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In the last lecture we introduced the topics of flow control and congestion 
control. Both of these refer to methods that are used to regulate the rate at 
which a source can send data. Flow control often denotes techniques that 
regulate a source's rate based on the buffer space at the destination 
(independent of the network). Congestion control denotes techniques that 
regulate a source's rate based on congestion in the subnet.1  We saw that in 
TCP, flow control is implemented by including a "receive window" in each 
TCP segment sent over the reverse link. This window is then used by the 
sliding window ARQ protocol to provide flow control. 
 
Today we will discuss congestion control. First we look at the problem of 
congestion and some general approaches to congestion control. Then we 
describe how congestion control is implemented in TCP. 
 

 
 
 
 
 

                              
1 This terminology is not universal and in many cases a distinction is not made between these two issues. Indeed, both flow and congestion 
control can be viewed as parts of the same problem. 
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Congestion 
 

Congestion arises when the total load on the network becomes too large. This 
leads to queues building up and to long delays (recall the M/G/1 model). If 
sources retransmit messages, then this can lead to even more congestion and 
eventually to congestion collapse. This is illustrated in the figure below. 
Notice, as the offered load increase, the number of packets delivered at first 
increases, but at high enough loads, this rapidly decreases. 
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For example, originally the Internet (TCP/IP) did not implement congestion 
control. This led to a series of congestion collapses starting in 1986. In Oct. of 
1986, the data throughput between Lawrence Berkeley Laboratory and UC 
Berkeley dropped from 32 kbps to 40 bps2 [V. Jacobson, "Congestion 
Avoidance and Control", Proc. of SIGCOMM '88.] To avoid this type of 
behavior, congestion control was incorporated into TCP. 
 
The first order goal of congestion control is to avoid this type of congestion 
collapse. While avoiding congestion, it is still desirable to get the best 
performance possible. Congestion control can also be used to ensure that 
users get a desired QoS (i.e. throughput, delay). Another issue that 
congestion control needs to address is ensuring fairness between different 
sessions; in other words to sessions with the same requirements should 
receive equitable treatment from the network. (Exactly what is a fair 
treatment can be interpreted in several ways.)  
 
 
 

                              
2  V. Jacobson, "Congestion Avoidance and Control", Proc. of SIGCOMM '88 
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Approaches to Congestion Control 
 

Congestion control may be addressed at both the network level and the 
transport layer. 
 

At the network layer possible approaches include 
 
� Packet dropping - when a buffer becomes full a router can drop waiting 

packets - if not coupled with some other technique, this can lead to 
greater congestion through retransmissions. 

 
� Packet scheduling - certain scheduling policies may help in avoiding 

congestion - in particular scheduling can help to isolate users that are 
transmitting at a high rate. 

 
� Dynamic routing - when a link becomes congested, change the routing 

to avoid this link - this only helps up to a point (eventually all links 
become congested) and can lead to instabilities (see Lecture 23). 

 
� Admission control/Traffic policing - Only allow connections in if the 

network can handle them and make sure that admitted sessions do not 
send at too high of a rate - only useful for connection-oriented 
networks. 
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An approach that can be used at either the network or transport layers is 
 

� Rate control - this refers to techniques where the source rate is 
explicitly controlled based on feedback from either the network and/or 
the receiver. 

 
 

For example, routers in the network may send a source a "choke packet" 
upon becoming congested. When receiving such a packet, the source should 
lower it rate.  
 
 

These approaches can be classified as either "congestion avoidance" 
approaches, if they try to prevent congestion from ever occurring, or as 
"congestion recovery" approaches, if they wait until congestion occurs and 
then react to it. In general, "an ounce of prevention is worth a pound of cure."  
 
 
 

Different networks have used various combinations of all these approaches. 
Traditionally, rate control at the transport layer has been used in the 
Internet, but new approaches are beginning to be used that incorporate some 
of the network layer techniques discussed above. 
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Congestion control in TCP 
 

TCP implements end-to-end congestion control. V. Jacobson proposed the 
basic TCP congestion control algorithm in 1988. IP does not provide any 
explicit congestion control information; TCP detects congestion via the ACK's 
from the sliding-window ARQ algorithm used for providing reliable service. 
 

Specifically, assume that the RTT for a session is known, so that the proper 
time-out time can be used. When the source times out before receiving an 
ACK, the most likely reason is because a link became congested. TCP uses 
this as an indication of congestion. In this case, TCP will slow down the 
transmission rate. 
 

