
3D Convolutional Neural Networks for Human Action Recognition

Shuiwang Ji shuiwang.ji@asu.edu

Arizona State University, Tempe, AZ 85287, USA

Wei Xu xw@sv.nec-labs.com

Ming Yang myang@sv.nec-labs.com

Kai Yu kyu@sv.nec-labs.com

NEC Laboratories America, Inc., Cupertino, CA 95014, USA

Abstract

We consider the fully automated recognition
of actions in uncontrolled environment. Most
existing work relies on domain knowledge to
construct complex handcrafted features from
inputs. In addition, the environments are
usually assumed to be controlled. Convolu-
tional neural networks (CNNs) are a type of
deep models that can act directly on the raw
inputs, thus automating the process of fea-
ture construction. However, such models are
currently limited to handle 2D inputs. In this
paper, we develop a novel 3D CNN model for
action recognition. This model extracts fea-
tures from both spatial and temporal dimen-
sions by performing 3D convolutions, thereby
capturing the motion information encoded
in multiple adjacent frames. The developed
model generates multiple channels of infor-
mation from the input frames, and the final
feature representation is obtained by com-
bining information from all channels. We
apply the developed model to recognize hu-
man actions in real-world environment, and
it achieves superior performance without re-
lying on handcrafted features.

1. Introduction

Recognizing human actions in real-world environment
finds applications in a variety of domains including in-
telligent video surveillance, customer attributes, and
shopping behavior analysis. However, accurate recog-
nition of actions is a highly challenging task due to

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

cluttered backgrounds, occlusions, and viewpoint vari-
ations, etc. Therefore, most of the existing approaches
(Efros et al., 2003; Schüldt et al., 2004; Dollár et al.,
2005; Laptev & Pérez, 2007; Jhuang et al., 2007)
make certain assumptions (e.g., small scale and view-
point changes) about the circumstances under which
the video was taken. However, such assumptions sel-
dom hold in real-world environment. In addition, most
of these approaches follow the conventional paradigm
of pattern recognition, which consists of two steps in
which the first step computes complex handcrafted fea-
tures from raw video frames and the second step learns
classifiers based on the obtained features. In real-world
scenarios, it is rarely known which features are impor-
tant for the task at hand, since the choice of feature is
highly problem-dependent. Especially for human ac-
tion recognition, different action classes may appear
dramatically different in terms of their appearances
and motion patterns.

Deep learning models (Fukushima, 1980; LeCun et al.,
1998; Hinton & Salakhutdinov, 2006; Hinton et al.,
2006; Bengio, 2009) are a class of machines that can
learn a hierarchy of features by building high-level
features from low-level ones, thereby automating the
process of feature construction. Such learning ma-
chines can be trained using either supervised or un-
supervised approaches, and the resulting systems have
been shown to yield competitive performance in visual
object recognition (LeCun et al., 1998; Hinton et al.,
2006; Ranzato et al., 2007; Lee et al., 2009a), natu-
ral language processing (Collobert & Weston, 2008),
and audio classification (Lee et al., 2009b) tasks. The
convolutional neural networks (CNNs) (LeCun et al.,
1998) are a type of deep models in which trainable
filters and local neighborhood pooling operations are
applied alternatingly on the raw input images, result-
ing in a hierarchy of increasingly complex features.
It has been shown that, when trained with appropri-



3D Convolutional Neural Networks for Human Action Recognition

ate regularization (Ahmed et al., 2008; Yu et al., 2008;
Mobahi et al., 2009), CNNs can achieve superior per-
formance on visual object recognition tasks without
relying on handcrafted features. In addition, CNNs
have been shown to be relatively insensitive to certain
variations on the inputs (LeCun et al., 2004).

