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Abstract. Image spam is a new trend in the family of email spams. The new 
image spams employ a variety of image processing technologies to create 
random noises. In this paper, we propose a semi-supervised approach, 
regularized discriminant EM algorithm (RDEM), to detect image spam emails, 
which leverages small amount of labeled data and large amount of unlabeled 
data for identifying spams and training a classification model simultaneously. 
Compared with fully supervised learning algorithms, the semi-supervised 
learning algorithm is more suitedin adversary classification problems, because 
the spammers are actively protecting their work by constantly making changes 
to circumvent the spam detection. It makes the cost too high for fully 
supervised learning to frequently collect sufficient labeled data for training. 
Experimental results demonstrate that our approach achieves 91.66% high 
detection rate with less than 2.96% false positive rate, meanwhile it 
significantly reduces the labeling cost. 

1   Introduction 

Spam is e-mail that is both unsolicited by the recipient and sent in nearly identical 
form to numerous recipients. Research reveals that 96.5% of incoming e-mails 
received by businesses were spam by June 2008 [1], and spam management costs 
U.S. businesses more than $70 billion annually [2]. As of 2007, image spam 
accounted for about 30% of all spam [3]. Image spam has become a more and more 
deteriorating issue in recent years [4]. 

Most current content-based spam filtering tools treat conventional email spam 
detection as a text classification problem, utilizing machine learning algorithms such 
as neural networks, support vector machine (SVM) and naïve Bayesian classifiers to 
learn spam characteristics [5–10]. These text-based anti-spam approaches achieved 
outstanding accuracy and have been widely used. In response, spammers have 
adopted a number of countermeasures to circumvent these text-based filters. 
Embedding spam messages into images, usually called “image spam”, is one of the 
most recent and popular spam construction techniques. 
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Fig. 1. Sample spam images 

Typically the image spam contains the same types of information advertised in 
traditional text-based spams, while similar techniques from CAPTCHA (Completely 
Automated Public Turing Test to Tell Computers and Humans Apart) are applied to 
manipulate the texts in the image. These techniques include adding speckles and dots 
in the image background, randomly changing image file names, varying borders, 
randomly inserting subject lines, and rotating the image slightly. Figure 1 shows some 
examples. The consequence is an almost infinite number of image-based spams that 
contain random variants of similar spam content. This kind of spam images is 
typically attached to or embedded in text with randomly generated good words or 
content lifted from famous literature. Through this, image spam has successfully 
bypassed text-based spam filters and presented a new challenge for spam researchers. 

In the early stage, there are several organizations and companies working on 
filtering image-based spam using Optical Character Recognition (OCR) techniques 
[11, 12]. SpamAssassin (SA) [13] pulls words out of the images and uses the 
traditional text-based methods to filter spams. This strategy was unavoidably defeated 
by the appearance of CAPTCHA. Therefore, it is an urgent need to develop a fully 
automatic image content based spam detection system. Several recent research works 
are targeting on it, such as the image spam hunter proposed by Gao et al. [14], Dredze 
et al’s fast image spam classifier [15], and near duplicate image spam detection [16, 
17]. Most of them leverage supervised machine learning algorithms to build a 
classifier for filtering spam images [14, 15] by using image-based features. 

However, in an adversary classification problem [18] like spam detection, it is not 
sufficient to just train a classifier once. The reason resides in the fact that any machine 
learning algorithms are estimating models based on the data statistics, and the 
assumption is that the statistics of the data used for training are similar to the data 
statistics in testing. However, spammers are always trying to counteract them by 
adapting their spamming algorithms to produce image spam emails with feature 
statistics different from what the anti-spam algorithms have been trained upon. 
Therefore, the anti-spam algorithms may need to be re-trained from time to time to 
capture the adversary changes of spam statistics. 
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Fig. 2. Prototype system diagram 

Furthermore, collecting sufficient labeled spam images for re-training the 
classifiers is a very labor intensive and costly task. Therefore, it is not desirable, if not 
possible, to label a large amount of images attached in emails for re-training  
the classifiers each time, especially when it has to be done very frequently to keep the 
pace with the spammers. In order to avoid such high cost of labeling large amount of 
data, a semi-supervised learning scheme [19] is a more efficient choice, where we can 
leverage small amount of labeled image data and large amount of unlabeled data for 
training the classifiers. 

