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Arrival rate
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Little’s law applications

Single server Queue
@ Entire system: N = AT
@ Just Queue: Ng = AW
@ Just server: p = AX

Notation
@ N, Ng = number of customers
@ W, T = average delay
@ )\ = arrival rate
@ X = service time

e ;= utility
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Single server Queue contd.

System equations

@ Total number is system: N = Ng + p
@ Total delay: T =W + X
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Single server Queue contd.

System equations

@ Total number is system: N = Ng + p

@ Total delay: T =W + X

@ N =A\T

@ p= XX

@ Fix \, X

@ 5 equations, 5 unknowns (N, No, W . T, p)
@ Not independent, Need more info !




Poisson

Stochastic Modeling: Arrival times

Easy yet interesting model!

@ {A(t);t > 0} is the arrival process
@ A(t) is Number of arrivals in [0, t]
@ Basic Model for A(t): Poisson Process

@ also called Poisson counting process
Non-decreasing, integer valued sample paths
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Poisson process

@ A(t)is Poisson process with rate A
@t>sandT=t—s
@ A(t) — A(s): Number of arrivals in (s, t]
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Poisson process

@ A(t)is Poisson process with rate A
@t>sandT=t—s
@ A(t) — A(s): Number of arrivals in (s, t]

Definition 1
@ A(t) — A(s) is a Poisson R.V with parameter A7 (P1)

Pr(A(t) —A(s) =n)=e &) n—-0172...

n!

@ No. of arrivals in any 2 disjoint intervals are independent (P2)

Pr(A(t)—A(s) = n,A(t") —A(s’) =n) =
Pr(A(t) — A(s) = n) - Pr(A(t) — A(s’) = n’)
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Sanity Check

@ A(t) is Poisson
@ t; <ty < tz: 3time instants
@ B(t — tj) denotes A(tj) — A(tj)
Pr(B(ts —t;) = 1) = e Mt \(t; —t;) (P1)
Alternately,

_ B(t3—tp)=1 & B(t,—t;)=0 — E;
Bl —t)=1= { B(ts—t,)=0 & B(t,—t)=1 — E»
E; and E; disjoint

Pr(B(t3 — tl) = 1) = PI’(E]_) + Pr(Ez)
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Sanity check Contd..

Pr(El) = Pr(B(t3 — tz) = 1, B(tz — tl) = O)
— Pr(B(ts — t) = 1)Pr(B(tz — t;) =
— e—>\(t3—t2))\(t3 _ tz)e—)\(tz—tl)

0) ind. events, (P2)

Pr(E;) = e Mls—llg=At=t) \(t, — ty)

Pr(Ey) + Pr(E;) = e M5 WA\(ts — ty)
(P1),(P2) consistent for any n
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Poisson: Alternate Viewpoint

Not a counting process?

@ t, = time of nth arrival
A(ta) =n, A(t) <nforallt <ty

@ 7 = th41 — ty be the nth interarrival time
@ A(t) determined by sequence of R.Vs 7,75, - - -

/A )

Lt 3ty time
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Poisson Processes

Definition
Definition 2 A(t) is a Poisson process with rate \ if 71,7, --- are
an i.i.d sequence of exponential R.Vs with mean %
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Exponential R.Vs

T is exponential with mean #
@ CDF:Pr(my <s)=1-e*,5s>0
0 ,s<0

@ Pr(my >s)=e7"
@ PDF: f, (s) = Ae™*s

@ Var(m) = 55

Defn 1 and Defn 2 are equivalent
Intuition: Consider zero arrivals in an interval [ty, tn + S)

Pr(A(th +s) — A(tn) = 0) = exp(—As) (Poisson p.m.f)
Pr(m > s) = exp(—As) (Exponential r.v)




Exponential

Memoryless Property

For an exponential R.V m,,

Pr(m >t+s|m>t)=Pr(m>5s)

Pr(my >t+sand m, >t
Pr(mn >t+8|m>t)= (n >+ ™ > 1)

Pr(m > t)
_ Pr(m >t+s) e At+s)
~ Pr(m>t) e

— e—>\s

Exponentials only continuous R.V with this property



Exponential

Example: Bus Arrivals

% Pr(Bus at 11.10| No Bus in 10.00-11.00)
= 10)\exp(—10))

10.00 11.00 11.10

T

10.00 11.00 11.10

Pr(Bus at 11.10) = 10Aexp(—10))
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Other Useful properties

Ap(t), Ax(t),--- , Ac(t) are independent Poisson processes with
rates A\, Ao, - -+, Ak

Atot (t) counts total number of arrivals from all processes
Ator () = Ax(t) + Az(t) + - + Ax(t)

Eg: In network, several input links with Poisson streams combine into
one output

1. Adding Independent Poisson processes

Aot (t) is also Poisson with rate A\; + Ay + -+ + A\«




2. Splitting

Randomly split process

/ Poisson, A p

A(t), Poisson process, rate A Q
\ Poisson, A(1p)

Splitting must be independent of arrival times




A1(t), Ax(t),--- ,An(t) are independent counting processes
ith process has i.i.d interarrival times with mean i and
variance o?.

N 11
1. Sumof means: > i, ;- =3
2. Sum of variances is finite: 1\, 0? < M (constant)

3. Limiting Property

AsSN —
N

> " Ai(t) — Poisson

i=1
A combination of large number of independent arrivals streams
can be modeled as Poisson




Properties

Suitability to Network Traffic

@ Lots of independent streams in internet

@ “Limiting property” - Poisson models reasonable model for
network traffic

@ Caveat: Sum of variances need to be finite
@ Finite variance might not be true



Service Statistics

@ Service time of a packet is Packet size/Link Rate = &

C
@ Assume variable length packets
Service time is exponential with parameter p

@ PriXp<x)=1—e"#s
E(L)) & o
E(Xn) = £ = =52 = X
@ Assume interarrival times and service times are
independent

FCFS single server system, infinite buffer with Poisson arrivals
and exponential service times
Wait till next class to learn more!!
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