As a class of attractive deep models for automated fea-
ture construction, CNNs have been primarily applied
on 2D images. In this paper, we consider the use of
CNNs for human action recognition in videos. A sim-
ple approach in this direction is to treat video frames
as still images and apply CNNs to recognize actions
at the individual frame level. Indeed, this approach
has been used to analyze the videos of developing
embryos (Ning et al., 2005). However, such approach
does not consider the motion information encoded in
multiple contiguous frames. To effectively incorporate
the motion information in video analysis, we propose
to perform 3D convolution in the convolutional layers
of CNNs so that discriminative features along both
spatial and temporal dimensions are captured. We
show that by applying multiple distinct convolutional
operations at the same location on the input, multi-
ple types of features can be extracted. Based on the
proposed 3D convolution, a variety of 3D CNN archi-
tectures can be devised to analyze video data. We
develop a 3D CNN architecture that generates multi-
ple channels of information from adjacent video frames
and performs convolution and subsampling separately
in each channel. The final feature representation is
obtained by combining information from all channels.
An additional advantage of the CNN-based models is
that the recognition phase is very efficient due to their
feed-forward nature.

We evaluated the developed 3D CNN model on the
TREC Video Retrieval Evaluation (TRECVID) data1,
which consist of surveillance video data recorded in
London Gatwick Airport. We constructed a multi-
module event detection system, which includes 3D
CNN as a module, and participated in three tasks of
the TRECVID 2009 Evaluation for Surveillance Event
Detection. Our system achieved the best performance
on all three participated tasks. To provide indepen-
dent evaluation of the 3D CNN model, we report its
performance on the TRECVID 2008 development set
in this paper. We also present results on the KTH
data as published performance for this data is avail-
able. Our experiments show that the developed 3D
CNN model outperforms other baseline methods on
the TRECVID data, and it achieves competitive per-
formance on the KTH data without depending on

1http://www-nlpir.nist.gov/projects/trecvid/

handcrafted features, demonstrating that the 3D CNN
model is more effective for real-world environments
such as those captured in TRECVID data. The exper-
iments also show that the 3D CNN model significantly
outperforms the frame-based 2D CNN for most tasks.
We also observe that the performance differences be-
tween 3D CNN and other methods tend to be larger
when the number of positive training samples is small.

2. 3D Convolutional Neural Networks

In 2D CNNs, 2D convolution is performed at the con-
volutional layers to extract features from local neigh-
borhood on feature maps in the previous layer. Then
an additive bias is applied and the result is passed
through a sigmoid function. Formally, the value of
unit at position (x, y) in the jth feature map in the
ith layer, denoted as v

xy
ij , is given by

v
xy
ij = tanh

(

bij +
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

w
pq
ijmv

(x+p)(y+q)
(i−1)m

)

,

(1)
where tanh(·) is the hyperbolic tangent function, bij

is the bias for this feature map, m indexes over the
set of feature maps in the (i − 1)th layer connected
to the current feature map, w

pq
ijk is the value at the

position (p, q) of the kernel connected to the kth fea-
ture map, and Pi and Qi are the height and width
of the kernel, respectively. In the subsampling lay-
ers, the resolution of the feature maps is reduced by
pooling over local neighborhood on the feature maps
in the previous layer, thereby increasing invariance to
distortions on the inputs. A CNN architecture can be
constructed by stacking multiple layers of convolution
and subsampling in an alternating fashion. The pa-
rameters of CNN, such as the bias bij and the kernel
weight w

pq
ijk , are usually trained using either super-

vised or unsupervised approaches (LeCun et al., 1998;
Ranzato et al., 2007).

2.1. 3D Convolution

In 2D CNNs, convolutions are applied on the 2D fea-
ture maps to compute features from the spatial dimen-
sions only. When applied to video analysis problems,
it is desirable to capture the motion information en-
coded in multiple contiguous frames. To this end, we
propose to perform 3D convolutions in the convolution
stages of CNNs to compute features from both spa-
tial and temporal dimensions. The 3D convolution is
achieved by convolving a 3D kernel to the cube formed
by stacking multiple contiguous frames together. By
this construction, the feature maps in the convolution
layer is connected to multiple contiguous frames in the

http://www-nlpir.nist.gov/projects/trecvid/


3D Convolutional Neural Networks for Human Action Recognition

(a) 2D convolution

te
m

p
o

ra
l

(b) 3D convolution

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x, y, z) on the jth fea-
ture map in the ith layer is given by

v
xyz
ij =tanh

(

bij+
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

w
pqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

,

(2)
where Ri is the size of the 3D kernel along the tem-
poral dimension, w

pqr
ijm is the (p, q, r)th value of the

kernel connected to the mth feature map in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same

te
m

p
o

ra
l

Figure 2. Extraction of multiple features from contiguous
frames. Multiple 3D convolutions can be applied to con-
tiguous frames to extract multiple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not share weights, resulting in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN Architecture