TCP controls the transmission rate of a source by varying the window size 
used in the sliding window protocol (this is the same technique used for flow 
control). Recall, (see lecture 10) that for a window of size of W packets, the 
effective rate under a sliding window protocol (ignoring errors) is given by 
 

IRd

Wd
Reff �

�  (assuming that W <1 +(IR)/d) 

 

Here I is the round-trip time, and d is the number of bits per packet. Thus a 
smaller value of W will result in a smaller effective rate. 
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Timeout time 
 

Before discussing how TCP adjusts the rate when a timeout occurs. We first 
look at how TCP chooses a value for the timeout time. The timeout time 
should be set approximately equal to the round trip time, i.e. the time from 
when a segment is transmitted until an ACK for the segment is received. 
Choosing to small of a time-out time will result in unneeded retransmissions, 
and choosing too large a value will result in long delays before a packet is 
retransmitted. However, at the transport layer, the round trip time will vary 
with each pair of host (or more precisely with each route between any pair of 
hosts). The round-trip time will also depend on the queueing delays within 
the network; these will vary with each segment sent. 
 

In TCP the time-out value is based on estimates of the round trip time (RTT). 
Specifically, for each packet sent the RTT is measured. Let Est_RTT be the 
current estimate of the RTT and let Sample_RTT be a new measured value. 
The new estimate of the RTT is then formed as follows: 
 

Est_RTT = � (Est_RTT) + (1- � ) Sample_RTT 
 

Here �  is a parameter between 0 and 1; a typical value is 0.125. Thus the 
transmitter's estimate of the RTT is a moving average of the sample RTT's. 
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The timeout value used by TCP is equal to the Est_RTT plus a margin to 
account for variations due to changes in queueing delays. This margin is 
related to the variance of the RTT. In other words, a connection with a large 
variance in the RTT will have a larger margin. Specifically, in TCP 
 

Timeout = Est_RTT +4 (Dev) 
 

where Dev is also recursively calculated for each new sample using 
 

Dev = (1- � ) Dev + � |Sample_RTT - Est_RTT| 
 

(This quantity does not give the true variance or standard deviation, but 
instead a related quantity called the mean deviation. This appears to have 
been chosen because it is easier to calculate. ) 
 
When |Sample_RTT - Est_RTT| is large, the Dev will increase, leading to a 
larger margin for the timeout as desired. 
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Next we look at how TCP changes the rate at which a source can send data. 
This is done by varying the window size used by the sliding-window 
algorithm. The window size is the largest number of unacknowledged data 
bytes that a source can send at any time. Recall, in TCP data is viewed as a 
byte stream, and all sequence numbers refer to byte number. The largest 
segment that a TCP implementation can send is referred to as the Maximum 
Segment Size (MSS), the value for the MSS can vary with implementation. 
For congestion control, TCP requires each source to keep track of a 
congestion window, WC, which indicates the maximum number of MSS-
sized segments that the source can send, based on congestion.  
 

The window size used by TCP is then given by  
 

min(WC(MSS), Rw), 
 

where Rw is the receive window used for flow control (see Lecture 27).  
 

In the following we will assume that Rw is very large and can be ignored - 
this way we can focus on the behavior of the congestion window. 
 
We also assume that the transmitter always has data available to send, and 
that each segment sent contains MSS bytes.  With these assumptions we 
describe the basic idea of TCP congestion control. 
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TCP Congestion control 
 

TCP tries to adaptively find the "right" congestion window size for the 
network. If window is too large, network will become congested; if too small 
then inefficient. More over, the "right" window size may change over time, 
depending on network load.  
 

When segments are successfully acknowledged, without the sender timing 
out, TCP increases the window size. Whenever TCP times-out while waiting 
for a segment it decreases the window size. In this manner TCP continually 
adapts the window size. 
 

In addition to the congestion window, the sender also keeps track of a 
parameter called the threshold; we denote this parameter by TC.  
 

Both WC and TC are adapted over time. Initially a connection sets WC=1. 
Assume that TC is some value greater than 1.  
 

When segments are acknowledged before the transmitter times out TCP 
increases the window size using the following rules: 
 

� If CC TW �  then set WC = WC +1 for every successful ACK that is 
received. 

