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Abstract— We consider asymptotic performance of a down-
link OFDMA system as the number of users and sub-channels
increase. Specifically, we study the asymptotic growth in the
weighted sum capacity, where each user is assigned a weight to
reflect its quality of service. We begin by considering a limited
feedback scheme, where each user is pre-assigned a threshold
and feeds back one bit per sub-channel to indicate whether the
channel gain is above the threshold or not. If more than one user
requests the same sub-channel, the base station picks the user
with the largest weight to transmit. In earlier work we analyzed
such a scheme when each user has i.i.d. Rayleigh fading on each
sub-channel. Here we consider a larger class of distributions
that includes most common fading models. We characterize the
asymptotic behavior of the optimal thresholds and the growth
of the weighted sum capacity. We then compare the asymptotic
capacity achieved by this one bit feedback scheme with the
capacity when full CSI is available at the transmitter. We derive
upper and lower bounds on the capacity with full CSI. The
difference between these bounds asymptotically converges to a
constant and the lower bound converges to the capacity of the
one-bit feedback scheme.

I. INTRODUCTION

Current proposals for wireless metropolitan area networks
(802.16e) and fourth generation cellular systems are based on
Orthogonal Frequency Division Multiplexing (OFDM) and
Orthogonal Frequency Division Multiple Access (OFDMA).
In OFDMA the available bandwidth is divided into narrow
sub-channels, which can be assigned to no more than one
user. This avoids interference while exploiting frequency
diversity. Here, we consider the OFDMA downlink and
study the performance of power allocation and sub-channel
assignment schemes based on different amounts of Channel
State Information (CSI) at the transmitter.

Given complete CSI for all users (i.e., perfect knowledge
of all sub-channel gains), the transmitter can assign users
to sub-channels, and allocate power across sub-channels to
maximize a performance objective. Here, the performance
objective is the weighted sum rate over all users. The weights
are chosen by a scheduler to satisfy Quality of Service
constraints, as well as fairness criteria, and are assumed to
be given. (Selection of the weights is discussed in [11],
[12].) This resource allocation problem with perfect CSI
is formulated and solved in [1]. Other related work on
power and rate allocation for downlink OFDMA system with
perfect CSI is presented in [2], [3], [4].

*This work was supported by the Motorola-Northwestern Center for
Seamless Mobility.

Obtaining complete CSI at the transmitter requires a large
amount of overhead. Namely, the gains for hundreds of
sub-channels for each user must be relayed back to the
transmitter. Limited feedback schemes, which substantially
reduce this overhead, are therefore desirable. This work is a
continuation of our previous work [6], which considers the
performance of a “one-bit” feedback scheme, in which each
user relays one bit for each sub-channel to indicate if the
channel gain exceeds a user-dependent threshold known to
the transmitter. If more than one user requests a particular
sub-channel in this way, then the channel is assigned to the
user with the largest weight.1 An important design question
is then how to select the threshold for each user.

The performance of this one-bit feedback scheme is ana-
lyzed in [6] in the large system limit in which the number
of users K and number of sub-channels N both tend to
infinity with fixed ratio K/N . It is shown that for i.i.d.
Rayleigh fading sub-channels, if all users have the same
weight, then the optimized thresholds increase as log K,
where K is the number of users, minus a second-order
term, which is asymptotically bounded between log log K
and log log log K. Furthermore, the weighted sum capacity
per sub-channel increases as Θ(log log K). 2

In this paper we generalize the preceding result to a larger
class of sub-channel distributions. Furthermore, we study
the loss in weighted capacity due to the one-bit feedback
scheme, relative to complete CSI. As in [6], we assume
that the users are divided into priority groups associated
with different weights and/or sub-channel distributions. The
sub-channel distributions we consider have densities with
the form αxpe−qxv

, where α > 0, q > 0, v ≥ 1
and p are constants. This class of distributions includes
Rayleigh, Nakagami, Log-normal and Ricean fading (in
the Log-normal case an appropriate change of variables is
required.) The multiuser diversity gain of a MIMO system
with this class of distributions is also considered in [5].
The extension of the results in [6] to this larger class of

1In [6] and this paper, we assume that at most one user can be assigned to
a sub-channel, i.e. we do not allow sub-channels to be time-shared as in [2]
or employ techniques such as successive decoding. Though such techniques
result in capacity gains, they are generally considered to complex for current
systems.