Based on the 3D convolution described above, a variety
of CNN architectures can be devised. In the following,
we describe a 3D CNN architecture that we have devel-
oped for human action recognition on the TRECVID
data set. In this architecture shown in Figure 3, we
consider 7 frames of size 60×40 centered on the current
frame as inputs to the 3D CNN model. We first apply a
set of hardwired kernels to generate multiple channels
of information from the input frames. This results in
33 feature maps in the second layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channels are obtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
code our prior knowledge on features, and this scheme
usually leads to better performance as compared to
random initialization.



3D Convolutional Neural Networks for Human Action Recognition

H1:
33@60x40 C2:

23*2@54x34

7x7x3 3D
convolution

2x2
subsampling

S3:
23*2@27x17

7x6x3 3D
convolution

C4:
13*6@21x12

3x3
subsampling

S5:
13*6@7x4

7x4
convolution

C6:
128@1x1

full
connnection

hardwired

input:
7@60x40

Figure 3. A 3D CNN architecture for human action recognition. This architecture consists of 1 hardwired layer, 3 convo-
lution layers, 2 subsampling layers, and 1 full connection layer. Detailed descriptions are given in the text.

We then apply 3D convolutions with a kernel size of
7 × 7 × 3 (7 × 7 in the spatial dimension and 3 in the
temporal dimension) on each of the 5 channels sepa-
rately. To increase the number of feature maps, two
sets of different convolutions are applied at each loca-
tion, resulting in 2 sets of feature maps in the C2 layer
each consisting of 23 feature maps. This layer con-
tains 1,480 trainable parameters. In the subsequent
subsampling layer S3, we apply 2 × 2 subsampling on
each of the feature maps in the C2 layer, which leads
to the same number of feature maps with reduced spa-
tial resolution. The number of trainable parameters in
this layer is 92. The next convolution layer C4 is ob-
tained by applying 3D convolution with a kernel size
of 7 × 6 × 3 on each of the 5 channels in the two sets
of feature maps separately. To increase the number
of feature maps, we apply 3 convolutions with differ-
ent kernels at each location, leading to 6 distinct sets
of feature maps in the C4 layer each containing 13
feature maps. This layer contains 3,810 trainable pa-
rameters. The next layer S5 is obtained by applying
3×3 subsampling on each feature maps in the C4 layer,
which leads to the same number of feature maps with
reduced spatial resolution. The number of trainable
parameters in this layer is 156. At this stage, the size
of the temporal dimension is already relatively small
(3 for gray, gradient-x, gradient-y and 2 for optflow-x
and optflow-y), so we perform convolution only in the
spatial dimension at this layer. The size of the con-
volution kernel used is 7 × 4 so that the sizes of the
output feature maps are reduced to 1×1. The C6 layer
consists of 128 feature maps of size 1 × 1, and each of
them is connected to all the 78 feature maps in the S5
layer, leading to 289,536 trainable parameters.

By the multiple layers of convolution and subsampling,

the 7 input frames have been converted into a 128D
feature vector capturing the motion information in the
input frames. The output layer consists of the same
number of units as the number of actions, and each
unit is fully connected to each of the 128 units in
the C6 layer. In this design we essentially apply a
linear classifier on the 128D feature vector for action
classification. For an action recognition problem with
3 classes, the number of trainable parameters at the
output layer is 384. The total number of trainable
parameters in this 3D CNN model is 295,458, and all
of them are initialized randomly and trained by on-
line error back-propagation algorithm as described in
(LeCun et al., 1998). We have designed and evalu-
ated other 3D CNN architectures that combine mul-
tiple channels of information at different stages, and
our results show that this architecture gives the best
performance.

