

 1

ECE 333: Introduction to Communication Networks
Fall 2001

Lecture 28: Transport Layer III

� Congestion control (TCP)

 2

In the last lecture we introduced the topics of flow control and congestion
control. Both of these refer to methods that are used to regulate the rate at
which a source can send data. Flow control often denotes techniques that
regulate a source's rate based on the buffer space at the destination
(independent of the network). Congestion control denotes techniques that
regulate a source's rate based on congestion in the subnet.1 We saw that in
TCP, flow control is implemented by including a "receive window" in each
TCP segment sent over the reverse link. This window is then used by the
sliding window ARQ protocol to provide flow control.

Today we will discuss congestion control. First we look at the problem of
congestion and some general approaches to congestion control. Then we
describe how congestion control is implemented in TCP.

1 This terminology is not universal and in many cases a distinction is not made between these two issues. Indeed, both flow and congestion
control can be viewed as parts of the same problem.

 3

Congestion

Congestion arises when the total load on the network becomes too large. This
leads to queues building up and to long delays (recall the M/G/1 model). If
sources retransmit messages, then this can lead to even more congestion and
eventually to congestion collapse. This is illustrated in the figure below.
Notice, as the offered load increase, the number of packets delivered at first
increases, but at high enough loads, this rapidly decreases.

 4

For example, originally the Internet (TCP/IP) did not implement congestion
control. This led to a series of congestion collapses starting in 1986. In Oct. of
1986, the data throughput between Lawrence Berkeley Laboratory and UC
Berkeley dropped from 32 kbps to 40 bps2 [V. Jacobson, "Congestion
Avoidance and Control", Proc. of SIGCOMM '88.] To avoid this type of
behavior, congestion control was incorporated into TCP.

The first order goal of congestion control is to avoid this type of congestion
collapse. While avoiding congestion, it is still desirable to get the best
performance possible. Congestion control can also be used to ensure that
users get a desired QoS (i.e. throughput, delay). Another issue that
congestion control needs to address is ensuring fairness between different
sessions; in other words to sessions with the same requirements should
receive equitable treatment from the network. (Exactly what is a fair
treatment can be interpreted in several ways.)

2 V. Jacobson, "Congestion Avoidance and Control", Proc. of SIGCOMM '88

 5

Approaches to Congestion Control

Congestion control may be addressed at both the network level and the
transport layer.

At the network layer possible approaches include

� Packet dropping - when a buffer becomes full a router can drop waiting

packets - if not coupled with some other technique, this can lead to
greater congestion through retransmissions.

� Packet scheduling - certain scheduling policies may help in avoiding

congestion - in particular scheduling can help to isolate users that are
transmitting at a high rate.

� Dynamic routing - when a link becomes congested, change the routing

to avoid this link - this only helps up to a point (eventually all links
become congested) and can lead to instabilities (see Lecture 23).

� Admission control/Traffic policing - Only allow connections in if the

network can handle them and make sure that admitted sessions do not
send at too high of a rate - only useful for connection-oriented
networks.

 6

An approach that can be used at either the network or transport layers is

� Rate control - this refers to techniques where the source rate is
explicitly controlled based on feedback from either the network and/or
the receiver.

For example, routers in the network may send a source a "choke packet"
upon becoming congested. When receiving such a packet, the source should
lower it rate.

These approaches can be classified as either "congestion avoidance"
approaches, if they try to prevent congestion from ever occurring, or as
"congestion recovery" approaches, if they wait until congestion occurs and
then react to it. In general, "an ounce of prevention is worth a pound of cure."

Different networks have used various combinations of all these approaches.
Traditionally, rate control at the transport layer has been used in the
Internet, but new approaches are beginning to be used that incorporate some
of the network layer techniques discussed above.

 7

Congestion control in TCP

TCP implements end-to-end congestion control. V. Jacobson proposed the
basic TCP congestion control algorithm in 1988. IP does not provide any
explicit congestion control information; TCP detects congestion via the ACK's
from the sliding-window ARQ algorithm used for providing reliable service.

