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Supplemental Notes on Conservation Laws and Cµ-rule

In Problem 3.40, you are asked to show that in a n-class, M/G/1 non-preemptive system,
the sum

∑n
k=1 ρkWk is independent of the priority order of classes and satisfies

n∑
k=1

ρkWk =
Rρ

1− ρ
, (1)

where ρ = ρ1 + · · ·+ ρn and R is the mean residual-time. This is known as a conservation
law. Since R, ρ and ρk do not depend on the priority ordering, this means that under
any non-preemptive priority policy, the feasible delays must satisfy this linear equality. In
particular is says it tells us that if we decrease the delay of a certain class, then some other
class must increase its delay by an appropriate amount so that (1) still holds.

This type of conservation law holds in a more general setting, which we describe next.
Consider a multi-class M/G/1 system as in Sect. 3.5.3 of Bertsekas and Gallager. A general
non-preemptive scheduling policy for this system is a rule π that specifies which class to
serve next whenever the server finishes a job. A priority policy is a special type of scheduling
policy where the rule is to always serve a packet from the highest priority class that has
a packet available. In general, this policy could depend on other information, such as the
number of waiting packets for each class, the time of day, etc. A policy is said to be non-
anticipative if the scheduling decisions only depend on the past history and current state of
the system (i.e. they can not anticipate the future). A policy is said to be work conserving
if the server is never idle when there is a job waiting in the system. We will call a scheduling
policy admissible if it is both non-anticipative and work conserving.

It can be shown that any non-preemptive admissible scheduling policy will satisfy the
conservation law in (1). The basic idea here is that under any work conserving policy, the
unfinished work in the system (as defined in Problem 3.40) must decrease at the same rate;
this observation can be used to derive the conservation law.

In addition, to (1), the waiting time of each class k, under any non-preemptive admissible
scheduling policy must satisfy

ρkWk ≥
ρkR

1− ρk
, (2)

or equivalently,

Wk ≥
R

1− ρk
. (3)

Note that the right-hand side of (3) is the average queueing delay in a non-preemptive
priority system, where class k is given the highest priority. More generally, given any subset
S ⊂ {1, 2, . . . , n}, the average queueing delays within this subset will satisfy∑

k∈S
ρkWk ≥

ρSR

1− ρS
, (4)
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where ρS =
∑

k∈S ρk. The right-hand side of (4) is the value of
∑

k∈S ρkWk for any policy
which gives the classes in S non-preemptive priority over the classes not in S. Given a
system with n classes, there will be 2n − 2 non-empty subsets of classes not including the
whole set. For each of these subsets, there will be a corresponding inequality as in (4) which
must be satisfied. For example in a system with n = 3 classes, in addition to the whole
set, there will be the following 6 subsets : {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}. Inequality (4)
corresponding to the subset {1, 3} is

ρ1W1 + ρ3W3 ≥
(ρ1 + ρ3)R
1− ρ1 − ρ3

.

These 2n − 2 inequalities in addition to the equality in (1) determine the set of feasi-
ble waiting times. In particular they constrain these delays to lie within a n − 1 dimen-
sional polyhedron (in Rn.) Let P denote this polyhedron, i.e. P is the set of waiting time
(W1, . . . ,Wn) which satisfy these inequalities and equality constraints. This polyhedron will
have n! corner points; each corner point can be shown to correspond to the performance
(vector of average waiting times) achieved by a priority policy corresponding to one of the
n! orderings of the users.

There has been a long history of research on various optimal scheduling problems. In
these problems, one is typically trying to find a scheduling policy which optimizes some
long-term average cost. One example of this is a policy which minimizes a linear holding
cost, i.e.,

n∑
i=1

ciNQi

where NQi is the average number of packets in the queue of class i and ci > 0 is a holding
cost for each class i packet. By Little’s theorem, this is equivalent to a “delay” cost given
by

n∑
i=1

ciλiWi. (5)

From our above discussion, it follows that if we are minimizing this over all admissible,
non-preemptive policies, then we can simply view this problem as optimizing (5) over all
(W1, . . . ,Wk) ∈ P. This is an example of a linear programming problem - i.e., a problem with
a linear objective and linear constraints. It follows from a basic result in linear programming
that a corner point of P must be an optimal solution, i.e. the optimal policy must be a
priority policy. Furthermore for this problem, it can be shown (cf. Problem 3.40) that
the optimal priority ordering is given by sorting the users in decreasing order of ciµi. The
resulting policy is known as a cµ-rule.

1 Further notes

1. Often, the above inequalities and equalities are stated in terms of the unfinished work Vi =
ρiWi. In this case, (4) can be written as∑

k∈S

Vk ≤ b(S),
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where b(S) is a set-function which determines the right-hand side of this constraint. In this
case, the resulting polyhedron of feasible V1, . . . , Vn has a special structure, and is referred to
as a polymatroid. The polymatroid structure simplifies solving various optimization problems
over this set.

2. In addition to the M/G/1 model with non-preemptive policies, the idea of conservation laws
can be generalized to other systems (See for example Chap. 11 in H. Chen and D.Yao, “Fun-
damentals of Queueing Networks: Performance, Asymptotics, and Optimization,” Springer,
2001.) In these cases, one needs to consider a different performance measure than the unfin-
ished work, Vk.
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