2We use the notation: xK = O(yK) if limK→∞
|xK |
|yK | ≤ M ; xK =

Ω(yK) if yK = O(xK); xK = Θ(yK) if xK = O(yK) and xK =
Ω(yK); xK ³ yK if limK→∞

xK
yK

= 1.



fading distributions is not straightforward. Namely, it relies
on expansions of extremal distributions presented in [7],
which are needed to characterize the convergence of the
distribution for the maximum sub-channel gain over a group
of users to the corresponding asymptotic extremal (Gumbel)
distribution as (K, N) →∞. Such a refined characterization
of convergence is unnecessary to obtain the results in [6].

To study the capacity loss due to limited feedback, we
derive upper and lower bounds on the weighted sum rate
with complete CSI. The lower bound assigns constant power
to each sub-channel (instead of water-filling), and is observed
to be asymptotically the same as the capacity with one-bit
feedback. The upper bound assumes that each user group
has the same (largest) weight. The optimal power allocation
is then to water-fill over the set of largest sub-channel gains
(i.e., largest among the users). The upper and lower bounds
converge asymptotically if the sub-channel of the user group
with the highest weight is statistically the best among all the
user groups. Otherwise, the gap between the upper and lower
bounds tends to a constant as K increases. For Rayleigh
fading this constant is w1 log σ2

max/σ2
1 , where w1 and σ2

1 are
the weight and sub-channel variance corresponding to the
highest-priority group, and σ2

max is the largest sub-channel
variance over the user groups. A numerical example is
presented, which shows that the actual capacity is quite close
to the lower bound, corresponding to one-bit feedback.

The next section describes the system model and presents
the weighted sum capacity objective. Section III analyzes
the capacity with one-bit feedback, and Section IV presents
asymptotic upper and lower bounds on channel capacity
with full CSI. Numerical results illustrating the bounds are
presented in Section V, and Section VI concludes the paper.

II. SYSTEM MODEL AND CAPACITY

We consider a downlink OFDMA system in which the
base station transmits to K users, and the total bandwidth is
divided into N i.i.d. sub-channels. (In practice, each sub-
channel considered here may represent a coherence band
containing multiple OFDM sub-channels.) We let hn

k denote
the squared channel gain for the nth sub-channel of user k,
where 1 ≤ n ≤ N and 1 ≤ k ≤ K. The sub-channel gains
are assumed to be known at the receivers (mobiles).

A weight wk is assigned to user k, 1 ≤ k ≤ K. If a
sub-channel is requested by more than one user, then the
sub-channel is assigned to the user with the largest wk. The
weights represent priorities or different Quality of Service
requirements. Letting Nk denote the set of sub-channels
assigned to user k, the achievable rate for user k, assuming
that the transmitter is able to code over a large number of
sub-channels, is

Rk =
1
|Nk|

∑

n∈Nk

E(log(1 + Pnhn
k )|hn

k ∈ Nk) (1)

in nats per sub-channel,3 where Pn is the power allocated
to sub-channel n, the noise variance is normalized to unity

3Throughout this paper we assume natural logarithms.

and the expectation is over hn
k .4 The performance objective

is to maximize the weighted sum capacity per sub-channel,

C =
K∑

k=1

wkRk. (2)

We assume that the total transmission power, Ptotal =∑
n Pn, scales linearly with the number of users K, i.e,

Ptotal = KP , where P is the average power per user.
If the receiver feeds back complete CSI to the base station,

then to maximize the sum capacity C, each sub-channel
n is assigned to the user with the largest weighted rate
wk log(1+Pn

k hn
k ), where Pn

k is the power available to user k
for sub-channel n. The total power Ptotal is water-filled over
the corresponding sub-channel gains, and at optimality the
resulting power distribution {Pn

k } over sub-channels must be
consistent with the sub-channel assignments, e.g. see [1].

