Poisson processes, Markov chains and M/M/1 queues

Naveen Arulselvan

Advanced Communication Networks

Lecture 3

Little's law

Little's law applications

Single server Queue

- Entire system: $N = \lambda T$
- Just Queue: $N_O = \lambda W$
- Just server: $\rho = \lambda \bar{X}$

Notation

- N, N_Q = number of customers
- W, T = average delay
- λ = arrival rate
- \bar{X} = service time

Single server Queue contd.

System equations

- Total number is system: $N = N_O + \rho$
- Total delay: $T = W + \bar{X}$
- $N = \lambda T$
- $N_0 = \lambda W$
- $\rho = \lambda \bar{X}$

Single server Queue contd.

System equations

- Total number is system: $N = N_O + \rho$
- Total delay: $T = W + \bar{X}$
- $N = \lambda T$
- $N_Q = \lambda W$
- \bullet $\rho = \lambda \bar{X}$
- Fix λ , \bar{X}
- 5 equations, 5 unknowns (N, N_Q, W, T, ρ)
- Not independent, Need more info!

Stochastic Modeling: Arrival times

Easy yet interesting model!

- $\{A(t); t \ge 0\}$ is the arrival process
- A(t) is Number of arrivals in [0, t]
- Basic Model for A(t): Poisson Process
- also called Poisson counting process
 Non-decreasing, integer valued sample paths

Poisson process

- A(t) is Poisson process with rate λ
- t > s and $\tau = t s$
- A(t) A(s): Number of arrivals in (s, t]

Poisson process

Review

- A(t) is Poisson process with rate λ
- t > s and $\tau = t s$
- A(t) A(s): Number of arrivals in (s, t]

Definition

Definition 1

• A(t) - A(s) is a Poisson R.V with parameter $\lambda \tau$ (P1)

$$Pr(A(t) - A(s) = n) = e^{-\lambda \tau} \frac{(\lambda \tau)^n}{n!}$$
 $n = 0, 1, 2, \cdots$

No. of arrivals in any 2 disjoint intervals are independent (P2)

$$Pr(A(t)-A(s) = n, A(t') - A(s') = n') =$$

 $Pr(A(t) - A(s) = n) \cdot Pr(A(t') - A(s') = n')$

Sanity Check

- A(t) is Poisson
- $t_1 < t_2 < t_3$: 3 time instants
- $B(t_i t_j)$ denotes $A(t_i) A(t_j)$

$$Pr(B(t_3 - t_1) = 1) = e^{-\lambda(t_3 - t_1)}\lambda(t_3 - t_1)$$
 (P1)

Alternately,

$$B(t_3 - t_1) = 1 \Rightarrow \begin{cases} B(t_3 - t_2) = 1 & B(t_2 - t_1) = 0 \to \mathbf{E_1} \\ B(t_3 - t_2) = 0 & B(t_2 - t_1) = 1 \to \mathbf{E_2} \end{cases}$$

E₁ and E₂ disjoint

$$Pr(B(t_3 - t_1) = 1) = Pr(E_1) + Pr(E_2)$$

Sanity check Contd..

$$\begin{aligned} \Pr(\mathbf{E_1}) &= \Pr(B(t_3 - t_2) = 1, B(t_2 - t_1) = 0) \\ &= \Pr(B(t_3 - t_2) = 1) \Pr(B(t_2 - t_1) = 0) \quad \textit{ind. events, (P2)} \\ &= e^{-\lambda(t_3 - t_2)} \lambda(t_3 - t_2) e^{-\lambda(t_2 - t_1)} \end{aligned}$$

$$\Pr(\mathbf{E_2}) = \mathrm{e}^{-\lambda(t_3-t_2)} \mathrm{e}^{-\lambda(t_2-t_1)} \lambda(t_2-t_1)$$

$$\Pr(\mathbf{E_1}) + \Pr(\mathbf{E_2}) = \mathrm{e}^{-\lambda(t_3-t_1)} \lambda(t_3-t_1)$$
 (*P*1), (*P*2) consistent for any *n*

↓□▶ ←□▶ ←□▶ ←□▶ →□ ♥ ♀○

Poisson: Alternate Viewpoint

Not a counting process?

