic method (SP), in which both classes (relevant
and irrelevant) are assumed Gaussian distributions,
and the model parameters are estimated by feedback
images. The third method is the basic EM (EM) algo-
rithm, which assumes Gaussian distributions for both
classes. The fourth is the D-EM algorithm. In the
last three probabilistic methods, the label of each im-
age is given by maximizing a posteriori probability,
l; = arg maxy, p(ck|x;).

We also compare a set of physical features (P-
Features) and mathematical features (M-Features).
We use the same physical features as that in WRF[12],
in which 9 color features include the mean, std and
skew of the HSV space, 10 texture features are ex-
tracted by wavelets, and 18 structure features are rep-
resented by the statistics of the edge map. The math-
ematical features are extracted by PCA, in which the
number of principal components is 30, and the resolu-
tion of image is reduced to 20x20. Except for WRF,
both P-Features and M-Features are tested.

These four methods are compared on this fully la-




beled database. Classification error for each method
is calculated for evaluation, although these errors are
not available for the training. Suppose the database
has N samples, C classes, and the k-th class has Ny
samples, and N = chzl Nj. The method to calcu-
late error in WRF is different from the other three
methods. In WRF, if the query images belong to the
j-th class, and m; samples in the top N; belongs to
the j-th class, the error for this query is defined as
ej = 2(N; —m;)/N. In the other three methods, if
there are m samples in total that are not correctly la-
beled, the error is defined as e; = m/N. The average
error is obtained by averaging over M experiments,
. M

le.e=3 " ¢e;/M.

Algorithm P-Features M-Features

WRF 6.3% N/A
Sp 21.2% 15.7%
EM 23.4% 25.8%

D-EM 3.9% 5.3%

Table 1: FError rate comparison among different algo-
rithms. All comparisons are based on the first time rel-
evance feedback with 6 relevant and 6 irrelevant images.
D-EM outperforms the other three methods.

Our algorithm is also tested by several large
databases. The COREL database contains more than
70, 000 images over a wide range of more than 500
categories with 120 x 80 resolution. The VISTEX
database is a collection of 832 texture images. Sat-
isfactory results are obtained.

6 Conclusion

The gap between high-level concepts and low-level
visual features is one of the difficulties of CBIR. Dif-
ferent from other methods in image retrieval, our ap-
proach formulates it as a transductive learning prob-
lem, in which the unlabeled samples in the given
database combined with labeled data are both used
in training. The proposed method, Discriminant-EM
algorithm (D-EM), approaches this problem in the EM
framework. In D-EM, the assumption of probabilistic
structure in EM is relaxed and the most relevant fea-
tures to classification can be automatically selected.
Our experiments show that the D-EM algorithm could
be an effective way to CBIR. This algorithm can be
easily expanded to retrieve other media types.

One of the future research directions of this ap-
proach is to explore the non-linear case of MDA.

The proposed approach needs to be tested on more
databases. To accelerate the algorithm, the size of the
unlabeled data set could decrease through the itera-
tion.
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