## Probability Review

As discussed in Lecture 1, probability theory is useful for modeling a variety of sources of uncertainty in a communication network. Examples include whether a packet is received correctly, the size of a packet, and the destination for a packet. These notes will review some basic facts from probability theory that will be useful during the course.

## 1 Basic Probability Theory

A probabilistic model can be thought of as describing an experiment with several possible outcomes. Formally, this consists of a **sample space**  $\Omega$ , which is the set of all possible outcomes, and a **probability law** that assigns a probability P(A) to each event A (a set of possible outcomes). The

The following properties must hold:

- Non-negativity:  $P(A) \ge 0$  for every event A.
- Additivity: If  $A_i$ 's are all disjoint events,  $P(A_1 \cup A_2 \cup ...) = \sum P(A_i)$ .
- Normalization: The probability of the union of all possible events is 1, i.e.,  $P(\Omega) = 1$ .

For example, a probabilistic model might represent the length of a packet sent over a network. In this case, the sample space will be the set of possible packet lengths, say  $\{l_1, l_2, \ldots, l_m\}$  and the  $P(l_i)$  would indicate the likelihood a packet has the length  $l_i$ .

### 1.1 Conditional Probability

The conditional probability of an event A occurring, given that an event B has occurred, is denoted by P(A|B); this is computed as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Under the assumption of course that P(B) > 0 (since we know that B has occurred.)

<sup>&</sup>lt;sup>1</sup>This definition is adequate for discrete sample spaces. For infinite sample spaces, slightly more care is required to be mathematically precise; such concerns are beyond the scope of this course.

### 1.1.1 Total Probability Theorem

Let  $A_0, ..., A_n$  be disjoint events that form a partition of the sample space (each possible outcome is included in one and only one of the events  $A_1, ..., A_n$ ) and assume that  $P(A_i) > 0$  for all i = 1, ..., n, then for any event B, we have

$$P(B) = P(A_1 \cap B) + \dots + P(A_n \cap B)$$
  
=  $P(A_1)P(B|A_1) + \dots + P(A_n)P(B|A_n)$ 

### 1.1.2 Independence

Events A and B are defined to be independent events if and only if,

$$P(A \cap B) = P(A)P(B)$$
$$P(A|B) = P(A)$$

Otherwise, the two events are said to be dependent. This can be generalized for any set of n events, i.e. the set of events  $A_1, \ldots, A_n$  are independent if and only if,

$$P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} A_i.$$

### 2 Random Variables

For a given probability model, a random variable is a function whose domain is the sample space  $\Omega$ . A discrete random variable takes on a finite or countable number of values. A continuous random variable can take any value on the real line (or possibly a subinterval of the real line).

### 2.1 Discrete Random Variables

For a discrete random variable X, the probability mass function (PMF) gives the probability that X will take on a particular value in its range. We denote this by  $P_X$ , i.e.

$$P_X(x) = P(\{X = x\}).$$

### 2.1.1 Expectation

The expected value of a discrete random variable X is defined by

$$E[X] = \sum x P_X(x).$$

Let g(X) be a real-valued function of X, the expected value of g(X) is calculated by

$$E[g(X)] = \sum g(x)P_X(x).$$

When  $g(X) = (X - E(X))^2$ , the expected value of g(X) is called the variance of X and denoted by  $\sigma_X^2$ , i.e.

$$\sigma_X^2 = E(X - E(X))^2.$$

Next we discuss a few common discrete random variables:

### 2.1.2 Bernoulli Random variable with parameter p

X is a Bernoulli random variable with parameter p if it can take on values 0 and 1 with

$$P_{X}(1) = p$$

$$P_X(0) = 1 - p$$

Bernoulli random variables provide a simple model for an experiment that can either result in a success (1) or a failure (0).

### 2.1.3 Binomial Random Variable with parameters p and n

This is the number S of successes out of n independent Bernoulli random variables. The PMF is given by

$$P_S(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

for k = 0, 1, ..., n. The expected number of successes is given by

$$E[S] = np$$

For example, if packets arrive correctly at a node in a network with probability p (independently); then the number of correct arrivals out of n is a Binomial random variable.

### 2.1.4 Geometric Random Variable with parameter p

Given a sequence of independent Bernoulli random variables, let T, be the number observed up to and including the first success. Then T will have a geometric distribution; its PMF is given by

$$P_T(t) = (1 - p)^{t - 1} p$$

for t = 1, 2, ...; the expectation is

$$E[T] = \frac{1}{p}$$

### 2.2 Poisson random variable with parameter $\mu$

A discrete random variable, N is said to have Poisson distribution with parameter  $\mu$  if

$$P_N(n) = \frac{(\mu)^n}{n!} e^{-\mu}, \quad n = 0, 1, 2, \dots$$

We verify that this is a valid PMF, i.e. that

$$\sum_{n=0}^{\infty} P_n = 1.$$

This can be shown as follows:

$$\sum_{n=0}^{\infty} P_n = \sum_{n=0}^{\infty} \frac{(\mu)^n}{n!} e^{-\mu}$$

$$= e^{-\mu} \sum_{n=0}^{\infty} \frac{(\mu)^n}{n!}$$

$$= e^{-\mu} e^{\mu}$$

$$= 1$$

Here we have used that  $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ The expected value of a Poisson random variable is

$$E[N] = \sum_{n=0}^{\infty} n \frac{(\mu)^n}{n!} e^{-\mu}$$

$$= (\mu) e^{-\mu} \sum_{n=1}^{\infty} \frac{(\mu)^{n-1}}{(n-1)!}$$

$$= (\mu) e^{-\mu} e^{\mu}$$

$$= \mu$$

Poisson random variables are often used for modeling traffic arrivals in a network. For example in the telephone network, the number of calls that arrive in an interval of T seconds can be well modeled by a Poisson random variable with parameter  $\lambda T$ , where  $\lambda$  is the call arrival rate.

