Poisson processes, Markov chains and
M/M/1 queues

Advanced Communication Networks

Lecture 5
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M/M/1 Analysis

Poisson Arrivals, Exponential service times, 1 server (FIFO)

@ Look at discrete times §
@ With high prob., only one arrival or departure
@ Discrete-time Markov chain
1-A8-pd 1-A6-d 1-A5-pd
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Analysis Contd..

Steady state prob.s {pn}

Balance equations

Pnpd = Pn—1Ad

A A\ n
=Pn=-—"Pn-1=1|—] Po=p Po
I I

d ph=1=p=1-p
n

[ Po=(1—p)"]
Stability of system: \ <




Review

[e] lele)

Computing system averages

Comment: p, # ()
As § \, 0 same answers for cont. time model

Average number in system

N=> nph=> np"(1-p)
n=0 n=0

Asp—1,N, T — o0




Review
[e]e] o]

[ 0.2 0.4 0.6 0.8 1

p

@ Single pole response - typical of queuing systems
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Compare to D/D/1 queue

one arrival every + sec, 1 departure every % sec

D/D/1

Nq

o NQ =0 p < 1.
@ M/M/1: queue size, delay blows up for p near 1

Intuition: Variability causes performance loss
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Changing transmission rate

M/M/1 queue: Arrival rate and Service time is doubled
What happens to delay? N?

A— 2\, u—2u = pstays same

N=_" = N stays same

1-p

1
= T reduces by >
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Example 2
Statistical Multiplexing ‘ TDM
S MR S B e s
M independent Poisson streams, rate x
1 m
Tsy=—— Tmmom =
SM B TDM =

Delay reduced by factor of m = “Statistical Multiplexing gain”

Cons: Difficult to isolate Bad flows ; Provide guarantees
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Distribution of System Variables

What about distribution for N?
For eg: Variance

— 2 p \?
Var(N)—§p (1—p)-n>— (1—p>
_
(1-p)

Likewise, Distn. for T in Prob. 3.1 (M/M/1 queues)




Examples

PASTA property

Interested in state of system just before packet arrives

Eg: to calculate Blocking probability
Steady-state prob. arriving packet sees in the system

Jim Pr(N(t) = n|arrival @t™*) ?
—00

Is'nt this same as p,?
Not necessary

Eg: D/D/1 system, A <
Above prob. is zero, but no steady-state exists
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PASTA property Contd..

For Poisson traffic,
The two quantities are equal = “PASTA”

Proof

an = P{N(t) = n|arrival @t}
= P{N(t) = n|A(t,t + 6)}
_ PIN()=nAtt+) _ P(A(tt+0)IN(t) =n)P(N(t) = n)

P(A(t,1+9)) P (A(t,t +0))

But A(t,t + ) ind. of N(t) =n = an(t) = P(N(t) =n)

Holds for broad class of queuing systems w/ Poisson arrivals, ind
service distribution (Memoryless property)
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M/M/1 - Last slide

What is the prob arriving customer finds system empty?

Po=1-p
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Other Markovian systems: M/M/m

A8 A8 A5 A8
ud 2ud 3u8

mud

m servers in system

Given 2 packets in service,

Prob of departure = Prob(1st packet departs) + Prob(2nd packet
departs)

= pé + po

Service time of staten=mpg n>m

Ex: Circuit switched networks, blocked calls wait
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M/M/m analysis

Balance equations

Pn—1(A0) = pn(nd) Nn=121,2,--- 'm
Pn-1(A0) = pn(mud) n>m
:>pn—()\ A )\>p0 n<m
np(n—=1)p  p
AN\ T
(i) () P
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M/M/m analysis Contd..

mmpn
m!

n>m,

If stable: 3" opn =1
Stability condition: p = 2 < 1

mpy

m-—1
(mp)* _ (mp)™
Po= (Z n[!) * m!(lp— p)>

n=0




M/M/m

Erlang C formula

What is the prob arriving packet has to wait for service?
Same as prob that servers are busy (Follows from PASTA property)

Pq = Pr(Queuing) = Pr(N > m)

= (mp)™
= ngr:npn = pom!(lp— 7

@ Widely used in telephony
@ Model for Blocked delay calls

@ Formula also hold for M/G/1 systems (Invariance property)
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