
 1

ECE 333: Introduction to Communication Networks
Fall 2001

Lecture 7: Data Link Layer III

� CRC codes

� Retransmissions

 2

Notes:

In the last lecture we began discussing the problem of error control. We gave
examples of simple codes that could be used to either correct errors or detect errors
in a received packet. The common approach at the DLL and higher network layers
is to use codes for detecting errors and then retransmit packets that are found in
error.

In this lecture we will first look at a type of code that is commonly used for
detecting errors, called a cyclic redundancy check (CRC) code. Such codes have
several good error detection properties. Then we will begin to consider approaches
for retransmitting packets that are found to be in error.

 3

Cyclic Redundancy Check (CRC) codes

The most common type of error detection codes used in the DLL is a CRC
code. These are used in part because they have good burst error detection
characteristics. By a burst error of length n we mean that an error occurs at
some bit position x, an error occurs at bit position (x + n - 1), and the bit
positions in between may or may not be in error.

A CRC adds L check bits to each frame of size. Assuming the frame size is
less than 2L -1 a CRC can detect any burst error of length L as well as all
patterns of 1,2, or 3 bit errors.

Furthermore, a CRC will detect a random large numbers of errors with
probability L�

� 21 . (Compare this with a parity check code in which a
random received sequence will be accepted as correct with probability 1/2)

CRC's with 16 or 32 check bits are commonly used.

 4

To understand CRC's, it is useful to represent bit strings as polynomials with
binary coefficients. For example the string 10010 would be represented as:

1x4 + 0x3 + 0x2 + 1x1 + 0x0 = x4 + x

It is also useful to add, subtract, multiply, and divide these polynomials
using (mod 2) arithmetic, i.e. this is done in the same manner as with
usual polynomials, except the coefficients are treated using the following
rules:

 Addition: 0 + 0 = 1 + 1 = 0
 0 + 1 = 1 + 0 = 1

Subtraction = addition

Multiplication: 0 � 0 = 1 � 0 = 0 � 1 = 0
 1 � 1 = 1

For example, using these rules we have: (x3+1) + (x2 +1) = (x3+x2)
and x3(x2 +1)= (x5 + x3).

 5

Cyclic Redundancy Check Codes

A CRC code is defined in terms of a generator polynomial G(x), let L be
the degree of this polynomial, i.e. �

�� LxxG)(

As above we represent the bit string to be encoded as a polynomial, M(x).

To encode this bit stream we perform the following steps:

1. Form the product xLM(x), note this corresponds to appending L
zeroes to M(x).

2. Divide the product xLM(x) by G(x), using polynomial division
mod 2, let R(x) denote the remainder of this division.

3. Set the transmitted codeword T(x) = xLM(x) - R(x).

Note that R(x) will have degree of at most L, and T(x) will correspond to the
polynomial representing the original bit string plus L additional bits. Also,
T(x) must be evenly divisible by G(x) (with no remainder). To see this note
that)()()()(xRxTxHxMx L �� , for some polynomial H(x). Therefore, the
receiver can check if the received sequence is divisible by G(x), and if not it
will know that an error has occurred.

 6

CRC's (continued)

Example: Assume message is 1 1 1 1 1 0 1 1 1 0 0 0 1

 � 1)(45689101112 ��������� xxxxxxxxxM

 Generator Polynomial G(x)= x4 + x3 + x2 + 1 (L=4)

 489101213141516)(xxxxxxxxxxMx L ���������

Using long division:

11101 11111011100010000

11101000000000000

00010011100010000

11101000000000

01110100010000

11101000000000

00000000010000

11101

 1101

1001100000001 �
 x

4 �
 x

3 �
 x

2 �
 1 x

16 �
 x

15 �
 x

14 �
 x

13 �
 x

12 �
 x

10 �
 x

9 �
 x

8 �
 x

4

x 16 �
 x 15 �

 x 14 �
 x 12

x 13 �
 x 10 �

 x 9 �
 x 8 �

 x 4

x 13 �
 x 12 �

 x 11 �
 x 9

x 12 �
 x 11 �

 x 10 �
 x 8 �

 x 4

x 12 �
 x 11 �

 x 10 �
 x 8

x 4

x
4 �

 x
3 �

 x
2 �

 1

x
3 �

 x
2 �

 1

x 12 �
 x 9 �

 x 8 �
 1 �

�

 remainder �

 7

CRC example (continued)

The remainder is appended to the original message and

 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 is sent.

The receiver will divide this by G(x) and if the remainder is not zero, an error
has occurred.

To ensure good performance generator polynomials with particular
characteristics must be chosen.

One characteristic is that G(x) has the form xL + + 1, i.e. the 0th order
term is a one.

Let T(x) be the transmitted codeword. The received codeword can be
represented as T(x) + E(x), where E is a polynomial representing the error
sequence.

 8

Suppose a single error occurs. The error sequence is represented by E(x)=xi

for some i.

