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Limited Feedback Schemes for Downlink OFDMA
Based on Sub-Channel Groups

Jieying Chen, Randall A. Berry, Michael L. Honig

Abstract—In a downlink Orthogonal Frequency Division Mul-
tiple Access (OFDMA) system, optimally allocating sub-channels
across mobile users can require excessive feedback of channel
state information (CSI). We consider an OFDMA model in which
the feedback overhead is explicitly taken into account, given
a fixed feedback rate and finite coherence time. The tradeoff
between feedback rate and sum capacity is studied for two
limited feedback schemes: a sequential scheme in which the
users send compressed feedback bits over consecutive time slots,
and a contention scheme in which users send their feedback
via a random access protocol. For both schemes each feedback
bit indicates a request for a group containing multiple sub-
channels. We show that the sum capacity for both schemes with
optimized sub-channel groups grows linearly with the number
of sub-channels N , and that the associated constant increases
as the log of the normalized feedback rate measured in bits per
coherence time per sub-channel. We also compare the asymptotic
(large N ) performance of the two limited feedback schemes as a
function of the feedback rate and load (users per sub-channel).
The sequential scheme performs best with moderate to large
feedback rates, or small loads, whereas the contention scheme
performs best with small feedback rates or large loads.

I. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA)
can exploit both frequency and multiuser diversity through
an appropriate assignment of users to sub-channels. Given
perfect Channel State Information (CSI) at the Base Station
(BST), i.e., knowledge of all sub-channel gains across all
users, the sum capacity is achieved by assigning the user
with the best channel gain to each sub-channel and water-
filling the power over the sub-channels. Related optimized
power and rate allocations are discussed in [1]–[3]. Although
those schemes can achieve substantial capacity gains, relative
to having no CSI at the transmitter, the associated feedback
required in a mobile environment is likely to be excessive in
practice.

The feedback overhead for downlink OFDMA can be
substantially reduced by coarsely quantizing the CSI at the
receivers before sending it back to the BST. Schemes for
limiting the feedback in single-user OFDM and downlink
OFDMA have been studied recently, including [4]–[12], [15].
In many of these schemes (e.g., [5]–[7], [9], [12]) each user
provides one bit of feedback per sub-channel to indicate
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whether or not the particular channel gain exceeds a pre-
determined threshold.

Even one-bit feedback per sub-channel can be excessive as
the system size scales. Namely, with perfect CSI at the BST
the sum capacity grows as N log log K, assuming Rayleigh
fading sub-channels, where N is the number of sub-channels
and K is the number of users [7], [9], [13]. This optimal
order of growth can also be achieved with one-bit feedback
per user per sub-channel. Yet the total feedback rate scales as
NK. Hence given a fixed coherence time T , during which the
feedback occurs, as N and K increase, the feedback eventually
dominates the coherence time, so that the capacity growth is
unsustainable.1 This problem motivates the feedback model
in this paper. Namely, here we assume that both the feedback
rate per sub-channel RF (in bits per second) and the coherence
time T are fixed, i.e., do not scale with the number of users
K. Also, the duration of the feedback is explicitly modeled
as part of the coherence time T . This corresponds to a time-
division duplex (TDD) system in which the BST waits for
CSI feedback on the feedback link before transmitting.2 Our
objective is then to maximize the sum capacity, accounting for
the loss in channel uses due to feedback.

We consider two feedback schemes, which can reduce the
feedback rate below one bit per sub-channel. In both schemes,
non-overlapping groups of sub-channels are formed, where
each group contains the same number of sub-channels. Each
feedback bit then requests the use of all sub-channels in that
group. The receiver requests a sub-channel group only if all
sub-channel gains in the group exceed a threshold. The total
feedback therefore decreases with the size of the sub-channel
groups.

In the first feedback scheme, each user forms a binary vec-
tor, which indicates the set of requested sub-channel groups.
That vector is losslessly compressed, and the users then
transmit their compressed vectors to the BST sequentially. In
the second scheme, a group of users is assigned to each sub-
channel group. (The user groups may overlap.) Users assigned
to a particular sub-channel group then contend for the use of
that group via random access. That is, each user transmits

1Throughput the paper, we assume that each sub-channel corresponds to
a coherence band. Hence increasing N corresponds to increasing the system
bandwidth.

2In a TDD system, the BST may be able to estimate some CSI from the
uplink traffic, assuming reciprocity. We do not model this possibility. One
reason for this is that when each user transmits on a relatively small fraction
of the uplink channels, the CSI gained through such an approach will be small.
Also, in practice channel reciprocity may not hold even when the uplink and
downlink share the same sub-channels so that explicit CSI feedback is still
needed.
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identification bits over the assigned sub-channel group, pro-
vided that all sub-channel gains exceed the threshold, where
the number of bits in the identification depends on the number
of users assigned to a group. If multiple users request the same
sub-channel group, a collision occurs, and the sub-channel
group remains idle. For both schemes, we optimize the size
of the sub-channel group and the channel gain threshold, and
for the random access scheme, we also optimize the size of
the user groups.

With perfect CSI at the receivers and i.i.d. Rayleigh fading
sub-channels, we show that for both feedback schemes with
fixed RF and T , the sum capacity grows as Θ(N) as N → ∞
and K → ∞ with a fixed ratio ρ = K/N .3 Hence the
feedback constraint eliminates the multiuser diversity term
log log K, which is present with unlimited feedback (perfect
CSI at the BST). However, the constants associated with the
Θ(N) growth for both schemes have the form log(RF T ),
where RF T is the normalized feedback rate per sub-channel
measured in bits per coherence time. Consequently, if RF T is
allowed to grow faster than log K, we obtain the order-optimal
sum capacity growth of N log log K.

We also compare the performance of the two feedback
schemes for large N and K. When RF T is small or the load
ρ = K/N is large, the contention feedback scheme achieves a
higher sum capacity than the sequential scheme, whereas the
reverse is true when RF T is large or ρ is small. Numerical
results are presented, which show that the sequential scheme
generally achieves a higher sum capacity over a range of
parameters of interest (i.e., ρ < 1 and RF T > 10 bits). How-
ever, the sequential scheme requires additional synchronization
overhead for the user feedback. Additional numerical results
show that the asymptotic (large N ) analysis is accurate for
moderate system sizes (e.g., K > 50).

