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Probability Review

As discussed in Lecture 1, probability theory is useful for modeling a variety of sources of
uncertainty in a communication network. Examples include whether a packet is received
correctly, the size of a packet, and the destination for a packet. These notes will review
some basic facts from probability theory that will be useful during the course.

1 Basic Probability Theory

A probabilistic model can be thought of as describing an experiment with several possible
outcomes. Formally, this consists of a sample space (2, which is the set of all possible
outcomes, and a probability law that assigns a probability P(A) to each event! A (a set
of possible outcomes). The

The following properties must hold:

e Non-negativity: P(A) > 0 for every event A.
e Additivity: If A;’s are all disjoint events, P (A; U Ay U ...) = > P(4;).

e Normalization: The probability of the union of all possible events is 1, i.e., P(Q) = 1.

For example, a probabilistic model might represent the length of a packet sent over
a network. In this case, the sample space will be the set of possible packet lengths, say
{l1,12,... ,1,,} and the P(l;) would indicate the likelihood a packet has the length ;.

1.1 Conditional Probability

The conditional probability of an event A occurring, given that an event B has occurred,
is denoted by P(A|B),; this is computed as
P(ANB)

PAIB) = =55

Under the assumption of course that P(B) > 0 (since we know that B has occurred.)

!This definition is adequate for discrete sample spaces. For infinite sample spaces, slightly more care is
required to be mathematically precise; such concerns are beyond the scope of this course.



1.1.1 Total Probability Theorem

Let Ao,..., An be disjoint events that form a partition of the sample space (each possible
outcome is included in one and only one of the events Ay, ..., A, ) and assume that P (A4;) > 0
for all ¢ = 1,..,n, then for any event B, we have

P(B) = P(AiNB)+..+P(A,NB)
= P(A1)P(B|A1) + ...+ P(A,)P(B|Ay)

1.1.2 Independence
Events A and B are defined to be independent events if and only if,
P(ANnB) = P(A)P(B)
P(AIB) = P(4)

Otherwise, the two events are said to be dependent. This can be generalized for any set of

n events, i.e. the set of events Ay,... , A, are independent if and only if,
n n
i=1 i=1

2 Random Variables

For a given probability model, a random variable is a function whose domain is the sample
space €. A discrete random variable takes on a finite or countable number of values. A
continuous random variable can take any value on the real line (or possibly a subinterval of
the real line).

2.1 Discrete Random Variables

For a discrete random variable X, the probability mass function (PMF) gives the probability
that X will take on a particular value in its range. We denote this by Py, i.e.

Px(z) = P({X = z}).

2.1.1 Expectation
The expected value of a discrete random variable X is defined by
E[X]=) xzPx(z).
Let g(X) be a real-valued function of X, the expected value of g(X) is calculated by
E[g(X)] =) g(2)Px ().

When g(X) = (X — E(X))?, the expected value of g(X) is called the variance of X and
denoted by o_%(, ie.
0% = E(X — E(X))*.

Next we discuss a few common discrete random variables:



2.1.2 Bernoulli Random variable with parameter p

X is a Bernoulli random variable with parameter p if it can take on values 0 and 1 with

Px(1)=p

Bernoulli random variables provide a simple model for an experiment that can either
result in a success (1) or a failure (0).

2.1.3 Binomial Random Variable with parameters p and n

This is the number S of successes out of n independent Bernoulli random variables
The PMF is given by

Ps(k) = ( L )pk(l —p)"
for K =0,1,..,n. The expected number of successes is given by
E[S] =np
For example, if packets arrive correctly at a node in a network with probability p (in-
dependently); then the number of correct arrivals out of n is a Binomial random variable.
2.1.4 Geometric Random Variable with parameter p

Given a sequence of independent Bernoulli random variables, let T, be the number observed
up to and including the first success. Then T will have a geometric distribution; its PMF
is given by

Pr(t)=(1—p)" 'p
for t =1,2,...; the expectation is
1
E[T] = -
p

2.2 Poisson random variable with parameter p

A discrete random variable, N is said to have Poisson distribution with parameter p if

n
Pym) = M en 01,2,



This can be shown as follows:

iPn = i(lg e H
n=0

— e ek

=1

Here we have used that e* =1+ z + g—? + ‘f,’—? + ...
The expected value of a Poisson random variable is
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Poisson random variables are often used for modeling traffic arrivals in a network. For
example in the telephone network, the number of calls that arrive in an interval of T" seconds
can be well modeled by a Poisson random variable with parameter XT', where A is the call
arrival rate.