3. Related Work

CNNs belong to the class of biologically inspired mod-
els for visual recognition, and some other variants have
also been developed within this family. Motivated
by the organization of visual cortex, a similar model,
called HMAX (Serre et al., 2005), has been developed
for visual object recognition. In the HMAX model,
a hierarchy of increasingly complex features are con-
structed by the alternating applications of template
matching and max pooling. In particular, at the S1
layer a still input image is first analyzed by an array of
Gabor filters at multiple orientations and scales. The
C1 layer is then obtained by pooling local neighbor-
hoods on the S1 maps, leading to increased invariance
to distortions on the input. The S2 maps are obtained



3D Convolutional Neural Networks for Human Action Recognition

Table 1. The number of samples in each class on each of the five dates extracted from the TRECVID 2008 development
data set. The total number of samples on each date and in each class are also shown.

Date\Class CellToEar ObjectPut Pointing Negative Total

20071101 2692 1349 7845 20056 31942

20071106 1820 3075 8533 22095 35523

20071107 465 3621 8708 19604 32398

20071108 4162 3582 11561 35898 55203

20071112 4859 5728 18480 51428 80495

Total 13998 17355 55127 149081 235561

by comparing C1 maps with an array of templates,
which were generated randomly from C1 maps in the
training phase. The final feature representation in C2
is obtained by performing global max pooling over each
of the S2 maps.

The original HMAX model is designed to analyze 2D
images. In (Jhuang et al., 2007) this model has been
extended to recognize actions in video data. In par-
ticular, the Gabor filters in S1 layer of the HMAX
model have been replaced with some gradient and
space-time modules to capture motion information. In
addition, some modifications to HMAX, proposed in
(Mutch & Lowe, 2008), have been incorporated into
the model. A major difference between CNN- and
HMAX-based models is that CNNs are fully trainable
systems in which all the parameters are adjusted based
on training data, while all modules in HMAX consist
of handcrafted connections and parameters.

In speech and handwriting recognition, time-delay
neural networks have been developed to extract tem-
poral features (Bromley et al., 1993). In (Kim et al.,
2007), a modified CNN architecture has been devel-
oped to extract features from video data. In addition
to recognition tasks, CNNs have also been used in 3D
image restoration problems (Jain et al., 2007).

4. Experiments

We perform experiments on the TRECVID 2008 data
and the KTH data (Schüldt et al., 2004) to evaluate
the developed 3D CNN model for action recognition.

4.1. Action Recognition on TRECVID Data

The TRECVID 2008 development data set consists of
49-hour videos captured at the London Gatwick Air-
port using 5 different cameras with a resolution of
720 × 576 at 25 fps. The videos recorded by camera
number 4 are excluded as few events occurred in this
scene. In this experiments, we focus on the recognition

of 3 action classes (CellToEar, ObjectPut, and Point-

ing). Each action is classified in the one-against-rest
manner, and a large number of negative samples were
generated from actions that are not in these 3 classes.
This data set was captured on five days (20071101,
20071106, 20071107, 20071108, and 20071112), and
the statistics of the data used in our experiments are
summarized in Table 1. The 3D CNN model used in
this experiment is as described in Section 2 and Figure
3, and the number of training iterations are tuned on
a separate validation set.

As the videos were recorded in real-world environ-
ments, and each frame contains multiple humans, we
apply a human detector and a detection-driven tracker
to locate human heads. Some sample human detec-
tion and tracking results are shown in Figure 4. Based
on the detection and tracking results, a bounding box
for each human that performs action was computed.
The multiple frames required by 3D CNN model are
obtained by extracting bounding boxes at the same
position from consecutive frames before and after the
current frame, leading to a cube containing the ac-
tion. The temporal dimension of the cube is set to
7 in our experiments as it has been shown that 5-7
frames are enough to achieve a performance similar
to the one obtainable with the entire video sequence
(Schindler & Van Gool, 2008). The frames were ex-
tracted with a step size of 2. That is, suppose the
current frame is numbered 0, we extract a bounding
box at the same position from frames numbered -6, -4,
-2, 0, 2, 4, and 6. The patch inside the bounding box
on each frame is scaled to 60 × 40 pixels.