- t_n = time of nth arrival $A(t_n) = n$, A(t) < n for all $t < t_n$
- $\tau_n = t_{n+1} t_n$ be the *n*th interarrival time
- A(t) determined by sequence of R.Vs τ_1, τ_2, \cdots

Poisson Processes

Definition

Definition 2 A(t) is a Poisson process with rate λ if τ_1, τ_2, \cdots are an i.i.d sequence of exponential R.Vs with mean $\frac{1}{\lambda}$

Exponential R.Vs

 τ_n is exponential with mean $\frac{1}{\lambda}$

• CDF:
$$Pr(\tau_n \le s) = 1 - e^{-\lambda s}, \ s \ge 0$$

0 , $s < 0$

- $Pr(\tau_n > s) = e^{-\lambda s}$
- PDF: $f_{\tau_n}(s) = \lambda e^{-\lambda s}$
- $Var(\tau_n) = \frac{1}{\lambda^2}$

Claim

Defn 1 and Defn 2 are equivalent

Intuition: Consider zero arrivals in an interval $[t_n, t_n + s)$

$$Pr(A(t_n + s) - A(t_n) = 0) = exp(-\lambda s)$$
 (Poisson p.m.f)

$$Pr(\tau_n > s) = exp(-\lambda s)$$
 (Exponential r.v)

Memoryless Property

For an exponential R.V τ_n ,

$$\Pr(\tau_n > t + s | \tau_n > t) = \Pr(\tau_n > s)$$

$$\Pr(\tau_n > t + s | \tau_n > t) = \frac{\Pr(\tau_n > t + s \text{ and } \tau_n > t)}{\Pr(\tau_n > t)}$$
$$= \frac{\Pr(\tau_n > t + s)}{\Pr(\tau_n > t)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda t}}$$
$$= e^{-\lambda s}$$

Exponentials only continuous R.V with this property

Example: Bus Arrivals

Pr(Bus at 11.10| No Bus in 10.00-11.00)

$$\times \times \times \times = 10 \lambda exp(-10\lambda)$$

Other Useful properties

 $A_1(t), A_2(t), \dots, A_k(t)$ are independent Poisson processes with rates $\lambda_1, \lambda_2, \dots, \lambda_k$.

 $A_{TOT}(t)$ counts total number of arrivals from all processes

$$A_{TOT}(t) = A_1(t) + A_2(t) + \cdots + A_k(t)$$

Eg: In network, several input links with Poisson streams combine into one output

1. Adding Independent Poisson processes

 $A_{TOT}(t)$ is also Poisson with rate $\lambda_1 + \lambda_2 + \cdots + \lambda_k$

Splitting must be independent of arrival times

 $A_1(t), A_2(t), \cdots, A_N(t)$ are independent *counting* processes *i*th process has i.i.d interarrival times with mean $\frac{1}{\mu_i}$ and variance σ_i^2 .

- 1. Sum of means: $\sum_{i=1}^{N} \frac{1}{\mu_i} = \frac{1}{\lambda}$
- 2. Sum of variances is finite: $\sum_{i=1}^{N} \sigma_i^2 < M$ (constant)

3. Limiting Property

As $N \to \infty$

$$\sum_{i=1}^{N} A_i(t) \longrightarrow$$
 Poisson

A combination of large number of independent arrivals streams can be modeled as Poisson

Suitability to Network Traffic

- Lots of independent streams in internet
- "Limiting property" Poisson models reasonable model for network traffic
- Caveat: Sum of variances need to be finite
- Finite variance might not be true

Service Statistics

- Service time of a packet is Packet size/Link Rate = $\frac{L}{C}$
- $\hbox{\bf Assume variable length packets} \\ \hbox{\bf Service time is exponential with parameter } \mu$
- $\operatorname{Pr}(X_n \leq x) = 1 e^{-\mu s}$ $\mathbb{E}(X_n) = \frac{1}{\mu} = \frac{\mathbb{E}(L_n)}{C} \stackrel{\triangle}{=} \bar{X}$
- Assume interarrival times and service times are independent

M/M/1 Queue

FCFS single server system, infinite buffer with Poisson arrivals and exponential service times

Wait till next class to learn more!!