Related work on limited feedback schemes for OFDM
and downlink OFDMA has been presented in [4]–[12], [15].
A key distinguishing feature of our model is the ability
to vary the tradeoff between feedback rate and downlink
performance (achievable sum rate) by varying the size of the
sub-channel groups along with the activation threshold. (Sub-
channel groups are used to reduce feedback for an uplink
Multi-Input/Multi-Output (MIMO) OFDM model in [22].)
Furthermore, the associated performance analysis explicitly
accounts for feedback overhead. Other related work on lim-
ited feedback for the narrowband MIMO downlink has been
presented in [14], [16]–[18]. Analogous asymptotic scaling
results are presented in those references, although again the
total feedback across users (including user identification) is
not explicitly modeled as part of the downlink overhead.

In the next section we present the system model and
specify the two limited feedback schemes to be analyzed.
The main asymptotic scaling results are presented in Section
III, and numerical performance results, which compare the
performance of the two schemes and illustrate the accuracy of
the asymptotic analysis for finite-size systems, are presented

3We use the following notation: for any y ∈ [0,∞], as y → y, f(y) =

o(g(y)) if limy→y
|f(y)|
|g(y)|

= 0, f(y) = Θ(g(y)) if limy→y
|f(y)|
|g(y)|

= M ,
0 < M < ∞, and f(y) ³ g(y) if limy→y

|f(y)|
|g(y)|

= 1.

in Section IV. Proofs of the main results are given in the
appendices.

II. SYSTEM MODEL

For the downlink OFDMA system considered, the ith re-
ceived sample for user k, assigned to sub-channel n, is given
by

yn
k (i) =

√

hn
kejθn

k xn
k (i) + wn

k (i) (1)

1 ≤ k ≤ K, 1 ≤ n ≤ N , where xn
k is the transmitted

symbol, hn
k is the squared channel gain, θn

k is the random
phase uniformly distributed in [0, 2π], and wn

k is additive white
Gaussian noise with zero mean and unit variance. The channel
gains are assumed to be Rayleigh distributed with variance
σ2, and are independent across users and sub-channels. Also,
we assume that all channel gains remain constant during a
coherence time of T seconds, and that each receiver has perfect
CSI, i.e., the gains hn

k , 1 ≤ n ≤ N , are known at receiver k.
The i.i.d. Rayleigh sub-channels can be interpreted as a set
of coherence bands, corresponding to a block fading model in
the frequency domain. In particular, these need not be single
OFDMA tones, but could be represent groups of tones within
a coherence band.

During each coherence time T , the BST assigns users to
sub-channels to maximize the sum rate over all users. At
most one user can be assigned to any sub-channel. This
assignment is based on feedback, which the BST receives
from the mobiles during the start of the coherence time T
(e.g. in a TDD system). We assume a fixed coherence time
T , and a limited feedback rate per sub-channel RF . To reduce
the total feedback from all users, we consider two limited
feedback protocols: a sequential scheme, in which the users
sequentially transmit feedback, and a contention, or random
access scheme. In both schemes, the feedback is reduced by
grouping sub-channels. Namely, each sub-channel (or channel)
group contains αN sub-channels, where 0 < α < 1. The sub-
channel groups do not overlap, so that there are 1/α groups.
A user k can request a particular sub-channel group Hm,
1 ≤ m ≤ 1/α, provided that hn

k ≥ to for all n ∈ Hm.

A. Feedback Protocols

Here we specify the sequential and contention feedback
protocols along with the corresponding total feedback and sum
rate objectives.

1) Sequential scheme:

• Each user can request any channel group. For a particular
user k the set of requests is represented by a (1/α)-bit
feedback vector, where the mth entry is ‘1’ if hn

k ≥ to
for all n ∈ Hm, and is ‘0’ otherwise.

• The users transmit their binary feedback vectors sequen-
tially. Each binary vector is losslessly compressed before
transmission using a fixed-to-variable length source code.

• The BST decodes the compressed feedback bits from all
users. If a channel group is requested by more than two
users, then the BST randomly assigns one of those users
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to that channel group. If a channel group is not requested
by any user, then it is not used.4

The probability that a user requests a particular channel
group is the probability that all channels in that group exceed
to given by po = e−αNto/σ2 . Since the feedback bit sequence
is i.i.d., its entropy is given by 1

α × H(po) where

H(po) = −po log(po) − (1 − po) log(1 − po) (2)

is the binary entropy function. According to [19, Thm. 5.4.1],
there exists a source coding scheme such that the expected
codeword length L satisfies 1

αH(po) ≤ L ≤ 1
αH(po) + 1.

This corresponds to a variable-length coding scheme so that
the feedback varies across users (depending on the channel
conditions). Since the feedback time-slot allocated to each user
should contain at least one bit, we assume that the average
number of feedback bits per user is 1

αH(po) + 1.5
Suppose that the total feedback rate is NRF , i.e., it scales

linearly with the number of sub-channels N . (We implicitly
assume that the feedback is coded across all coherence bands.)
Also, we scale the number of users K in proportion with
N , with a fixed load of ρ = K/N . The average duration
of the feedback time slot allocated to a particular user is then
1

α H(po)+1

NRF
channel uses, and the average (mean) total feedback

time within a coherence time T is K ×
1

α H(po)+1

NRF
. It can be

shown that for the optimal system parameters discussed in
Section III-A, the total feedback time converges to its mean
with probability one as the system scales (i.e., K and N both
tend to infinity with fixed ρ). Hence asymptotically the fraction
of the coherence time devoted to feedback is

fseq = ρ
1
αH(po) + 1

RF T
. (3)

The BST allocates power uniformly over the active sub-
channels. Given power P per user, the average power per
sub-channel group is then the total power divided by the
average number of active channel groups, or KP/(ps/α),
where ps = 1 − (1 − po)

K is the probability that a channel
group is requested by at least one user.6 The average received
Signal-to-Noise Ratio on a particular sub-channel n assigned
to user k is then KPhn

k/[(ps/α) × (αN)] = ρPhn
k/ps. We

assume that the code rate is matched to the channel threshold
to, so that for large N using an optimal code the achievable
rate per active sub-channel is

rseq = log
(

1 + ρPto

ps

)

, (4)

where we assume that the transmitter codes across multiple
coherence blocks in frequency and/or time (so that there are

4Alternatively, each sub-channel group requested by more than one users
could be divided among the users. That would not change the total sum rate,
which is determined by the threshold, although it may improve fairness.

