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Probability Review

As discussed in Lecture 1, probability theory is useful for modeling a variety of sources
of uncertainty in a communication network. Examples include when a packet arrives at a
point in the network, whether a packet is received correctly, the size of a packet, and the
destination for a packet. These notes will review some basic facts from probability theory
that will be useful during the course.

1 Basic Probability Theory

A probabilistic model can be thought of as describing an experiment with several possible
outcomes. Formally, this consists of a sample space Ω, which is the set of all possible
outcomes, and a probability law that assigns a probability P (A) to each event, where an
event is a subset of the sample space.1 P (·) can be viewed as a real-valued function whose
range is the set of all possible events.

A probability law must satisfy the following three properties:

• Non-negativity : P (A) ≥ 0 for every event A.

• Additivity : If Ai’s are all disjoint events, P (A1 ∪A2 ∪ ...) =
∑

P (Ai).

• Normalization: The probability of the union of all possible events is 1, i.e., P (Ω) = 1.

For example, a probabilistic model might represent the length of a packet sent over a
network. In this case, the sample space will be the set of possible packet lengths, say
{l1, l2, . . . , lm} and the P (li) would indicate the likelihood a packet has the length li.

1.1 Conditional Probability

The conditional probability of an event A occurring, given that an event B has occurred,
is denoted by P (A|B); this is computed as

P (A|B) =
P (A ∩B)

P (B)
.

Under the assumption that P (B) > 0 (since we know that B has occurred).
1This definition is adequate for discrete sample spaces. For infinite sample spaces, more care is required

to be mathematically precise. In particular, a probability P (A) can only be assigned to so-called measurable
events A; such issues need not concern us in this course.
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1.1.1 Total Probability Theorem

Let A0, ..., An be disjoint events that form a partition of the sample space (i.e. each possible
outcome is included in one and only one of the events A1, ..., An) and assume that P (Ai) > 0
for all i = 1, .., n. For any event B, we have

P (B) = P (A1 ∩B) + ... + P (An ∩B)
= P (A1)P (B|A1) + ... + P (An)P (B|An),

where the first line follows from additivity and the second line is the definition of conditional
probability. This is sometimes refereed to as the total probability theorem; often one is
interested in calculating one of the conditional probabilities on the right-hand side, and can
use this relation to accomplish this.

1.1.2 Independence

Events A and B are defined to be independent events if and only if,

P (A ∩B) = P (A)P (B).

Using the definition of conditional probability, it can be seen that this is equivalent to:

P (A|B) = P (A).

Otherwise, the two events are said to be dependent. Events being independent means that
one occurring does not effect the probability of the other occurring. This can be generalized
for any set of n events, i.e. the set of events A1, . . . , An are independent if and only if,

P

(
n⋂

i=1

Ai

)
=

n∏
i=1

P (Ai).

2 Random Variables

For a given probability model, a random variable is a function X : Ω → R, where this
notation means that the domain of X is the sample space Ω and its range is the real-line.2

The probability that a random variable X takes values in a subset A of R is given by

P (X ∈ A) = P (ω ∈ Ω : X(ω) ∈ A),

i.e., the probability of those points in the sample space that map into A. Often, we omit
references to the underlying sample space and simply work with the random variable. A
random variable is said to be discrete if it takes on a finite or countable number of values.
A continuous random variable can take an uncountable number of values, e.g., any
value on the real line, or possibly a sub-interval of the real line.

2In most engineering texts, random variables are defined to be real-valued, as we have done here. In
advanced probability courses often any set is allowed as the range of a random variable. For our purposes,
this level of generality is not needed.
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2.1 Discrete Random Variables

For a discrete random variable X, the probability mass function (PMF) gives the
probability that X will take on a particular value in its range. We denote this by pX , i.e.

pX(x) = P ({X = x}),

when it is clear from the context, the sub-script X may be omitted. Since P is a probability
law, it follows that pX(x) is non-negative and sums to one, i.e.,∑

i

pX(xi) = 1,

where {xi} are the values which X takes on (i.e., the set of values so that X(ω) = xi for
some ω ∈ Ω).

2.1.1 Expectation

The expected value of a discrete random variable X is defined by

E[X] =
∑

i

xipX(xi).