In this paper, we propose a regularized discriminant EM algorithm (RDEM) to 
perform semi-supervised spam detection. RDEM improves discriminant EM (DEM) 
algorithm by leveraging semi-supervised discriminant analysis. In particular, we 
regularize the cost function of multiple discriminant analysis (MDA) [20] in DEM 
with a Laplacian graph embedding penalty. Inherited from the DEM, our approach 
performs both transductive learning and inductive learning. We test the proposed 
approach on an image spam dataset collected from Jan 2006 to Mar 2009, which 
contains both positive spam images collected from our email server, and negative 
natural images randomly downloaded from Flickr.com and other websites by 
performing image search using Microsoft Live Search. Our approach achieves 2.96% 
false positive rates with 91.66% true positive rates with less than 10% labeled data on 
average. Comparison results with previous literature demonstrate the advantages of 
our proposed approach. 

2   System Framework of RDEM Image Spam Hunter 

In this section, we describe a semi-supervised Image Spam Hunter system prototype to 
differentiate spam images from normal image attachments. Figure 2 shows the system 
diagram. We first randomly choose and label a small percentage of spam images as the 
positive samples and general photos as the negative samples to form the labeled 
training dataset. The unlabeled training dataset is randomly chosen from the mixed 
pool of spam images and normal photos. There is no need for clustering the spam 
images and normal photos into groups in our prototype system, because the Gaussian 
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mixture model (GMM) in our algorithm is able to deal with the multi-class 
categorization problem automatically. 

The RDEM algorithm, which will be further detailed in Section 3.3, is then applied 
to the training dataset, which includes both small amount of labeled training data and 
large amount of unlabeled training data, to build a model for distinguishing the image 
spams from good emails with image attachments. The unlabeled training data are 
labeled in this process, which is the transductive learning part of the proposed RDEM 
algorithm. A Gaussian mixture model is induced simultaneously in a discriminative 
embedding space, which could be further used to classify new data. This is the 
inductive learning part of the RDEM algorithm. Because of this joint transductive and 
inductive learning process, our proposed semi-supervised image spam hunter is robust 
to the random variations that exist in current spam images, and easy to adapt to the 
new changes for image spams in terms of the low labeling cost. 

It is worth noting that our semi-supervised spam hunter also fits well as a helpful 
component running at the beginning of other supervised anti-spam systems to boost 
the small amount of labeled data. Once enough labeled data is generated through the 
component, a fully supervised classifier could be further trained for automated spam 
detection. In a sense, the proposed semi-supervised spam detection scheme could also 
be functioned as a bootstrap system for a fully supervised spam hunter such as the one 
proposed by Gao et al. [14]. 

3   Regularized Discriminant EM Algorithm 

We improve the discriminant EM (DEM) [21] algorithm for semi-supervised learning, 
which introduces a graph Laplacian penalty [22, 23] to the discriminant step of the 
DEM algorithm. We call it regularized DEM algorithm (RDEM). In the rest of this 
section, we first introduce the classical unsupervised EM algorithm [24], then present 
the details of the DEM algorithm [21] and RDEM algorithm, respectively. 

3.1   EM Algorithm 

EM [24] algorithm is an iterative method to perform maximum likelihood parameter 
estimation with unobserved latent variables in a probabilistic model. Formally, let ܦ ൌ ሼሺݔ௜, ௜ሻሽ௜ୀଵேݖ where ݔ௜ א ܴ௡ is the observed data, ݖ௜  is the unobserved data, and ߠ 
is the parameter vector which characterizes the probabilistic model of ܦ . Denote ܼ ൌ ሼݖ௜ሽ௜ୀଵே , ܺ ൌ ሼ ௜ܺሽ௜ୀଵே , and the log likelihood function by ܮሺܺ, ܼ, ሻߠ . In our 
formulation, we assume that the data model is a Gaussian mixture model (GMM) of ݇ 

components, therefore ߠ ൌ ൛൫ ௝߱, ,௝ߤ ∑௝൯ൟ௝ୀଵ௞
, where ௝߱ , ௝ߤ   and ∑௝ are the mixture 