5Here we ignore additional feedback, which may be required to demarcate
the user transmissions. For example, this may be required if the users are
unable to decode the feedback transmissions from all other users. Accounting
for this additional feedback does not change the main results presented in
Section III-A.

6For the asymptotic results with fixed ρ the total power scales linearly with
the number of users K, or equivalently, with the number of sub-channels N .

enough degrees of freedom available to approach this rate).7
Accounting for the feedback in (3) as part of the coherence

time enables us to write the average sum rate for large N as

R̃seq = Npsrseq(1 − fseq)
+ (5)

where Nps is the average number of active sub-channels.
Here, (1 − fseq)

+ = max(0, 1 − fseq which denotes the fact
that if fseq > 1 then there is no time remaining to send
data. Namely, as K and N both tend to infinity with fixed ρ,
the fraction of time devoted to the feedback converges to the
mean fseq in (3). In what follows, we maximize R̃seq over
the parameters α ∈ [0, 1] and to ≥ 0, giving the optimized
objective

Rseq = max
α,to

R̃seq. (6)

We will compare this rate with the corresponding rate for the
contention scheme, defined next.

2) Contention scheme:

• For each channel group, βK users are allowed to contend
for that group, where 0 < β < 1. Each user can be
assigned to multiple groups, and can request only those
groups to which she has been assigned.

• To request a channel group (i.e., if the channel gains
are above the threshold), user k transmits log(βK) + 1
identification bits over the associated αN sub-channels.

• The BST allocates the channel group to the user who
successfully contends for the group. If multiple users
contend for the same group, a collision occurs, and the
group remains idle.

A minimum of log(βK) feedback bits are needed to identify
a user within the user group assigned to a particular channel
group. The additional bit assumed here ensures that at least
one feedback bit is sent. Instead of allocating one dedicated
time slot for each user, as in the sequential scheme, all βK
users simultaneously access the same bandwidth to transmit
their feedback bits. A channel group is assigned to a user if
and only if one out of βK users requests that channel group.

In analogy with (5), the average sum capacity objective for
large N is

R̃con = Nptrcon(1 − fcon)+, (7)

where pt = βKe−αNto/σ2

(1 − e−αNto/σ2

)βK−1 is the prob-
ability that a single user requests a sub-channel group,

rcon = log
(

1 + ρP
pt

to

)

, (8)

and
fcon =

log(βK) + 1

αNRF T
(9)

is the fraction of the coherence time used for feedback. Note
that in this case fcon is a deterministic constant for all K.

7We assume that the rate of a user is matched to t0 instead of the actual
channel gain since given the feedback the BST does not know the actual gain.
If the BST codes over many coherence times, it could transmit at a higher rate
given by the expected rate conditional on the channel exceeding t0. However
this does not change the asymptotic analysis that follows.
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We can again maximize R̃con over the parameters α and to,
and the additional parameter β ∈ [0, 1] giving the optimized
objective

Rcon = max
α,β,to

R̃con. (10)

In what follows, we compare the performance of the sequential
and contention schemes as a function of the feedback RF T
and load ρ.

III. ANALYTICAL PERFORMANCE RESULTS

In this section we state our main analytical results, which
include a characterization of the sum rate of the limited
feedback schemes, and optimized group size and threshold
for the sequential scheme. These results are asymptotic as N
and K tend to infinity with fixed ratio ρ = K/N .

A. Capacity Growth Order

If there is no limit on the feedback rate and/or the coherence
time, then the sum-capacity grows at the rate Θ(N log log K)
[7], [9], [13]. In this section, we specify the corresponding
growth rate for the two schemes described in the preceding
section assuming that the normalized feedback rate RF T is
fixed.

Proposition 1: For any RF T > ρ, Rseq = Θ(N) as N →
∞. For any RF T > 0, Rcon = Θ(N), as N → ∞.

The proof is given in Appendix A.8
The proposition states that accounting for feedback over-

head in the downlink model reduces the order growth in ca-
pacity of both schemes from N log log K to N . Of course, this
result applies only to the two feedback schemes considered.
Proving a converse, which states that no feedback scheme can
achieve a capacity growth faster than Θ(N), appears to be
difficult. This is mainly due to the many different types of
feedback schemes, which could be constructed. However, the
following observation suggests that the converse may be true.
Suppose that there is a single sub-channel shared by K users.
Given a limited total feedback rate, the number of users that
can feed back any information (e.g., one bit) is also limited.
Hence as K → ∞, only a finite number of users can contend
for the sub-channel, eliminating the asymptotic growth in K
due to multiuser diversity. Extending this argument to the limit
in which both N → ∞ and K → ∞ with fixed ratio does not
appear to be straightforward.

According to Prop. 1, the order-growth with limited feed-
back is the same as with no feedback. Namely, for the channel
model considered, in the absence of any feedback the ergodic
sum capacity does not depend on how the N sub-channels
are allocated among users. The maximum order growth in
that scenario is also Θ(N). Feedback does, however, affect
the associated first-order constant. This dependence will be
specified in the next subsection.

The asymptotic behavior of the optimal channel group size,
threshold, and probability that a channel group is requested for
the sequential scheme is summarized in the next proposition.
Here “optimal” means that the group size α and threshold to

are optimized for each K and N .
8The behavior of Rseq when RF T ≤ ρ is discussed in Section III-D.