In the one-bit feedback scheme each user k is assigned a
threshold uk, and sends back one bit per sub-channel to the
transmitter indicating if hn

k ≥ uk or hn
k < uk. The set of

users requesting the nth sub-channel is then

Un = {k : hn
k ≥ uk}, (3)

and |Un| is the number of users in Un. Sub-channel n is
then assigned to the user k ∈ Un with the largest weight wk.
Hence

Nk = {n ∈ N | k = argmaxj∈Un
(wj)}, (4)

where N = {1, · · · , N} and any ties are broken randomly.
Furthermore, the transmitter allocates constant power P
per sub-channel. If user k is assigned to a particular sub-
channel, then the corresponding rate is log(1+Puk), where
P = Ptotal/(N Pr{Un 6= ∅}) and Pr{Un 6= ∅} is the
probability that a sub-channel is active. Clearly, the resulting
weighted sum capacity depends on the set of user weights
and thresholds.

We will compare the large system behavior of the weighted
sum capacity for the previous two schemes, i.e., complete
CSI and the one-bit feedback scheme. “Large system” refers
to the limit as the number of users K and the number of
sub-channels N tend to infinity with fixed ratio β = K/N .
Also, we assume that the total number of users is divided
into M groups, where all users in group m, 1 ≤ m ≤ M ,
have the same weight wm and the same threshold. We further
assume that the channel statistics can vary across different
groups, but are the same for all users in a particular group.
The group size Km also grows linearly with the number of
users K, i.e., Km/K = αm. Without loss of generality we
assume that w1 > w2 > · · · > wM .

In [6], we have characterized the growth of the optimal
threshold and the weighted sum capacity with Rayleigh
fading. In this paper, we extend those results to a more

4In other words, we are considering the ergodic capacity; this is reason-
able if each user sees a large number of sub-channel realizations either in
time or frequency.



general scenario, in which the probability density function
(pdf) of hn

k has the form

f1(x) = αxpe−qxv

, (5)

where α > 0, q > 0, v ≥ 1 and p are constants.

III. CHANNEL CAPACITY WITH ONE-BIT FEEDBACK

We start with a single group and characterize the behavior
of the threshold and capacity with the one-bit feedback
scheme. To simplify the discussion, we note that for any
density f1(x) with v > 1, applying the transformation
u = xv gives the density f(u) = α

v u
p+1−v

v e−u. We will
therefore replace f1(x) in (5) by the pdf

f(x) = αxpe−qx. (6)

Of course, analogous results for the pdf f1(x) can be
obtained by applying the transformation x̂ = x

1
v . The

density f(x) is non-zero for x > 0, and the corresponding
distribution F (x) is continuous and twice differentiable.

Let uK denote the threshold for a given number of users
K. Since there is only a single group, uK is the same for
all users. The probability that a sub-channel is active is then
1− FK(uK), and the sum capacity can be expressed as

CK
1 (uK) = w1[1− FK(uK)] log

(
1 +

βPuK

1− FK(uK)

)
. (7)

We wish to maximize CK
1 (uK) over uK and determine

the corresponding growth in capacity as K →∞ with fixed
β. To do this we must characterize the asymptotic behavior
of the extremal distribution FK(x). The growth function for
the distribution F (x) is defined as g(x) = 1−F (x)

f(x) . For the
density (6), it can be shown that

lim
x→∞

g(x) =
1
q
, and lim

x→∞
g′(x) = 0.