#### 2.3 Continuous Random Variables

For a continuous random variable X, a probability density function (PDF)  $f_X$  is a nonnegative function such that

$$P(a \le X \le b) = \int_a^b f_X(x) dx$$

and

$$\int_{-\infty}^{+\infty} f_X(x) dx = P(-\infty < X < +\infty) = 1.$$

For a continuous random variable X and for any value a,

$$P(X = a) = \int_a^a f(x)dx = 0.$$

This implies that

$$P(a < X < b) = P(a < X < b) = P(a < X < b) = P(a < X < b).$$

### 2.3.1 Expectation

The expectation of a continuous random variable is defined as

$$E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx.$$

Again, for a real-valued function g(X) we have

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx$$

### 2.3.2 Exponential Random Variable

As an example of a continuous random variable, we consider an exponential random variable. These random variables are also used for modeling traffic in a network, for example to model the time between packet arrivals. An exponential random variable has a PDF of the form

$$f_X(x)$$
  $\begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$ 

where  $\lambda > 0$ . Verify that for an exponential random variable,

$$E[X] = \frac{1}{\lambda}.$$

### 2.4 Cumulative Distribution Functions

The cumulative distribution function (CDF) of a random variable X is the probability  $P(X \le x)$ , denoted by  $F_X(x)$ .

If X is a discrete random variable, then we get

$$F_X(x) = P(X \le x) = \sum_{k \le x} P_X(k)$$

And similarly if X is a continuous random variable we get

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)dt$$

In this case we can therefore define  $f_X$  in terms of  $F_X$ :

$$f_X(x) = \frac{dF_X(x)}{dx},$$

i.e., the PDF of a continuous random variable is the derivative of its CDF.

Example: The CDF of an exponential random variable is

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
$$= \int_0^x \lambda e^{-\lambda t} dt$$
$$= 1 - e^{-\lambda x}, \quad x \ge 0.$$

### 2.5 Conditional PDF

The conditional PDF  $f_{X|A}$  of a continuous random variable X given an event A with P(A) > 0, is defined as

$$f_{X|A}(x) = \begin{cases} \frac{f_X(x)}{P(X\epsilon A)} \text{if } X\epsilon A \\ 0 \text{ otherwise} \end{cases}$$

So that,

$$P(X\epsilon B|A) = \int_B f_{X|A}(x)dx.$$

An analogous definition holds for discrete random variables. The conditional expectation is defined by

$$E[X|A] = \int_{-\infty}^{+\infty} x f_{X|A}(x) dx$$

In this case the total probability theorem can be restated as

$$f_X(x) = \sum_{i=0}^n P(A_i) f_{X|A}(x).$$

It follows that,

$$E[X] = \sum_{i=1}^{n} P(A_i)E[X|A_i].$$

Example: Let X be an exponential random variable, and A the event that X > t. Then  $P(A) = e^{-\lambda t}$  and

$$f_{X|A}(x) = egin{cases} \lambda e^{-\lambda(x-t)} & & x \geq t \\ 0 & & otherwise \end{cases}$$

From this it follows that

$$P\{X > r + t \mid X > t\} = P\{X > r\}, \qquad r, t \ge 0.$$

This is an important property of an exponential random variable called the memoryless property.

# 3 Law of large numbers

Let  $X_1, X_2, \ldots$  be a sequence of independent, identically distributed (i.i.d.) random variables, each with expected value  $\bar{X}$  The strong law of large numbers states that with probability one,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} X_i = \bar{X}.$$

Basically what this says is that if we observe a long enough sequence of outcomes of these random variables and take the arithmetic average of these outcomes, this will converge to the expected value of each outcome.

When each  $X_i$  is a Bernoulli random variable, the law of large numbers can be interpreted as stating that the long-run fraction of successes will be equal to  $EX_i$ .

### 4 Stochastic Processes

A stochastic process is a sequence of random variables indexed by time. Stochastic processes are used, for example to model arrivals of packets in a network. In this case  $A(t), t \geq 0$  could denote the total number of packets to arrive at a node up to and to time t. For each time t, the quantity A(t) is a random variable. Stochastic processes can also be defined in discrete time. For example, let  $X_1, X_2, \ldots$  be a sequence of independent Bernoulli random variables. This is a discrete-time stochastic process called a Bernoulli process.

### 5 Useful Results

The following are some results are useful for manipulating many of the equations that may arise when dealing with probabilistic models.

### 5.1 Geometric Series

For  $x \neq 1$ ,

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1},$$

and when |x| < 1,

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}.$$

Differentiating both sides of the previous equation yields another useful expression:

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

### 5.2 Exponentials

The Taylor series expansion of  $e^x$  is:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!},$$

and

$$\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n = e^x.$$