Proposition 2: In the optimal sequential scheme, the prob-
ability that a user requests a channel group decreases as
Θ(1/K) as K → ∞. The optimal group size increases as
Θ(log K) and the average number of channel groups requested
by one user decreases as Θ(1/ log K).

The proof is given in Appendix B. The proposition implies
that for large K and N , the optimal number of channel groups
is proportional to N/(log K). Hence each user requests on
the order of N/(K log K) = 1/(ρ log K) sub-channel groups.
The optimized parameters reflect the tradeoff between the
benefit and cost of reducing the amount of feedback. Namely,
decreasing the probability that a channel group is requested
and increasing the channel group size reduces the feedback,
which allows more of the coherence time to be used to
transmit information symbols. However, this also decreases
the achievable rate per transmitted information symbol. The
proof of the proposition relies on results from extreme order
statistics [20], which are used to characterize the asymptotic
probability that a channel is requested.9

Characterizing the asymptotic growth of α, to, and β for
the contention scheme is more difficult than for the sequential
scheme. This is due to the more complicated interactions
among the three parameters, instead of the two for the se-
quential scheme.10 We are therefore unable to characterize this
behavior explicitly, although we have the following condition
on the threshold.

Proposition 3: In the contention scheme, if to → ∞ as
K → ∞, then the asymptotic rate can be positive only if
βK → ∞ and αN → ∞.

In other words, if the threshold approaches infinity, then
so must the channel group size and the number of users per
group.11 The proposition follows from the proof of Prop. 1.
Essentially, letting to → ∞ increases the transmission rate on
a successful channel, but also drives the probability of success
pt to zero. To achieve a positive asymptotic rate, pt cannot
converge to zero too quickly, so that βK must increase. If βK
increases, then αN must also increase to keep the feedback
time bounded.

B. Relative Performance versus Feedback Rate

Proposition 1 shows that the sum capacity of both schemes
increases as Θ(N) (provided that RF T > ρ). Next we
compare the performance of the two schemes in terms of their
asymptotic first-order constants. Let γseq (γcon) denote this
constant for the optimal sequential (contention) scheme, e.g.,
Rseq ³ γseqN as N → ∞.

To determine the first-order constants, we must optimize
each scheme over the relevant parameters. However for each
scheme, it appears difficult to find closed-form expressions
for these constants. Indeed as we indicated in the discussion
before Prop. 3, it even appears difficult to characterize the

9See also [6], in which related techniques are used to derive asymptotic
results for the one-bit feedback scheme.

10Moreover, because β can change with K, the number of users on a
channel group may not grow without bound, which precludes us from applying
the results from extreme order statistics used to analyze the sequential scheme.

11Note that this does not imply that the optimized threshold to → ∞.
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asymptotic behavior of the optimized parameters for the con-
tention scheme (though this is possible for the sequential case).
However, we are able to compare the performance of these two
schemes for large RF T and small RF T .

Proposition 4: There exist constants b∗1 ≥ b∗2 ≥ ρ, such
that γseq > γcon when RF T > b∗1, and γseq < γcon when
RF T < b∗2.

A sketch of the proof is given in Appendix C. The numerical
results in the next section suggest that the first-order constants
for both schemes are increasing and concave functions of
RF T , and that they cross at a single point (i.e. b∗1 = b∗2).

C. Effect of Feedback on Capacity

Prop. 1 states that the asymptotic order-growth in sum
capacity depends on neither the feedback rate RF nor the
coherence time T . In contrast, previous work [6], [9] has
shown that feedback of one bit per sub-channel can achieve the
optimal growth rate in sum capacity of Θ(N log log K). With
that scheme the total amount of feedback per sub-channel is
K bits. In our model with finite RF and T , that would result
in a feedback time of K

RF
, which exceeds T for large enough

K. Hence as K and N become large, the sum capacity for the
one-bit feedback scheme tends to zero unless RF T increases
(at least) linearly with K. The next proposition states that for
the two schemes considered here RF T only needs to increase
as log K to recover the increase in sum capacity due to multi-
user diversity.

Proposition 5: If RF T increases as o(log K) as K → ∞,
then Rseq and Rcon both increase as Θ(N log(RF T )) If RF T
increases at least as fast as Θ(log K), then Rseq and Rcon both
increase as Θ(N log log K).

The proof is given in Appendix D. Prop. 5 states that the
first-order constant associated with the sum capacity growth
in Prop. 1 is proportional to log(RF T ).

Note that if the base-station does not have any CSI (zero
feedback bits) and codes over many channel realizations, it
can achieve an average sum capacity of

Rnf = N

∫ ∞

x=0

log(1 + ρPx)dF (x), (11)

where F (x) is the cumulative distribution function (c.d.f.)
of the channel gains. This quantity is also increasing as
Θ(N). However, from Prop. 5, the first-order constants of
the two limited feedback schemes increase with RF T , while
the constant for Rnf does not. This implies that for large
enough values of RF T , these schemes perform better than
those without feedback; however, the improvement does not
increase the first-order growth rate.

D. Effect of Load on Capacity

In this section, we characterize the capacity growth per
sub-channel achieved by both feedback schemes for small
and large loads ρ. Namely, referring to the asymptotic order-
growth in Prop. 1, we specify the behavior of the first-
order constants associated with the sequential and contention
feedback schemes as ρ → 0 and as ρ becomes large.

As ρ → 0, the feedback overhead for both schemes dimin-
ishes. In particular, for the sequential scheme (3) implies that
the feedback overhead fseq → 0. This is true asymptotically
even if each user feeds back any fixed number of B bits.
(For example, if B = 1 and the group size αN = 1, then
fseq = ρNH(po)+1

RF T .) Hence as ρ → 0, the base station
can obtain one feedback bit per sub-channel from each user
without decreasing the asymptotic sum throughput. In contrast,
for the contention scheme, the CSI obtained for each user
corresponds to only the assigned sub-channels. Hence we
expect the system capacity for the sequential scheme to be
larger.