¿From Theorem 2.7.2 in [13], it then follows that as K →∞,

lim
K→∞

FK(aK + g(aK)x) → exp(−e−x) (8)

uniformly in x, where aK satisfies F (aK) = 1 − 1
K . That

is, with proper scalings the extremal distribution for the
sub-channels converges in distribution to a Gumbel distribu-
tion. Hence common fading distributions, such as Rayleigh,
Ricean, Log-normal and Nakagami, fall in this domain of
attraction. For example, Rayleigh fading with variance σ2

corresponds to aK = σ2 log K and g(aK) = σ2.
Without loss of generality, we can write the threshold as

uK = aK + g(aK)xK ,

so that we wish to select xK to maximize CK
1 .

It is shown in [6] that with Rayleigh fading, CK
1 (uK) ³

w1 log(log(K)). The corresponding xK → −∞ and xK =
o(log(K)). It is natural to conjecture that for the fading
model described in this paper, the capacity CK

1 (uK) grows
as Θ(w1 log(aK)) and the corresponding xK → −∞ and
xK = o(aK). This is indeed true as stated in the following:

Proposition 1: As K → ∞, if xK → −∞ and xK =
o(aK), then CK

1 (uK) ³ w1 log(aK). Furthermore, if the

sequence xK does not satisfy these assumptions, then
CK

1 (uK) = O(log(aK)) with a constant strictly less than
w1.

The proof of Proposition 1 is not an easy extension of the
proof in [6]. Namely, the proof in [6] for Rayleigh fading
first shows that the fraction of non-active sub-channels in a
system with K users, FK(uK) ³ exp(−e−xK ) if either xK

satisfies the assumptions in Proposition 1 or xK → ∞. For
Rayleigh fading, F (x) has a simple closed form which makes
this easy to show directly. For a general pdf in (6), F (x) is
an incomplete Gamma function, complicating this approach.
We therefore adopt an alternative approach to prove these
results.

Our approach is based on using the following expansion
of F (x) from [7] that applies to any pdf of the form in (6):5

log[− log FK(aK + g(aK)x)] = −x

−x2

2!

[
d(1/g)

dx

]

x=aK

g2(aK)− . . .

−xm

m!

[
dm−1(1/g)

dxm−1

]

x=aK

gm(aK)− . . .

+θ




exp(−x−∑∞
i=2(

xi

i!

[
di−1(1/g)

dxi−1

]
x=aK

gi(aK)))

2K


 .

(9)

For simplicity, we define

wm,K , xm
K

m!

[
dm−1(1/g)

dxm−1

]

x=aK

gm(aK),

wK ,
∞∑

m=2

wm,K ,

zK , −(xK + wK). (10)

Using (9) and (10), we have

FK(uK) = exp
(
−exp

(
zK + θ

(
exp(zK)

2K

)))
. (11)

We use this to characterize the asymptotic behavior of
F k(uk); to accomplish this we must first relate the growth
of zK to that of xK . The next two Lemmas give such
a characterization in two different asymptotic regimes of
interest. The proofs are omitted.

Lemma 1: If xK →∞ as K →∞, then zK ³ −xK .
Lemma 2: If xK → −∞ as K → ∞, and xK = o(aK),

then
lim

K→∞
zK + qg(aK)xK = 0.

Using Lemmas 1 and 2, we can then characterize the
growth rate of FK(uK) in the two asymptotic regimes.

Lemma 3: If xK →∞ as K →∞, then

FK(uK) ³ exp(−exp(zK))
Lemma 4: If xK → −∞ as K → ∞, and xK = o(aK),

then
FK(uK) ³ exp(−exp(zK)).

5This was also used in [10] to study a related problem.



Using these two lemmas we can then prove Proposition 1.
We outline a few key steps next. First, as K → ∞, we
consider sequences of thresholds for which the corresponding
sequence {xK} either converges, or tends to ±∞. For such
sequences, the uniform convergence in (8) implies that

lim
K→∞

FK(uK) =





0, if xK → −∞,

exp(−e−x0), if xK → x0,

1, if xK →∞.