2.3 Continuous Random Variables

For a continuous random variable X, a probability density function (PDF) fx is a non-
negative function such that

b
ngngz/fﬂmw

and

- [x(z)dr = P(—oo < X < 400) = 1.

—00

For a continuous random variable X and for any value a,

P(X =a)= / f(z)dz = 0.
This implies that

Pla<X<b)=Pla<X<b)=Pla<X<b)=Pla<X<h).



2.3.1 Expectation

The expectation of a continuous random variable is defined as

+oo
E[X] :/ zfx(z)dz.
Again, for a real-valued function g(X) we have
+o0
Blg(0)) = [ g@)fx(o)is
—00

2.3.2 Exponential Random Variable

As an example of a continuous random variable, we consider an exponential random variable.
These random variables are also used for modeling traffic in a network, for example to model
the time between packet arrivals. An exponential random variable has a PDF of the form

Fx (@) e AT, x>0
X 0, otherwise

where A > 0. Verify that for an exponential random variable,

1
FElX]|=—.
X] =5
2.4 Cumulative Distribution Functions

The cumulative distribution function (CDF) of a random variable X is the probability
P(X < z), denoted by Fx(z).
If X is a discrete random variable, then we get

Fx(z)=P(X <) =) Px(k)
k<z

And similarly if X is a continuous random variable we get
Fy(z) = P(X < z) = / Fx(t)dt

In this case we can therefore define fx in terms of Fx:

() = D,

i.e., the PDF of a continuous random variable is the derivative of its CDF.
Ezample: The CDF of an exponential random variable is

Fe(@) = [ rxar

= / e M dt
0

=1—e z>0.



2.5 Conditional PDF

The conditional PDF fx 4 of a continuous random variable X given an event A with
P(A) > 0, is defined as

D)t XeA
) = (X5A)l
fX|A( ) { 0 otherwise

So that,

P(XeB|A)=/BfXA(x)dx.

An analogous definition holds for discrete random variables. The conditional expectation
is defined by

+oo
EWM=[ s fxalz)de

In this case the total probability theorem can be restated as

ZP i)xa(z)

It follows that,

n

E[X] = Y P(4)E[X|A].

i=1
Ezample: Let X be an exponential random variable, and A the event that X > ¢. Then
P(A) = e ™ and
e AMz—1) x>t
) = -
fX|A( ) {0 otherwise

From this it follows that
P{X>r+t| X >t} =P{X >r}, r,t > 0.
This is an important property of an exponential random variable called the memoryless
property.
3 Law of large numbers

Let X1, Xo,... be a sequence of independent, identically distributed (i.i.d.) random vari-
ables, each with expected value X The strong law of large numbers states that with prob-
ability one,



Basically what this says is that if we observe a long enough sequence of outcomes of these
random variables and take the arithmetic average of these outcomes, this will converge to
the expected value of each outcome.

When each X is a Bernoulli random variable, the law of large numbers can be interpreted
as stating that the long-run fraction of successes will be equal to EXj.

4 Stochastic Processes

A stochastic process is a sequence of random variables indexed by time. Stochastic processes
are used, for example to model arrivals of packets in a network. In this case A(t),t > 0
could denote the total number of packets to arrive at a node up to and to time ¢. For each
time ¢, the quantity A(t) is a random variable. Stochastic processes can also be defined in
discrete time. For example, let X1, Xs,... be a sequence of independent Bernoulli random
variables. This is a discrete-time stochastic process called a Bernoulli process.

5 Useful Results

The following are some results are useful for manipulating many of the equations that may
arise when dealing with probabilistic models.

5.1 Geometric Series

For z # 1,

3

and when |z| < 1,

ad 1
k_
kzzox 11—z

Differentiating both sides of the previous equation yields another useful expression:
> T
E e p——
— 2
pari (1-2)

5.2 Exponentials

The Taylor series expansion of e* is:

w_l $2 _oomi
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and

lim (1 + £>n = e”.
0

n—oo