To evaluate the effectiveness of the 3D CNN model, we
report the results of the frame-based 2D CNN model.
In addition, we compare the 3D CNN model with two
other baseline methods, which follow the state-of-the-
art bag-of-words (BoW) paradigm in which complex
handcrafted features are computed. For each image
cube as used in 3D CNN, we construct a BoW feature
based on dense local invariant features. Then a one-



3D Convolutional Neural Networks for Human Action Recognition

Figure 4. Sample human detection and tracking results from camera numbers 1, 2, 3, and 5, respectively from left to right.

against-all linear SVM is learned for each action class.
Specifically, we extract dense SIFT descriptors (Lowe,
2004) from raw gray images or motion edge history
images (MEHI) (Yang et al., 2009). Local features on
raw gray images preserve the appearance information,
while MEHI concerns with the shape and motion pat-
terns. These SIFT descriptors are calculated every 6
pixels from 7×7 and 16×16 local image patches in the
same cubes as in the 3D CNN model. Then they are
softly quantized using a 512-word codebook to build
the BoW features. To exploit the spatial layout in-
formation, we employ similar approach as the spatial
pyramid matching (SPM) (Lazebnik et al., 2006) to
partition the candidate region into 2×2 and 3×4 cells
and concatenate their BoW features. The dimension-
ality of the entire feature vector is 512×(2×2+3×4) =
8192. We denote the method based on gray images as
SPMcube

gray and the one based on MEHI as SPMcube
MEHI.

We report the 5-fold cross-validation results in which
the data for a single day are used as a fold. The per-
formance measures we used are precision, recall, and
area under the ROC curve (ACU) at multiple values of
false positive rates (FPR). The performance of the four
methods is summarized in Table 2. We can observe
from Table 2 that the 3D CNN model outperforms the
frame-based 2D CNN model, SPMcube

gray , and SPMcube
MEHI

significantly on the action classes CellToEar and Ob-

jectPut in all cases. For the action class Pointing, 3D
CNN model achieves slightly worse performance than
the other three methods. From Table 1 we can see that
the number of positive samples in the Pointing class is
significantly larger than those of the other two classes.
Hence, we can conclude that the 3D CNN model is
more effective when the number of positive samples is
small. Overall, the 3D CNN model outperforms other
three methods consistently as can be seen from the
average performance in Table 2.

4.2. Action Recognition on KTH Data

We evaluate the 3D CNN model on the KTH data
(Schüldt et al., 2004), which consist of 6 action classes

performed by 25 subjects. To follow the setup in the
HMAX model, we use a 9-frame cube as input and ex-
tract foreground as in (Jhuang et al., 2007). To reduce
the memory requirement, the resolutions of the input
frames are reduced to 80 × 60 in our experiments as
compared to 160 × 120 used in (Jhuang et al., 2007).
We use a similar 3D CNN architecture as in Figure
3 with the sizes of kernels and the number of feature
maps in each layer modified to consider the 80×60×9
inputs. In particular, the three convolutional layers
use kernels of sizes 9 × 7, 7 × 7, and 6 × 4, respec-
tively, and the two subsampling layers use kernels of
size 3 × 3. By using this setting, the 80 × 60 × 9 in-
puts are converted into 128D feature vectors. The final
layer consists of 6 units corresponding to the 6 classes.

As in (Jhuang et al., 2007), we use the data for 16 ran-
domly selected subjects for training, and the data for
the other 9 subjects for testing. The recognition per-
formance averaged across 5 random trials is reported
in Table 3 along with published results in the litera-
ture. The 3D CNN model achieves an overall accu-
racy of 90.2% as compared with 91.7% achieved by
the HMAX model. Note that the HMAX model use
handcrafted features computed from raw images with
4-fold higher resolution.

5. Conclusions and Discussions

We developed a 3D CNN model for action recognition
in this paper. This model construct features from both
spatial and temporal dimensions by performing 3D
convolutions. The developed deep architecture gener-
ates multiple channels of information from adjacent in-
put frames and perform convolution and subsampling
separately in each channel. The final feature represen-
tation is computed by combining information from all
channels. We evaluated the 3D CNN model using the
TRECVID and the KTH data sets. Results show that
the 3D CNN model outperforms compared methods
on the TRECVID data, while it achieves competitive
performance on the KTH data, demonstrating its su-
perior performance in real-world environments.