Specifically, assume that the RTT for a session is known, so that the proper
time-out time can be used. When the source times out before receiving an
ACK, the most likely reason is because a link became congested. TCP uses
this as an indication of congestion. In this case, TCP will slow down the
transmission rate.

TCP controls the transmission rate of a source by varying the window size
used in the sliding window protocol (this is the same technique used for flow
control). Recall, (see lecture 10) that for a window of size of W packets, the
effective rate under a sliding window protocol (ignoring errors) is given by

IRd

Wd
Reff �

� (assuming that W <1 +(IR)/d)

Here I is the round-trip time, and d is the number of bits per packet. Thus a
smaller value of W will result in a smaller effective rate.

 8

Timeout time

Before discussing how TCP adjusts the rate when a timeout occurs. We first
look at how TCP chooses a value for the timeout time. The timeout time
should be set approximately equal to the round trip time, i.e. the time from
when a segment is transmitted until an ACK for the segment is received.
Choosing to small of a time-out time will result in unneeded retransmissions,
and choosing too large a value will result in long delays before a packet is
retransmitted. However, at the transport layer, the round trip time will vary
with each pair of host (or more precisely with each route between any pair of
hosts). The round-trip time will also depend on the queueing delays within
the network; these will vary with each segment sent.

In TCP the time-out value is based on estimates of the round trip time (RTT).
Specifically, for each packet sent the RTT is measured. Let Est_RTT be the
current estimate of the RTT and let Sample_RTT be a new measured value.
The new estimate of the RTT is then formed as follows:

Est_RTT = � (Est_RTT) + (1- �) Sample_RTT

Here � is a parameter between 0 and 1; a typical value is 0.125. Thus the
transmitter's estimate of the RTT is a moving average of the sample RTT's.

 9

The timeout value used by TCP is equal to the Est_RTT plus a margin to
account for variations due to changes in queueing delays. This margin is
related to the variance of the RTT. In other words, a connection with a large
variance in the RTT will have a larger margin. Specifically, in TCP

Timeout = Est_RTT +4 (Dev)

where Dev is also recursively calculated for each new sample using

Dev = (1- �) Dev + � |Sample_RTT - Est_RTT|

(This quantity does not give the true variance or standard deviation, but
instead a related quantity called the mean deviation. This appears to have
been chosen because it is easier to calculate.)

When |Sample_RTT - Est_RTT| is large, the Dev will increase, leading to a
larger margin for the timeout as desired.

 10

Next we look at how TCP changes the rate at which a source can send data.
This is done by varying the window size used by the sliding-window
algorithm. The window size is the largest number of unacknowledged data
bytes that a source can send at any time. Recall, in TCP data is viewed as a
byte stream, and all sequence numbers refer to byte number. The largest
segment that a TCP implementation can send is referred to as the Maximum
Segment Size (MSS), the value for the MSS can vary with implementation.
For congestion control, TCP requires each source to keep track of a
congestion window, WC, which indicates the maximum number of MSS-
sized segments that the source can send, based on congestion.

The window size used by TCP is then given by

min(WC(MSS), Rw),

where Rw is the receive window used for flow control (see Lecture 27).

In the following we will assume that Rw is very large and can be ignored -
this way we can focus on the behavior of the congestion window.

We also assume that the transmitter always has data available to send, and
that each segment sent contains MSS bytes. With these assumptions we
describe the basic idea of TCP congestion control.

 11

TCP Congestion control

TCP tries to adaptively find the "right" congestion window size for the
network. If window is too large, network will become congested; if too small
then inefficient. More over, the "right" window size may change over time,
depending on network load.

When segments are successfully acknowledged, without the sender timing
out, TCP increases the window size. Whenever TCP times-out while waiting
for a segment it decreases the window size. In this manner TCP continually
adapts the window size.

In addition to the congestion window, the sender also keeps track of a
parameter called the threshold; we denote this parameter by TC.

Both WC and TC are adapted over time. Initially a connection sets WC=1.
Assume that TC is some value greater than 1.

When segments are acknowledged before the transmitter times out TCP
increases the window size using the following rules:

� If CC TW � then set WC = WC +1 for every successful ACK that is
received.

� If CC TW � then set WC = WC +1 after WC successful ACK's are
received.