Let g(X) be a real-valued function of X, the expected value of g(X) is calculated by

E[g(X)] =
∑

i

g(xi)pX(xi).

This is also called the mean or average of X.
When g(X) = (X −E(X))2, the expected value of g(X) is called the variance of X and

denoted by σ2
X , i.e.

σ2
X = E(X − E(X))2.

Next we discuss a few common discrete random variables:

2.1.2 Bernoulli Random variable with parameter p

X is a Bernoulli random variable with parameter p if it can take on values 0 and 1 with

pX(1) = p

pX(0) = 1− p

Bernoulli random variables provide a simple model for an experiment that can either
result in a success (1) or a failure (0).
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2.1.3 Binomial Random Variable with parameters p and n

This is the number S of successes out of n independent Bernoulli random variables
The PMF is given by

pS(k) =
(

n
k

)
pk(1− p)n−k,

for k = 0, 1, .., n. The expected number of successes is given by

E[S] = np.

For example, if packets arrive correctly at a node in a network with probability p (in-
dependently); then the number of correct arrivals out of n is a Binomial random variable.

2.1.4 Geometric Random Variable with parameter p

Given a sequence of independent Bernoulli random variables, let T be the number observed
up to and including the first success. Then T will have a geometric distribution; its PMF
is given by

pT (t) = (1− p)t−1p

for t = 1, 2, ...; the expectation is

E[T ] =
1
p
.

2.2 Poisson random variable with parameter µ

A discrete random variable, N is said to have Poisson distribution with parameter µ if

pN (n) =
(µ)n

n!
e−µ, n = 0, 1, 2, . . .

We verify that this is a valid PMF, i.e. that

∞∑
n=0

pN (n) = 1.

This can be shown as follows:
∞∑

n=0

pN (n) =
∞∑

n=0

(µ)n

n!
e−µ

= e−µ
∞∑

n=0

(µ)n

n!

= e−µeµ

= 1

Here we have used that ex = 1 + x + x2

2! + x3

3! + ....
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The expected value of a Poisson random variable is

E[N ] =
∞∑

n=0

n
(µ)n

n!
e−µ

= (µ)e−µ
∞∑

n=1

(µ)n−1

(n− 1)!

= (µ)e−µeµ

= µ

As we will see, Poisson random variables are often used for modeling traffic arrivals in
a network. For example in the telephone network, the number of calls that arrive in an
interval of T seconds is well modeled by a Poisson random variable with parameter λT ,
where λ is the call arrival rate.

2.3 Continuous Random Variables

For a continuous random variable X, a probability density function (PDF) fX is a
non-negative function3 such that for all a < b,

P (a < X ≤ b) =
∫ b

a
fX(x)dx.

and ∫ +∞

−∞
fX(x)dx = P (−∞ < X < +∞) = 1.

For a continuous random variable X (with a PDF) and for any value a,

P (X = a) =
∫ a

a
f(x)dx = 0.

This implies that

P (a < X < b) = P (a < X ≤ b) = P (a ≤ X < b) = P (a ≤ X ≤ b).

2.3.1 Expectation

The expectation of a continuous random variable is defined as

E[X] =
∫ +∞

−∞
xfX(x)dx.

Again, for a real-valued function g(X) we have

E[g(X)] =
∫ +∞

−∞
g(x)fX(x)dx.

3Not all continuous random variables have a probability density, but this will be the case for those
considered here.
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2.3.2 Exponential Random Variable

As an example of a continuous random variable, we consider an exponential random variable.
These random variables are also used for modeling traffic in a network, for example to model
the time between packet arrivals. An exponential random variable has a PDF of the form

fX(x) =
{

λe−λx, x ≥ 0
0, otherwise

where λ > 0. Verify that for an exponential random variable,

E[X] =
1
λ

.

2.4 Cumulative Distribution Functions

The cumulative distribution function (CDF) of a random variable X is the probability
P (X ≤ x), denoted by FX(x).