Using this and Lemma 4 it can be shown that when xK

satisfies the assumptions in the Proposition, then CK
1 (uK) ³

w1 log(aK). Next, from Lemma 3 it can be shown that the
growth rate for any sequence of thresholds not satisfying
these assumptions must have a smaller growth rate.6

In [6], under Rayleigh fading, tighter bounds on the
optimal growth rate of the optimal xK-sequence are given
by considering the “remainder” term

∆K(uK) = CK
1 (uk)− w1 log(aK).

Using the preceding Lemmas we can generalize this result
as well.

Proposition 2: The optimal sequence of thresholds sat-
isfies xK = o(log(aK)) and xK = Ω(log(log(aK))) as
K →∞. Under such a sequence,

∆K(uK)− w1 log(βP) = −θ(
log(aK)

aK
)

The preceding lemmas can also be used to extend the
results in [6] for M > 1 groups to the family of pdf’s
in (6). In particular, with multiple groups, the highest pri-
ority group determines the asymptotic growth rate of the
weighted sum capacity, CK

tot(uK), when optimized over the
vector of thresholds uK for each priority group. In other
words, CK

tot(uK) ³ w1 log(a1,K1), where a1,K1 satisfies
F1(a1,K1) = 1 − 1

K1
, i.e., this is the scaling constant for

the first class. The throughput of every other group will
asymptotically go to 0.7

IV. CHANNEL CAPACITY WITH FULL CSI

In the previous section, we discussed the asymptotic
growth in channel capacity with one-bit feedback, assuming
the channel distribution has the form in (6). If all users
have the same priority weight, the sum capacity per sub-
channel increases as w1 log(aK) plus a second-order term,
which decreases to a constant at rate log(aK)/aK . With
multiple priority groups, the weighted sum capacity still
grows at rate w1 log(a1,K1), i.e., the highest priority group
determines the asymptotic growth rate. The throughput of all
the lower priority groups approaches zero. In this section, we
compare these results to the capacity in a system with full
CSI at the transmitter. This enables us to quantify any loss
in performance due to the limited feedback scheme.

6More precisely, Lemma 3 is used to rule out sequences such that xK →
∞, another argument is used to rule out sequences such that xK → x0.

7When there are multiple classes, we denote the distribution of the ith
class by Fi(x).

Given full CSI, the transmitter can both optimize the
power allocation as well as the assignment of sub-channels
to users to maximize the weighted sum capacity in (2);
we denote the solution to this problem in a system with
K users as CK

wf (since with full CSI the optimal power
allocation is a modified water-filling allocation). This type of
optimization problem has been considered in [1], [2] under
the assumption that users can time-share each sub-channel
(without this assumption the optimization problem becomes
a mixed integer programming problem, further complicat-
ing the solution). Even with this simplifying assumption,
a closed-form expression for CK

wf is not available. The
difficulty here is that the user allocated to each sub-channel
depends on the user’s SNR on that sub-channel as well
as the user’s weight; the user’s SNR in turn depends on
the power allocation. However, the optimal power allocation
depends on the allocation of sub-channels to the users. In the
following instead of directly studying CK

wf , we derive upper

and lower bounds on this quantity, denoted by C
K

wf and
CK

wf , respectively. We show that these bounds asymptotically
differ by a constant that depends on the channel distribution
and the priority weights. These bounds, and hence CK

wf are
shown to also grow at rate w1 log(a1,K1), and furthermore,
the difference CK

wf − CK
tot(uK) is asymptotically bounded.

A. Upper bound on the capacity with full CSI
We first upper bound the weighted sum capacity with full

CSI. To do this, we consider a second system in which
each user group has the same channel distributions, but all
groups have weight w1 (i.e. the maximum weight). Clearly,
the maximum weighted sum rate in this second system
will upper bound the weighted sum rate in the original
system. In this second system, since all the weights are the
same, maximizing the weighted sum rate is equivalent to
maximizing the (unweighted) sum rate, a problem that has
been addressed in [9]. The optimal sub-channel assignment
in this case is simply to assign a sub-channel to the user who
has the largest squared channel gain among all the users; the
corresponding power assignment is to then water-fill over
these channel gains.