As ρ increases and approaches RF T , the achievable rate
for the sequential scheme Rseq/N → 0. This is because each
user is assumed to transmit at least one feedback bit, so that
if ρ ≥ RF T , then the entire coherence time is needed for
feedback. In contrast, for the contention scheme the sizes of
the sub-channel and user groups, and hence feedback, can be
adjusted to optimize the capacity per sub-channel Rcon/N
as the system scales. As ρ increases, the optimal feedback
fraction fcon < 1, allowing the achievable rate to increase
with K.

Proposition 6: For the sequential scheme, as ρ → 0, the
asymptotic capacity per sub-channel Rseq/N → 0 as Θ(

√
ρ).

Furthermore, as ρ → RF T from below, Rseq/N → 0.
Proposition 7: For the contention scheme, as ρ → 0,

the asymptotic capacity per sub-channel Rcon/N → 0 as
Θ(ρ log(1/ρ)). Furthermore, as ρ → ∞, Rcon/N increases
as Θ(log ρ).

The proof of Prop. 6 is given in Appendix E. The proof of
Prop. 7 is omitted due to the space limitation.12

For small ρ, ρ log(1/ρ) <
√

ρ, hence as expected, the
asymptotic capacity for the sequential scheme is larger than
that for the contention scheme. Also, the capacity for the
contention scheme grows as log ρ. In contrast, as K and N
increase with full CSI, the sum capacity increases to infinity
as N log log K for any ρ. These results are illustrated in
Fig. 1, which shows the asymptotic capacity per sub-channel
for both schemes as a function of system load ρ. The curves are
obtained by evaluating (5) numerically with channel variance
σ2 = 10 and power per user P = 10 dB. Fig. 1 shows a
crossover load ρ∗ for which the sequential scheme performs
better than the contention scheme for ρ < ρ∗, and vice versa
for ρ > ρ∗. For this example, ρ∗ > 1, which indicates that the
sequential scheme performs best for (practical) loads ρ < 1.

IV. NUMERICAL RESULTS

A. Asymptotic Comparisons

In this section, we provide some numerical examples,
which illustrate the asymptotic performance of both feedback
schemes. For the examples in this section the channel gains
are i.i.d. Rayleigh with variance σ2 = 1, and the power per
user P = 10.

Fig. 2 shows the asymptotic sum capacity per sub-channel
versus RF T for different loads ρ = K/N . For each scheme,

12A sketch of the proof can be found in [21].



6

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

ρ

sy
st

em
 th

ro
ug

hp
ut

 p
er

 s
ub

−
ch

an
ne

l

 

 

Sequential scheme
Contension scheme

Fig. 1. Capacity versus load for the two feedback schemes.
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Fig. 2. Asymptotic capacity per sub-channel versus feedback RF T for the
sequential and contention feedback schemes with different loads ρ.

the capacity, given by (6) or (10), is optimized numerically
over the relevant parameters (i.e., to, α and β.) As stated in
Prop. 4, for a given ρ, when RF T is small the contention
scheme achieves a larger sum capacity, whereas when RF T is
large the sequential scheme performs better. (Note that the sum
capacity of the sequential scheme approaches zero as RF T
approaches ρ.) In each case there is a single crossing point
ρ∗, which shifts to the right as ρ increases.

The relative performance of the sequential and contention
schemes is further illustrated in Fig. 3, which shows how the
crossing point in Fig. 2 depends on RF T and P . Namely,
the load ρ∗ at which the relative performance of the two
feedback schemes switches is shown as a function of RF T for
different values of P . (For example, in Fig. 1, ρ∗ ≈ 2.4). For
the range of parameters shown the crossing-point increases
almost linearly with RF T for each P . For values of ρ and
RF T above (below) the line in this figure, the contention
(sequential) scheme performs best.

Fig. 3 also shows that given RF T , the crossing point
ρ∗ decreases as P increases, so that the region in which
the contention scheme performs better becomes larger. This
is because increasing the power P leads to a decrease in
the threshold (i.e., the minimum received power per active
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Fig. 4. Optimized parameters for each feedback scheme versus RF T .

group stays approximately constant). The feedback overhead
in the sequential scheme then increases, since the probability
of requesting a sub-channel group increases. In contrast, the
feedback overhead in the contention scheme is less sensitive
to this change, due to the additional flexibility of being able
to adjust the user and channel group sizes.

Fig. 4 shows the optimized parameters for both schemes as
a function of RF T with ρ = 1. The top part shows the optimal
asymptotic thresholds for the two schemes. For both schemes,
the optimal thresholds converge to a finite value that increases
with RF T . In contrast, for the one-bit feedback scheme in
[6], the optimal threshold approaches infinity as the system
scales. For that scheme, the asymptotic rate at which the
threshold increases (namely log K) ensures that the SNR per
sub-channel increases as log K, so that the capacity increases
as N log log K. Here the threshold must increase at a slower
rate in order to bound the fraction of coherence time used
for feedback. The lower part of the figure shows the optimal
group size versus RF T for the contention scheme. (For the
sequential scheme Prop. 2 states that the optimal group size
approaches infinity.) As RF T increases, the number of sub-
channels in each group decreases to one, while the number of
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users per group increases.
B. Performance of Finite-Size Systems

In this section we present numerical results for finite-
size systems. Specifically, we select the parameters for each
scheme to maximize the asymptotic sum capacity per sub-
channel and then simulate the performance in a finite system.
For each of the following scenarios, results are shown for 1000
different channel realizations, where each realization consists
of NK independent sub-channel gains generated according to
an exponential distribution with variance σ2 = 10.

Fig. 5 shows the throughput per sub-channel for the con-
tention scheme as a function of the number of users K with
RF T = 10 and ρ = 1. Even for a relatively small system
size (e.g., K = 10), averaging the throughput per sub-channel
over all channel realizations gives a value, which is very close
to the asymptotic throughput per sub-channel (2.49 nats/sec).
The variance in throughput across realizations decreases with
the system size due to increased averaging across users and
channels.