3D Convolutional Neural Networks for Human Action Recognition

Table 2. Performance of the four methods under multiple false positive rates (FPR). The performance is measured in
terms of precision, recall, and AUC. The AUC scores are multiplied by 103 for the ease of presentation. The highest value
in each case is highlighted.

Method FPR Measure CellToEar ObjectPut Pointing Average

3D CNN

0.1%

Precision 0.6433 0.6748 0.8230 0.7137
Recall 0.0282 0.0256 0.0152 0.0230

AUC(×103) 0.0173 0.0139 0.0075 0.0129

1%

Precision 0.4091 0.5154 0.7470 0.5572
Recall 0.1109 0.1356 0.0931 0.1132

AUC(×103) 0.6759 0.7916 0.5581 0.6752

2D CNN

0.1%

Precision 0.3842 0.5865 0.8547 0.6085

Recall 0.0097 0.0176 0.0192 0.0155

AUC(×103) 0.0057 0.0109 0.0110 0.0092

1%

Precision 0.3032 0.3937 0.7446 0.4805

Recall 0.0505 0.0974 0.1020 0.0833

AUC(×103) 0.2725 0.5589 0.6218 0.4844

SPM
cube
gray

0.1%

Precision 0.3576 0.6051 0.8541 0.6056

Recall 0.0088 0.0192 0.0191 0.0157

AUC(×103) 0.0044 0.0108 0.0110 0.0087

1%

Precision 0.2607 0.4332 0.7511 0.4817

Recall 0.0558 0.0961 0.0988 0.0836

AUC(×103) 0.3127 0.5523 0.5915 0.4855

SPM
cube
MEHI

0.1%

Precision 0.4848 0.5692 0.8268 0.6269

Recall 0.0149 0.0166 0.0156 0.0157

AUC(×103) 0.0071 0.0087 0.0084 0.0081

1%

Precision 0.3552 0.3961 0.7546 0.5020

Recall 0.0872 0.0825 0.1006 0.0901

AUC(×103) 0.4955 0.4629 0.5712 0.5099

In this work, we considered the CNN model for ac-
tion recognition. There are also other deep architec-
tures, such as the deep belief networks (Hinton et al.,
2006; Lee et al., 2009a), which achieve promising per-
formance on object recognition tasks. It would be in-
teresting to extend such models for action recognition.
The developed 3D CNN model was trained using su-
pervised algorithm in this work, and it requires a large
number of labeled samples. Prior studies show that the
number of labeled samples can be significantly reduced
when such model is pre-trained using unsupervised al-
gorithms (Ranzato et al., 2007). We will explore the
unsupervised training of 3D CNN models in the future.

Acknowledgments

The main part of this work was done during the intern-
ship of the first author at NEC Laboratories America,
Inc., Cupertino, CA.

References

Ahmed, A., Yu, K., Xu, W., Gong, Y., and Xing, E.
Training hierarchical feed-forward visual recognition
models using transfer learning from pseudo-tasks. In
ECCV, pp. 69–82, 2008.

Bengio, Y. Learning deep architectures for AI. Foun-
dations and Trends in Machine Learning, 2(1):1–
127, 2009.

Bromley, J., Guyon, I., LeCun, Y., Sackinger, E., and
Shah, R. Signature verification using a siamese time
delay neural network. In NIPS. 1993.

Collobert, R. and Weston, J. A unified architecture
for natural language processing: deep neural net-
works with multitask learning. In ICML, pp. 160–
167, 2008.

Dollár, P., Rabaud, V., Cottrell, G., and Belongie,
S. Behavior recognition via sparse spatio-temporal
features. In ICCV VS-PETS, pp. 65–72, 2005.



3D Convolutional Neural Networks for Human Action Recognition

Table 3. Action recognition accuracies in percentage on the KTH data. The methods presented from top to bottom are:
3D CNN, and the methods proposed in (Schüldt et al., 2004), (Dollár et al., 2005), (Niebles et al., 2008), (Jhuang et al.,
2007), and (Schindler & Van Gool, 2008). Dashes denote that results for individual classes are not available.