The distribution function of the best squared channel gain
in a sub-channel is given by

F(1:K)(x) =
M∏

i=1

FαiK
i (x), (12)

where αi = Ki/K. Using this the resulting capacity for the
new system is

C
K

wf = w1

∫ ∞

0

[log(λx)]+dF(1:K)(x), (13)

where λ > 0 is the “water level,” chosen so that

βP =
∫ ∞

0

[
λ− 1

x

]+

dF(1:K)(x). (14)

In [9], it is shown that asymptotically

lim
K→∞

(
C

K

wf − w1

∫ ∞

1
βP

log(βPx)dF(1:K)(x)

)
= 0. (15)



Hence, we study the asymptotic behavior of
w1

∫∞
1

βP
log(βPx)dF(1:K)(x) in the following.

The next two lemmas give lower and upper bounds on
w1

∫∞
1

βP
log(βPx)dF(1:K)(x), which are shown to converge

asymptotically to w1 log(βPam∗,K + 1), where the m∗th
group is the group for which Fm∗(x) grows slowest among
all groups, i.e.,8

lim
K→∞

am∗,K

an,K
≥ 1 ∀n. (16)

Lemma 5: As K → ∞, w1

∫∞
1

βP
log(βPx)dF(1:K)(x) is

upper bounded by

w1 log(βPam∗,K + 1) + θ(
1

log(log(K))
).

Lemma 6: As K → ∞, w1

∫∞
1

βP
log(βPx)dF(1:K)(x) is

lower bounded by w1 log(βPam∗,K+1)−θ( log(log(log(K)))
log(K) ).

Combining the above observations we have:
Proposition 3: For all K, CK

wf is upper-bounded by C
K

wf ,
where asymptotically

lim
K→∞

C
K

wf − w1(log(βPam∗,K + 1) = 0.

In other words, CK
wf can grow no faster than

w1(log(βPam∗,K + 1) as K →∞.

B. Lower bound on the capacity with full CSI

Next, we turn to lower bounding CK
wf . To accomplish

this, we consider the original M group system, but assume
that the transmitter is restricted to using constant power
βP on each sub-channel instead of the optimal water-filling
allocation. The maximum throughput with this suboptimal
power allocation lower bounds the optimal capacity.

Given constant power is used in each sub-channel, the
optimal assignment of sub-channels is to assign each sub-
channel n to a group m∗ such that

m∗ = arg max
m

(
wm log(1 + βPhn

m,(1))
)

, (17)

where hn
m,(1) is the maximum squared channel gain among

group m users on channel n. The sub-channel will then be
assigned to a group m∗ user whose squared channel gain is
equal to hn

m,(1).
Let rK

cp = wm∗ log(1 + βPhn
m∗,(1)); this is a random

variable with distribution

FrK
cp

(x) =
M∏

m=1

Prob.(wm log(1 + βPhn
m,(1)) ≤ x)

=
M∏

m=1

Prob.

(
hn

m,(1) ≤
e

x
wm − 1
βP

)
. (18)

Combining (12) with (18), we obtain

FrK
cp

(x) =
M∏

m=1

FαmK
m

(
e

x
wm − 1
βP

)
. (19)

8This result is an extension of a result in [8], in which all the users have
identical channel distributions.

The maximum throughput with the sub-optimal power allo-
cation can then be written as

CK
wf =

∫ ∞

0

x dFrK
cp

(x).

The next two Lemmas give lower and upper bounds on
this quantity which converge asymptotically to w1 log(1 +
βPa1,K1)

Lemma 7: As K →∞, CK
wf is lower bounded by

w1 log(βPa1,K1 + 1)−Θ(
log(log(K))

log(K)
).

Lemma 8: As K →∞, CK
wf is upper-bounded by

w1 log(βPa1,K1 + 1) +
M∑

i=1

Θ
(

1
ai,Ki

)
.