Fig. 6 shows analogous results for the sequential scheme
with ρ = 1 and RF T = 200. (The larger value of RF T is
chosen in this case, because as discussed in Section III-B,
this is the regime in which the sequential scheme performs
better than the contention scheme.) For the sequential scheme
a fixed-to-variable lossless source code, which has average
codeword length less than or equal to 1

αH(p0) + 1, is used to
compress the feedback for each user. The results are shown
in Fig. 6 along with the asymptotic throughput per sub-
channel (5.60 nats/sec). Compared to the contention scheme,
the averaged throughput per sub-channel for the sequential
scheme converges to its asymptotic value at a much slower
rate. This is due to the convergence rate of the feedback per
sub-channel to its asymptotic value. Specifically, in the optimal
sequential scheme the probability that a user requests a sub-
channel p0 converges to zero as the system scales, so that
H(p0) → 0. The average number of compressed feedback
bits per sub-channel therefore converges to a constant, which
is upper bounded by one. However, for the coding scheme
used in our simulations, this convergence is slow, leading to
the slower convergence in throughput per channel. Once again,
we note that the variance in the throughput per sub-channel
across realizations decreases as the system scales.

Also shown in Fig. 6 for comparison is the sum capacity
of a one-bit feedback scheme in which each user indicates
whether or not each sub-channel gain exceeds a threshold
(e.g., see [6]). The threshold is selected to maximize the sum
rate. The maximum number of users that can be supported
with the one-bit feedback scheme is RF T . Fig. 6 shows that
with K = 10 users the one-bit scheme gives a slightly larger
average throughput than the sequential scheme. Initially, the
sum capacity of the one-bit scheme increases, then it decreases
almost linearly to zero. On the other hand, the throughput per
sub-channel achieved by the sequential scheme converges to
a positive constant as the system size scales.

V. CONCLUSIONS

We have presented two feedback schemes for downlink
OFDMA for which the feedback overhead remains bounded
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Fig. 5. Achievable rate per sub-channel for the contention scheme as a
function of K for ρ = 1. Each point corresponds to a different channel
realization.
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feedback scheme presented in [6]

as the system size scales. Given a finite coherence time T and
limited feedback link capacity RF , the sum capacity growth
for both schemes is Θ(N) as the number of users and sub-
channels increase, as opposed to the optimal order growth of
Θ(N log log K) with perfect CSI. The first-order constant for
the limited feedback schemes increases as log(RF T ), so that
the multi-user diversity term log log K can be recovered if the
feedback RF T is allowed to scale with the system size as
log K.

An asymptotic comparison of the two schemes shows that
the sequential scheme performs best when RF T is sufficiently
large, or when the load ρ is sufficiently small. Numerical
results indicate that this is the case when RF T takes on
moderate values (e.g., 100 bits per sub-channel per coherence
time) and ρ < 1. Hence, for the model considered the
sequential scheme achieves a higher sum capacity than the
contention scheme for a practical range of values. However,
the sequential scheme may require additional overhead to
synchronize the user feedback, which is not taken into account
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in our model. This synchronization overhead will, of course,
compromise the relative advantage of the sequential scheme.
(Some numerical examples, which illustrate this point are
presented in [21].)

The model and results presented here can be extended in a
few different ways. For purposes of analysis, we have assumed
that a user requests a sub-channel group only if all sub-channel
gains in the group exceed a pre-determined threshold. In prac-
tice, this criterion may be replaced by other selection criteria,
which give different performance. It may also be possible
to reduce feedback further by exploiting correlation among
neighboring groups of sub-channels. Specifically, correlation
should reduce the required feedback per user in the sequential
scheme. It is more difficult to predict how correlation will
affect the contention scheme since feedback collisions become
correlated across sub-channels. We do not expect that correla-
tion will affect the asymptotic scaling results, since correlation
can be decreased by merging sub-channel groups into larger
groups, although correlation will affect the associated constant.
Finally, another direction is to extend the current model to
OFDMA systems with multiple antennas, which may require
much larger amounts of feedback and overhead to exploit the
available spatial dimensions.

APPENDIX A
Proof of Proposition 1: We prove this proposition via the

following four steps:
Step 1: For a fixed RF T , Rseq = O(N) as N → ∞.

To establish a contradiction, suppose this is not true, i.e.,
Rseq/N → ∞. Since fseq ≥ 0, this can only occur if
psrseq = ps log(1 + ρPto

ps
) → ∞. We show that the required

feedback needed for this must eventually exceed the available
coherence time and so this cannot occur.

For ps log(1 + ρPto

ps
) → ∞, it must be that t0 → ∞

and ps log(t0) → ∞ 13 Next, note that ps is equal to the
probability that the maximum of K i.i.d. random variables
with c.d.f. F (x) = 1−e−αNx/σ2 exceeds t0. Using the theory
of extreme order statistics [20], it can be shown that (see
e.g. [6, Lemma 6])

ps ³ 1 − exp(−Kp0), (12)

where p0 = e−
αNto

σ2 is the probability one user’s sub-channel
gains all exceed t0 in a given group. Let µ = limN→∞ ps. We
consider two cases.

Case 1: µ > 0. From (12) it follows that

Kpo →

{

− ln(1 − µ), if µ ∈ (0, 1),

∞, if µ = 1.
(13)

Also, since t0 → ∞ and αN ≥ 1, it must be that p0 → 0. As
p0 → 0, H(p0) ³ −p0 log(p0) and so, KH(p0)

αN ³ Kpo(
t0
σ2 ).

Furthermore, (13) and t0 → ∞ imply KH(p0)
αN → ∞. From

(3) it follows that fseq → ∞, i.e., the feedback eventually
exceeds the coherence time.

Case 2: µ = 0. From (12) it follows that ps ³ Kp0, so that
again p0 → 0 and KH(p0)

αN ³ ps
t0
σ2 . Since ps log(t0) → ∞, it

again follows that KH(p0)
αN → ∞, so that fseq → ∞.

13When ps → 0, this follows since in that case ps log(ps) → 0.