If G(x) has the above form, then note that G(x)H(x) must contain at least 2
non-zero terms for any non-zero polynomial H(x). Thus, it can not be that

ixxHxG �)()(for any i= 1,2,…

Using this it follows that T(x) + xi will not be divisible by G(x). Therefore the
code can detect all single bit errors.

The other error correcting properties of the CRC code can be shown using
similar ideas.

Both the encoding and decoding of CRC's can be easily implemented in either
hardware (in VLSI chips) or software. In hardware, one simple
implementation uses a feedback shift register, as shown below.

 9

Cyclic Redundancy Code Implementation

 G(x) = x16 + x12 + x5 + 1 (CRC - CCITT)

15 1314 12 11 10 89 7 6 3 12 05 4

x 5 x12

Channel
Input

Initialize shift register to all zero.

Input is directed to both the channel and the shift register.

When the last bit of input has passed, the shift register contains the

checksum.

Complexity: 16 bits of shift register, 3 exclusive OR gates

 10

Retransmissions

Recall, once an error is detected, either:
 �

This information is sent up to a higher layer.
 �

The receiving DLL entity requests that the frame be re-transmitted.

Now we begin discussing the later case.

Algorithms for retransmitting packets are called Automatic Repeat
reQuest (ARQ) algorithms.

We are interested in ARQ protocols for the DLL that provide a reliable
serivce, this means

§ All frames delivered correctly
§ All frames delivered only once
§ All frames delivered in the correct order

Again we emphasize that these algorithms are also used at higher layers.

-or-

 11

ARQ Algorithms

Basic problem:

Given that a packet is detected in error, the receiving DLL peer needs to
request a retransmission from the transmitting DLL peer.

Perfect world:
�

Every packet arrives on the forward link in order, within a
specified time. �

Every packet arrives on the reverse link in order, within a
specified time. �

Feedback link is error free.

Transmitter

Receiver

Feedback link

Forward link

 12

Reality: Bad Things can Happen.

Depending on the situation:
 �

Packets on the forward link may not arrive at all, or may be delayed
arbitrarily long.

 �

Packets on the reverse link may not arrive at all, or may be delayed
arbitrarily long.

 �

Packets on the reverse link can also be in error.

In this environment, we want to design an ARQ algorithm so that each packet is
delivered once, in order and without detected errors. (There will always be some
errors that will not be detectable, but we cannot do anything about these.)

In some cases, in particular at higher layers, yet another issue can arise, that is
that packets on both the forward or reverse link may not arrive in the order they
where sent. We will not consider this issue right now.

 13

Notification

Suppose that when an error is detected, the receiver sends a special
"retransmit" packet to the transmitter requesting retransmission.

Even with a "perfect" feedback link there is a problem with this. What?

(Answer: the "retransmit" packet may not arrive.)

Instead, we will assume that the receiver tells the sender when a message
is correctly received. The return message is called an acknowledgement
(ACK).

 14

A Simple ARQ algorithm

§ The transmitter gets a packet from layer above, sends it, and starts a

timer.
§ At receiver, if the packet is received without any (detected) errors then it

is delivered to the higher layer and an ACK is sent to the transmitter.
§ Otherwise the receiver does nothing.
§ If the transmitter receives ACK - it gets another packet, sends it, and

resets the timer.
§ If No ACK is received, then the transmitter times out and resends the

packet.

Etc.

Note: the timer is needed so that if the packet isn’t acknowledged, it will be
resent.

Problems ?

 15

Duplicate Frames

What can go wrong with this protocol?

1. The ACK can get lost or damaged
2. The message can be excessively delayed
3. The timeout can be set too short

All of these can result in this layer delivering duplicate frames to the layer
above, and the layer above might have no way of determining that this has
happened. (Recall we want the DLL to provide a reliable service.)

E.g.

Packet 1

Ack

Packet 1

Transmitter

Receiver

 16

Timing Diagrams

The figure in the above example is called a timing diagram; such diagrams
are useful for understanding the behavior of distributed protocols.

The top line in the figure indicates time as measured at the transmitter, the
bottom line, time at the receiver. The width of the rectangles at the top of the
figure indicates the transmission time of each packet. The diagonal arrows
indicate the propagation time of the packets. The point where the diagonal
arrowheads intersect the time-lines indicates the time at which the entire
packet is received. The downward, vertical arrows indicate the time at which
the received packet is released to the next layer. In the above figure it is
assumed that the ACK's are small packets and their transmission times are
negligible.

 17

Sequence Numbers

We cannot prevent duplicate frames from arriving at the receiver, since
something as simple as a lost ACK can cause this to happen.

Thus, we need a way to keep the receiver from delivering duplicates.

To do this, we need a way of recognizing a duplicate.

A simple solution to this problem is to number each frame. For the simple
protocol only a single bit is needed (again we are assuming that physical
layer delivers all packets in order, without this assumption more bits for
sequence numbers would be needed.).

A single bit is set to “1” or “0” in an alternating manner. This bit is called a
sequence number.

Message to be sent Checksum SEQ