If X is a discrete random variable, then we get

FX(x) = P (X ≤ x) =
∑
k≤x

pX(k)

And similarly if X is a continuous random variable we get

FX(x) = P (X ≤ x) =
∫ x

−∞
fX(t)dt

In this case we can therefore define fX in terms of FX :

fX(x) =
dFX(x)

dx
,

i.e., the PDF of a continuous random variable is the derivative of its CDF.
Example: The CDF of an exponential random variable is

FX(x) =
∫ x

−∞
fX(t)dt

=
∫ x

0
λe−λt dt

= 1− e−λx, x ≥ 0.

2.5 Conditional PDF

The conditional PDF fX|A of a continuous random variable X given an event A with
P (A) > 0, is defined as

fX|A(x) =

{
fX(x)
P (A) if x ∈ A,

0 otherwise.
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So that,

P (X ∈ B|A) =
∫

B
fX|A(x)dx.

An analogous definition holds for discrete random variables. The conditional expectation
is defined by

E[X|A] =
∫ +∞

−∞
xfX|A(x)dx.

In this case, the total probability theorem can be restated as

fX(x) =
n∑

i=1

P (Ai)fX|Ai
(x),

where {A1, . . . , An} are disjoint events that cover the sample space. It follows that,

E[X] =
n∑

i=1

P (Ai)E[X|Ai],

this is often a useful way to calculate an expectation.
Example: Let X be an exponential random variable, and A the event that X > t. Then

P (A) = e−λt and

fX|A(x) =

{
λe−λ(x−t) x ≥ t

0 otherwise

From this it follows that

P{X > r + t | X > t} = P{X > r}, r, t ≥ 0.

This is an important property of an exponential random variable called the memoryless
property.

3 Stochastic Processes

A stochastic process is a sequence of random variables indexed by time. Stochastic
processes are used, for example to model arrivals of packets in a network. In this case
{A(t), t ≥ 0} could denote the total number of packets to arrive at a node up to time t. For
each time t, the quantity A(t) is a random variable. Stochastic processes can also be defined
in discrete time. For example, let X1, X2, . . . be a sequence of independent and identically
distributed (i.i.d.) Bernoulli random variables. This is a discrete-time stochastic process
called a Bernoulli process.

A given outcome of each random variable comprising a stochastic process is referred to
as a realization or a sample path of the process.
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4 Law of large numbers

Let X1, X2, . . . be a sequence of independent, identically distributed (i.i.d.) random vari-
ables, each with expected value X̄. The strong law of large numbers states that with
probability one,

lim
N→∞

1
N

N∑
i=1

Xi = X̄.

Basically what this says is that if we observe a long enough sequence of outcomes of these
random variables and take the arithmetic average of these outcomes, this will converge to
the expected value of each outcome.

When each Xi is a Bernoulli random variable, the law of large numbers can be interpreted
as stating that the long-run fraction of successes will be equal to EXi.

We can also view the sequence X1, X2, . . . as a discrete time stochastic process (note that
this is a very special process in that each random variable is i.i.d., which in general is not
required for a stochastic process). In this case, we can view the quantity limN→∞

1
N

∑N
i=1 Xi

as the time-average of a given realization of the stochastic process. On the other hand, the
quantity X̄ is a statistical average, i.e. it is calculated by averaging a particular value
of X over all possible realizations. The strong law of large numbers states that we can
replace the time average with the statistical average for a process made up of i.i.d. random
variables. This is useful often useful because for a given model statistical averages are easier
to calculate, but in practice time-averages are what are important (i.e. you only see one
realization). In many cases where stochastic processes are not made up of i.i.d. random
variables, we can still replace time-averages with statistical averages (such processes are
referred to as ergodic). In most cases, the processes we deal with here will be ergodic.

Appendix: Useful Results

The following are some results are useful for manipulating many of the equations that may
arise when dealing with probabilistic models.

4.1 Geometric Series

For x 6= 1,
n∑

k=0

xk =
xn+1 − 1

x− 1
,

and when |x| < 1,
∞∑

k=0

xk =
1

1− x
.

Differentiating both sides of the previous equation yields another useful expression:

∞∑
k=0

kxk =
x

(1− x)2
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4.2 Exponentials

The Taylor series expansion of ex is:

ex = 1 + x +
x2

2!
+ ... =

∞∑
i=0

xi

i!
,

and
lim

n→∞

(
1 +

x

n

)n
= ex.
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