Step 2: For any fixed RF T > ρ, Rseq ³ γseqN for some
γseq > 0. Equivalently, we show there exists a sequence of
(t0, α) so that

psrseq(1 − fseq) → γseq. (14)

We showed in Step 1 that if psrseq → ∞, then fseq → ∞,
and so for (14) to hold it must be that psrseq is asymptotically
bounded. Also, since 1 − fseq ≤ 1, (14) cannot hold if
psrseq → 0. Therefore, the only possibility is that psrseq → ν
and 1 − fseq → γseq/ν, for ν > 0 and γseq/ν ∈ (0, 1]. We
next show that there exists a sequence (t0, α) for which this
is true.

Consider a sequence (t0, α) for which ps → µ for some µ ∈
(0, 1). Then psrseq ³ µ log(1 + ρPt0

µ ), and so if psrseq → ν,
it must be that

t0 → µ

ρP
(e

ν
µ − 1). (15)

As in Step 1, we have ps ³ 1 − e−Kp0 and so

Ke−
αNto

σ2 → − log(1 − µ). (16)

Solving for t0 and comparing with (15), it follows that the
group size αN must satisfy

αN ³ ρpσ2

µ(e
ν
µ − 1)

(log K − log(− log(1 − u))). (17)

Hence αN = Θ(log K), which implies p0 → 0. Thus as in
Step 1, H(p0) ³ −p0 log p0, and from (16) we have KH(p0)

αN ³
− log(1−µ)t0/σ

2. Substituting this into the definition of fseq

and substituting the limiting value of t0 in (15) gives

fseq → − log(1 − µ)µ(e
ν
µ − 1)

ρPσ2RF T
+

ρ

RF T
. (18)

With an appropriate choice of the constants µ and ν (equiva-
lently, t0 and α), the limiting value of fseq can be set to any
value greater than ρ

RF T . Therefore, for RF T > ρ we can find
a sequence of parameters so that fseq is bounded away from
one, as desired.

Step 3: Given fixed RF T , Rcon = O(N) as N → ∞. To
establish a contradiction, assume that Rcon/N → ∞. As in
Step 1, since fcon ≥ 0, this can only occur if ptrcon → ∞.
We again show that the associated feedback must exceed the
coherence time.

If ptrcon → ∞, it must be that t0 → ∞ and pt log(t0) →
∞. Recall that pt = βKe−αNto/σ2

(1− e−αNto/σ2

)βK−1 and
αN ≥ 1, so that pt ≤ βKe−to/σ2 . Suppose that βK ≤ L (a
constant) for all K. Then it follows that pt ≤ Le−to/σ2 , which
implies pt log(to) → 0. This contradicts the assumption that
ptrcon → ∞, and so βK → ∞ as K increases.

If βK → ∞, then to keep fcon = log(βK)+1
αNRF T bounded,

it must be that αN → ∞. In particular, there must exist a
W > 0 such that log(βK)

αN ≤ W . Since βK → ∞, we apply
extreme value theory to get14 (1 − e−αNto/σ2

)βK ³ e−κ,
where κ = βKe−αNto/σ2 . It follows that

pt ³ κe−κ. (19)

14Note the left-hand side is simply the probability that the maximum of
βK i.i.d. random variables exceeds t0.
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Next we show that κ → 0 as K → ∞. Note that

log(κ) = αN(
log(βK)

αN
− to/σ

2) ³ −αNto/σ
2 → −∞, (20)

since to → ∞ and log(βK)
αN ≤ W , so that κ → 0. Combining

(19) and (20) yields

pt log(to) ³ κ log(t0) ≤ eαN(W−t0/σ2) log(t0) → 0. (21)

The last step follows from the fact that when t0 is large
enough, W − t0/σ

2 < 0, and so eαN(W−t0/σ2) ≤ eW−t0/σ2 .
Therefore pt log(to) remains bounded, which implies that
Rcon cannot increase faster than N .

Step 4: For any fixed RF T , Rcon ³ γconN for some γcon >
0. We need only provide a sequence of (t0, α, β) such that
R̃con/N → γcon. Let α = 1

N and β = 1
K , so that there is one

user and one channel per group. In this case pt = e−t0/σ2 and
so R̃con/N = e−t0/σ2

log(1 + ρPt0
e−t0/σ2 ) for all N . Hence for

any t0 > 0 R̃con/N converges to a positive constant. ¥

APPENDIX B
Proof of Proposition 2: Step 2 of the proof of Proposition 1

shows that there exist sequences of parameters (t0, α) that
achieve the optimal growth rate with ps → µ for µ ∈ (0, 1).
Furthermore, (17) shows that any such sequence must have
αN = Θ(log K) and (15) shows that p0 = Θ(1/K). The
average number of channel groups requested by one user is
given by p0N/(αN), which then decreases as Θ(1/ log K).
Though such a sequence achieves the optimal growth rate,
it is possible that the optimal sequence is not in this class
(i.e., it could achieve the same order growth with a larger
constant). To complete the proof, we show that this is not
the case. Specifically, we show that if the optimal ps → 0 or
ps → 1, then the feedback must be unbounded.

Case 1: ps → 0. As in the proof of Prop. 1, it must be that
psrseq → ν for this scheme to be order-optimal. If p2 → 0,
then it must be that ps log(t0) → ν. Since ps ³ Kp0, it
follows that Kp0 log(t0) → ν and p0 → 0. Hence KH(p0)

αN ³
νt0

σ2 log(t0)
, which implies fseq → ∞.