� If CC TW �  then set WC = WC +1 after WC successful ACK's are 
received. 
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We see that starting at WC = 1, the congestion window will increase by one 
for every ACK that is received until it becomes larger than the threshold, 
this phase is called slow start.  After the congestion window becomes larger 
than the threshold, the congestion window is increased by one for every 
congestion window worth of ACKs that are received; this phase is called the 
congestion avoidance phase.   
 

Assume that in approximately one RTT, a congestion window worth of data 
can be sent and acknowledged (this is reasonable if the time to send a 
windows worth of data is much less than the RTT). With this assumption, 
during the slow start phase, the congestion window will double during each 
RTT, i.e. it will grow exponentially fast.  During the congestion avoidance 
phase, the window will increase by 1 during each RTT; in this case, it is 
growing at a linear rate. 
 
When the transmitter times out, it does the following: 
 

� Set TC = WC/2 and set WC = 1. 
 

In other words, the threshold is set half of the value of the congestion 
window before the time out occurred, and the congestion window is reduced 
to 1 (causing the algorithm to re-enter the slow start phase). 
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An example of this algorithm is shown below. The slow start phase is shown 
in blue and the congestion avoidance phase is shown in green. In this figure 
one time out occurred as indicated. Here TC(1) indicates the initial threshold 
and TC(2) indicates the threshold after the time out occurs. 
 
 

WC 

Time 

TC(1) 

TC(2) 

Time out 
occurs  

 
 
 
An actual trace of this algorithm is shown next. 
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Again the vertical axis is the congestion window and the horizontal axis is 
time. 
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Notice, if congestion is detected, then at the end of the next slow start phase, 
the congestion window will be 0.5 times it value before congestion occurred. 
Thus, if we ignore the slow start phase then TCP simply increases the 
congestion window additively each time no congestion is detected and 
decreases the congestion window multiplicatively each time congestion is 
detected. For this reason, TCP is described as an Additive-Increase, 
Multiplicative-Decrease (AIMD) algorithm. 
 
This type of algorithm has been shown to have some nice fairness properties. 
We illustrate this with an example of two TCP connections sharing a single 
link, we assume that both sessions have the same MSS and RTT, and both 
always have data to send. Assume that the link has a capacity of C MSS-
segments, (i.e. if the sum of rates (window sizes) of the two users exceed C 
then congestion sets in). 
 
The figure below illustrates how an AIMD algorithm drives the two users to 
a fair  (equal) allocation of the link. The axes are the congestion windows of 
each session. Both increase additively until exceeding the capacity then 
decrease multiplicatively towards the origin. This behavior drives the 
congestion windows toward the fair (equal) rate line over time. 
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Versions of TCP 
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The preceding description of TCP congestion control roughly corresponds to 
the version of TCP called "Tahoe". Several other versions exist.  
 
For example in TCP Reno, the algorithm is modified to support fast-
retransmission, where a packet can be retransmitted after three duplicate 
ACKs are received (before timing out). A fast retransmission is followed by a 
fast-recovery, where TCP basically skips the slow start period.  
 
Another version of TCP is called "Vegas." In Vegas the size of the congestion 
window is based on the history of RTT's observed by the sender. For example, 
when the change in the RTT becomes too large the sender decreases the 
congestion window. The idea here is to detect the onset of congestion before a 
time out occurs and achieve higher throughput. 
 
 
 
 
 
 
 
 

TCP header 
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The header fields for TCP are shown below. 
 
 
 
 
 
 

Seque0nce number 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source port Destination port 

16 bits 16 bits 

Sequence number 

Acknowledgement number 

TCP 
header 
length 

U
R
G 

Window size 
A
C
K

P
S
H

F 
I 
N 

S
Y
N 

R
S
T 

Checksum Urgent pointer 

Options (0 or more 32 bit words) 

Data (optional) 
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Header length is measured in 32 bit words. The URG,ACK, PSH, RST, SYN, 
and FIN fields are one bit flags. The ACK bit indicates that the 
Acknowledgement field is a valid acknowledgement. The RST bit is used to 
reset a connection. The SYN bit is used during connection establishment. A 
connection request packet has SYN=1, ACK =0, a connection accept packet 
has SYN=1, ACK=1, and the sequence number of the connection request 
packet is in the Acknowledgement field.  The FIN bit is used to release 
connection. The PSH and URG fields are rarely used. As in UDP, the TCP 
checksum is calculated using the TCP header, data and part of the IP header. 
 
 
 
 