 12

We see that starting at WC = 1, the congestion window will increase by one
for every ACK that is received until it becomes larger than the threshold,
this phase is called slow start. After the congestion window becomes larger
than the threshold, the congestion window is increased by one for every
congestion window worth of ACKs that are received; this phase is called the
congestion avoidance phase.

Assume that in approximately one RTT, a congestion window worth of data
can be sent and acknowledged (this is reasonable if the time to send a
windows worth of data is much less than the RTT). With this assumption,
during the slow start phase, the congestion window will double during each
RTT, i.e. it will grow exponentially fast. During the congestion avoidance
phase, the window will increase by 1 during each RTT; in this case, it is
growing at a linear rate.

When the transmitter times out, it does the following:

� Set TC = WC/2 and set WC = 1.

In other words, the threshold is set half of the value of the congestion
window before the time out occurred, and the congestion window is reduced
to 1 (causing the algorithm to re-enter the slow start phase).

 13

An example of this algorithm is shown below. The slow start phase is shown
in blue and the congestion avoidance phase is shown in green. In this figure
one time out occurred as indicated. Here TC(1) indicates the initial threshold
and TC(2) indicates the threshold after the time out occurs.

WC

Time

TC(1)

TC(2)

Time out
occurs

An actual trace of this algorithm is shown next.

 14

Again the vertical axis is the congestion window and the horizontal axis is
time.

 15

Notice, if congestion is detected, then at the end of the next slow start phase,
the congestion window will be 0.5 times it value before congestion occurred.
Thus, if we ignore the slow start phase then TCP simply increases the
congestion window additively each time no congestion is detected and
decreases the congestion window multiplicatively each time congestion is
detected. For this reason, TCP is described as an Additive-Increase,
Multiplicative-Decrease (AIMD) algorithm.

This type of algorithm has been shown to have some nice fairness properties.
We illustrate this with an example of two TCP connections sharing a single
link, we assume that both sessions have the same MSS and RTT, and both
always have data to send. Assume that the link has a capacity of C MSS-
segments, (i.e. if the sum of rates (window sizes) of the two users exceed C
then congestion sets in).

The figure below illustrates how an AIMD algorithm drives the two users to
a fair (equal) allocation of the link. The axes are the congestion windows of
each session. Both increase additively until exceeding the capacity then
decrease multiplicatively towards the origin. This behavior drives the
congestion windows toward the fair (equal) rate line over time.

 16

C

C

WC
1=WC

2

WC
1 (congestion window, session 1)

WC
2 (session 2)

Versions of TCP

 17

The preceding description of TCP congestion control roughly corresponds to
the version of TCP called "Tahoe". Several other versions exist.

For example in TCP Reno, the algorithm is modified to support fast-
retransmission, where a packet can be retransmitted after three duplicate
ACKs are received (before timing out). A fast retransmission is followed by a
fast-recovery, where TCP basically skips the slow start period.

Another version of TCP is called "Vegas." In Vegas the size of the congestion
window is based on the history of RTT's observed by the sender. For example,
when the change in the RTT becomes too large the sender decreases the
congestion window. The idea here is to detect the onset of congestion before a
time out occurs and achieve higher throughput.

TCP header

 18

The header fields for TCP are shown below.

Seque0nce number

Source port Destination port

16 bits 16 bits

Sequence number

Acknowledgement number

TCP
header
length

U
R
G

Window size
A
C
K

P
S
H

F
I
N

S
Y
N

R
S
T

Checksum Urgent pointer

Options (0 or more 32 bit words)

Data (optional)

 19

Header length is measured in 32 bit words. The URG,ACK, PSH, RST, SYN,
and FIN fields are one bit flags. The ACK bit indicates that the
Acknowledgement field is a valid acknowledgement. The RST bit is used to
reset a connection. The SYN bit is used during connection establishment. A
connection request packet has SYN=1, ACK =0, a connection accept packet
has SYN=1, ACK=1, and the sequence number of the connection request
packet is in the Acknowledgement field. The FIN bit is used to release
connection. The PSH and URG fields are rarely used. As in UDP, the TCP
checksum is calculated using the TCP header, data and part of the IP header.