Case 2: ps → 1. Again it must be that psrseq → ν, which
now implies that t0 → eν−1

ρP . Since ps ³ 1 − exp(−Kp0), it
must be that Kp0 → ∞. Hence KH(p0)

αN ³ Kp0
to

σ2 and again
fseq → ∞. ¥

APPENDIX C
Proof (sketch) of Proposition 4: We consider two cases,

when RF T is small and RF T is large.
Case 1: Large RF T . The proofs of Prop. 1 and Prop. 2 show

that with the optimal parameters for the sequential scheme,
there exists a constant µ ∈ (0, 1) such that ps → µ, and a
constant t∗0 > 0 such that t0 → t∗0. Furthermore, given any
t∗0 > 0, we can find a sequence of α’s such that ps converges
to any µ ∈ (0, 1). Therefore the first-order constant for the
sequential scheme is

γseq = max
t0>0,µ∈(0,1)

µ log
(

1 +
ρPt0

µ

)(

1−

− log(1 − µ)t0
σ2RF T

− ρ

RF T

)

. (22)

As RF T increases, ρ
RF T → 0; hence we drop this term and

rewrite the preceding maximization as

max
c∗,to

µ log(1 +
ρP

µ
to)(1 − c∗). (23)

where c∗ = − log(1−µ)t0
σ2RF T is the fraction of the coherence time

dedicated to feedback, and µ = 1 − e
− c∗RF T

to/σ2 .
From (7)-(10) it can be seen that γcon can be expressed as

max
α,c∗,to

pt log(1 +
ρP

pt
to)(1 − c∗)

s.t. βK = eαNc∗RF T−1. (24)

where pt is a function of α, c∗ and t0. The function x log(1+
a
x ) is increasing in x > 0 for any a > 0. Hence, if c∗ and to
are the same for both schemes, then we can compare the first-
order constants by comparing the values of µ and pt. Here µ
is determined by c∗ and to while pt is given by optimizing
over α. It can be shown that for fixed c∗ and t0, µ > pt,
which implies γseq > γcon. (We omit the details due to the
space limitation.)

Case 2: Small RF T . In the sequential scheme because each
user must send back at least one bit, fseq ≥ ρ

RF T . As RF T →
ρ, 1− fseq → 0, so that γseq → 0. For the contention scheme
γcon does not go to zero as RF T → ρ since the channel
and user group sizes αN and βK can adjusted to reduce the
feedback while keeping a positive first-order constant. ¥

APPENDIX D

Proof of Prop. 5: If RF T increases faster than log K, then
the fraction of time used for feedback in the contention scheme
satisfies

log(βK) + 1

αNRF T
≤ log(K) + 1

RF T
→ 0,

so that Rcon/N ³ pt log(1 + ρP
pt

to). Setting αN = 1,
βK = K, and to = σ2 log K gives pt = Ke− log K(1 −
e− log K)K−1 → e−1, and the throughput per sub-channel
grows as Θ(N log log K). Furthermore, from Prop. 4 Rcon ≤
Rseq when RF T is large, and both Rcon and Rseq are upper
bounded by the sum capacity with full CSI, which also
increases as Θ(N log log K). It follows that Rcon and Rseq

both increase as Θ(N log log K).
If RF T scales slower than Θ(log K), then the proof of

Prop. 1 shows that Rseq increases as Θ(N log(RF T )). For
the contention scheme, we first lower bound Rcon by setting
αN = 1 and to = σ2 log(βK), so that pt = (1 − 1

βK )βK−1.
As βK increases, pt is lower bounded by e−1, so that

Rcon/N

≥ e−1 log

(

1 +
ρPσ2

e−1
log(βK)

)(

1 − log(βK) + 1

RF T

)

= Θ(log(RF T )). (25)

Prop. 4 states that Rcon ≤ Rseq when RF T is sufficiently
large. Therefore Rcon also scales as Θ(N log(RF T )). ¥
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APPENDIX E
Proof of Prop. 6: As K and N increase with fixed ratio ρ,

Rseq/N = psrseq(1 − fseq) converges to a constant, which
we denote by γseq(ρ). We first show that γsec(ρ) = Θ(

√
ρ)

as ρ → 0.
From Prop. 1 and Prop. 2, we know that for any ρ ∈

(0, RF T ) with the optimal parameters: (i) there exists a
µ ∈ (0, 1) such that as the system scales ps → µ, and (ii)
there exists a constant t∗0 > 0 such that t0 → t∗0 where

fseq → − log(1 − µ)t∗0
σ2RF T

+
ρ

RF T
≤ 1; (26)

Let f∗
seq be the limiting value of fseq in (26). It follows that

γsec(ρ) = µ log(1+ ρPt0
µ )(1−f∗

seq). As ρ is varied, the optimal
values of µ and t0 vary along with f∗

seq . If as ρ → 0, µ and
t0 converge to any non-zero constant and f ∗

seq converges to a
value less than one, then it can be easily seen that the first-
order constant decreases as Θ(ρ). If µ and t0 converge to any
non-zero constant and f∗

seq → 1, then the first-order constant
decreases faster than Θ(ρ).

Finally, suppose that µ → 0 when ρ → 0. In this case,
− log(1 − µ)to

σ2RF T
³ µto

σ2RF T
. (27)

From (26) and (27), it follows that µt0
σ2RF T → f∗

seq, as ρ → 0.
Furthermore, since f∗

seq ≤ 1, it must be that for any ε > 0, and
ρ small enough, µt0

σ2RF T ≤ 1 + ε. Hence, for ρ small enough
we have

γseq(ρ) ≤ µ log(1 +
ρP (1 + ε)σ2RF T

µ2
). (28)

The right-hand side of (28) is concave in µ ≥ 0 and from the
first-order optimality conditions is maximized by choosing µ

to satisfy ρP (1+ε)σ2RF T
µ2 = x∗, where x∗ is the unique positive

solution to (1 + x∗) log(1 + x∗) = 2x∗. This implies that
the γ which optimizes (28) decreases as Θ(

√
ρ) for ρ small

enough. Substituting this into (28) shows that the upper bound
on γseq(ρ) decreases as Θ(

√
ρ).

Next we give a lower bound for γseq(ρ), which also grows
as Θ(

√
ρ). Letting µ =

√
ρ and to = 1/

√
ρ, γseq(ρ) can be

lowered bounded by
√

ρ log(1 + Pσ2RF T )(1 − 1

σ2RF T
− ρ

RF T
) = Θ(

√
ρ). (29)

Setting the group size αN ³ σ2

√
ρ (log(K) − log(

√
ρ)), it

follows that pseq → µ. Therefore as ρ → 0, γsec(ρ) = Θ(
√

ρ),
as desired.

As ρ → RF T , because each user feeds back at least one bit
per sub-channel, fseq → 1 and Rseq/N → 0. Hence in this
limit γsec(ρ) → 0. ¥
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