Method Boxing Handclapping Handwaving Jogging Running Walking Average

3D CNN 90 94 97 84 79 97 90.2

Schüldt 97.9 59.7 73.6 60.4 54.9 83.8 71.7

Dollár 93 77 85 57 85 90 81.2

Niebles 98 86 93 53 88 82 83.3

Jhuang 92 98 92 85 87 96 91.7

Schindler – – – – – – 92.7

Efros, A. A., Berg, A. C., Mori, G., and Malik, J.
Recognizing action at a distance. In ICCV, pp. 726–
733, 2003.

Fukushima, K. Neocognitron: A self-organizing neural
network model for a mechanism of pattern recogni-
tion unaffected by shift in position. Biol. Cyb., 36:
193–202, 1980.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the
dimensionality of data with neural networks. Sci-
ence, 313(5786):504–507, July 2006.

Hinton, G. E., Osindero, S., and Teh, Y. A fast learn-
ing algorithm for deep belief nets. Neural Computa-
tion, 18:1527–1554, 2006.

Jain, V., Murray, J. F., Roth, F., Turaga, S., Zhigulin,
V., Briggman, K. L., Helmstaedter, M. N., Denk,
W., and Seung, H. S. Supervised learning of image
restoration with convolutional networks. In ICCV,
2007.

Jhuang, H., Serre, T., Wolf, L., and Poggio, T. A
biologically inspired system for action recognition.
In ICCV, pp. 1–8, 2007.

Kim, H.-J., Lee, J. S., and Yang, H.-S. Human ac-
tion recognition using a modified convolutional neu-
ral network. In Proceedings of the 4th International
Symposium on Neural Networks, pp. 715–723, 2007.

Laptev, I. and Pérez, P. Retrieving actions in movies.
In ICCV, pp. 1–8, 2007.

Lazebnik, S., Achmid, C., and Ponce, J. Beyond bags
of features: Spatial pyramid matching for recogniz-
ing natural scene categories. In CVPR, pp. 2169–
2178, 2006.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

LeCun, Y., Huang, F.-J., and Bottou, L. Learning
methods for generic object recognition with invari-
ance to pose and lighting. In CVPR, 2004.

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y.
Convolutional deep belief networks for scalable un-
supervised learning of hierarchical representations.
In ICML, pp. 609–616, 2009a.

Lee, H., Pham, P., Largman, Y., and Ng, A. Unsuper-
vised feature learning for audio classification using
convolutional deep belief networks. In NIPS, pp.
1096–1104. 2009b.

Lowe, D. G. Distinctive image features from scale in-
variant keypoints. International Journal of Com-
puter Vision, 60(2):91–110, 2004.

Mobahi, H., Collobert, R., and Weston, J. Deep learn-
ing from temporal coherence in video. In ICML, pp.
737–744, 2009.

Mutch, J. and Lowe, D. G. Object class recognition
and localization using sparse features with limited
receptive fields. International Journal of Computer
Vision, 80(1):45–57, October 2008.

Niebles, J. C., Wang, H., and Fei-Fei, L. Unsupervised
learning of human action categories using spatial-
temporal words. International Journal of Computer
Vision, 79(3):299–318, 2008.

Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bot-
tou, L., and Barbano, P. Toward automatic phe-
notyping of developing embryos from videos. IEEE
Trans. on Image Processing, 14(9):1360–1371, 2005.

Ranzato, M., Huang, F.-J., Boureau, Y., and LeCun,
Y. Unsupervised learning of invariant feature hier-
archies with applications to object recognition. In
CVPR, 2007.

Schindler, K. and Van Gool, L. Action snippets:
How many frames does human action recognition
require? In CVPR, 2008.

Schüldt, C., Laptev, I., and Caputo, B. Recognizing
human actions: A local SVM approach. In ICPR,
pp. 32–36, 2004.

Serre, T., Wolf, L., and Poggio, T. Object recognition
with features inspired by visual cortex. In CVPR,
pp. 994–1000, 2005.

Yang, M., Lv, F., Xu, W., Yu, K., and Gong, Y. Hu-
man action detection by boosting efficient motion
features. In IEEE Workshop on Video-oriented Ob-
ject and Event Classification, 2009.

Yu, K., Xu, W., and Gong, Y. Deep learning with
kernel regularization for visual recognition. In NIPS,
pp. 1889–1896, 2008.