Combining these we have:
Proposition 4: For all K, CK

wk is lower-bounded by CK
wf ,

where asymptotically,

lim
K→∞

(
Cwf − w1 log(βPa1,K1 + 1)

)
= 0.

C. Discussion

To summarize, we have upper-bounded CK
wf by C

K

wf ,
which converges to w1 log(βPam∗,K + 1). Likewise, the
lower bound CK

wf converges to w1 log(βPa1,K + 1). Fur-
thermore, in [5], it is shown that for any distribution with
the form in (6), the scaling constant aK satisfies

aK ³ 1
q

log(K).

Therefore, asymptotically C
K

wf−CK
wf approaches a constant.

This constant is determined by the channel statistics. For
example, suppose the channel distributions of all the groups
are Rayleigh, so that ai,K = σ2

i log(K) for all i. In this
case, the constant is w1 log(σ2

m∗/σ2
1). If the channel variance

is same for all the groups, i.e., σ2
m∗ = σ2

1 , the difference
between the upper and lower bounds converges to zero.

In Section III, it is shown that the capacity with one bit
feedback also converges to w1 log(1 + βPa1,K1). In other
words, asymptotically, the capacity with one bit feedback
converges to the lower bound on the capacity with full CSI
available at the transmitter. This means that asymptotically
the difference between the capacity with one bit feedback and
the capacity with full CSI approaches a finite constant, and in
certain cases this constant will be zero. Moreover, the lower
bound was derived by simply assuming a constant power
allocation and full CSI. Thus, asymptotically the one-bit
feedback scheme with constant power allocation is optimal.

V. NUMERICAL RESULTS

In this section we provide some numerical examples,
which illustrate the asymptotic results from Section IV. We
assume two groups of users in the system with weights
w1 = 2 and w2 = 1. For both groups, the channel gains are
modeled as Rayleigh with variances σ2

1 and σ2
2 . The number

of users in each class is equal, i.e., K1 = K2 = K/2.
Therefore, a1,K1 = σ2

1 log(K1), and a2,K2 = σ2
2 log(K2).



Also, we set the ratio β = 0.5, and the power per user,
P = 1(0dB).

In Figure 1, we let the channel variances for two groups
of users be σ2

1 = 10 and σ2
2 = 1. In this case, the lower and

upper bounds on CK
wf both converge to w1 log(1+βPa1,K1).

Therefore, the optimal capacity with full CSI also converges
to w1 log(βPa1,K1 + 1). In the figure, the upper and lower
bounds are shown as is the asymptotic limit and the actual
capacity with full CSI (numerically computed). In this case
all four curves are quite close as predicted.
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Fig. 1. Channel capacity vs. total number of users K

In Figure 2, the channel variance is σ2
1 = 1 and σ2

2 = 10.
As previously discussed, in this case there is a gap between
the upper and lower bounds on CK

wf ; here the difference be-
tween the bounds converges to w1 log(10). Again, the bounds
and the actual capacity are plotted as are the asymptotic
limits. In this case, we observe that the optimal capacity
is very close to the lower bound.
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VI. CONCLUSIONS

In this paper, we analyzed asymptotic growth of the
weighted sum capacity for a downlink OFDMA system,
where each sub-channel has a fading density of the form
αxpe−qxv

, where α > 0, q > 0, v ≥ 1 and p are constants.
Both a one-bit feedback scheme and a model with full CSI
were studied. In the one-bit feedback scheme, each user
feeds back one bit per sub-channel indicating whether the
channel gain is above the threshold or not. For this scheme
we characterized the optimal thresholds and the growth of
the sum capacity using results from extreme order statistics.
For the case of full CSI, we gave upper and lower bounds on
the weighted sum capacity which asymptotically differ by a
constant. Also, the lower bound was shown to asymptotically
converges to the capacity of the one bit feedback scheme.
Therefore, the gap between the capacity with full CSI and
one bit feedback bounded by a constant. Numerical results
show that the optimal capacity actually is close to the lower
bound; suggesting that performance does not suffer much by
restricting CSI feedback to only one bit per sub-channel.
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