probability, mean, and covariance matrix of the ݆ -th Gaussian component ܩ൫ݔห ௝߱, ,௝ߤ ∑௝൯, respectively. Furthermore, we define ݖ௜ ൌ ൛ݖ௜௝ൟ௝ୀଵ௞
where 0 ൑ ௜௝ݖ ൑ 1 

represents how likely data point ݔ௜ belongs to the ݆-th Gaussian component. Let ߠ௧ିଵ 
be the estimated parameter at the iteration ݐ െ 1 of the EM algorithm, at iteration ݐ, 
the EM algorithm runs the following two steps to estimate the Gaussian mixture 
model: 
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E-Step: Calculate the expected value of ܮሺܺ, ܼ, ሻߠ  w.r.t. ݌ሺݔ|ݖ, ௧ିଵሻߠ , given the 
current ߠ௧ିଵ, i.e., ܳሺߠ|ߠ௧ିଵሻ ൌ ,ሺܺܮሺܧ ܼ, ,ݔ|ሻߠ   ௧ିଵሻ. We haveߠ

௜௝௧ݖ ൌ ௝߱௧ିଵܩ൫ݔ௜ห ௝߱௧ିଵ, ,௝௧ିଵߤ ∑௝௧ିଵ൯∑ ߱௞௧ିଵܩሺݔ௜|߱௞௧ିଵ, ,௞௧ିଵߤ ∑௞௧ିଵሻ௞ , (1)

ܳሺߠ|ߠ௧ିଵሻ ൌ ෍ ෍ ௜௝௧ݖ ሾlog ௝߱௧ିଵ௞
௝ୀଵ

ே
௜ୀଵ െ 12 logห∑௝௧ିଵห െ 12 ሺݔ௜ െ ௝ሻ்ߤ ෍ ൫ݔ௜ െ ௝൯ߤ െ 2݊ log ௧ିଵషభߨ2

௝ ሿ. (2)

M-Step: Find the parameter θ୲ such that θ୲ ൌ arg max஘Qሺθ|θ୲ିଵሻ. We have 

௝߱௧ ൌ 1݊ ෍ ௜௝௧௜ݖ , ௝௧ߤ ൌ ∑ ௜௝௧ݖ ∑௜௜ݔ ௜௝௧௜ݖ , (3)

∑௝௧ ൌ ∑ ௜௝௧ݖ ൫ݔ௜ െ ௜ݔ௝௧൯ሺߤ െ ௝௧ሻ்௜ߤ ∑ ௜௝௧௜ݖ . (4)

Estimating GMM using EM is a popular approach for unsupervised clustering of 
data. The EM iterations are guaranteed to find a local optimal estimation. 

3.2   Discriminant EM Algorithm 

Discriminant EM [21] (DEM) is a semi-supervised extension of the original EM 
algorithm. It assumes that the data can be categorized into c different classes, and the 
structure of the data can be captured by a GMM with c components in a ܿ െ 1 
dimensional discriminant embedding space. Let ܦ ൌ ሼሺݔ௜, ݈௜ሻሽ௜ୀଵேభ be the set of labeled 

data, where ݈௜ א ሼ1,2, ڮ , ܿሽ is the label of the data ݔ௜ א ܴ௡ . Let ܷ ൌ ሼሺݑ௜, ௜ሻሽ௜ୀଵேమݖ be 

the set of unlabeled data, where ݖ௜ ൌ ൛ݖ௜௝ൟ௝ୀଵ௖
is the unknown soft labels of ݑ௜ܴ߳௡ . 

Moreover, let ݔప෥ and ݑప෥ be the projection of ݔ௜ and ݑ௜ in the ܿ െ 1  dimensional 
discriminant embedding represented by an n × (c − 1) projection matrix W, i.e., ݔప෥ ൌ ప෥ݑ ௜andݔ்ܹ ൌ ௜. Also let ൫ݑ்ܹ ప߱෦, ప෥ߤ , ∑ప෪൯ be the parameters of the ݅-th Gaussian 
component ܩ൫ݔห ఫ߱෦, ఫ෥ߤ , ∑ఫ෪൯ of the GMM in the embedding space. The DEM algorithm 
is composed of the following three steps: 

E-Step: Estimate the probabilities of the class labels for each unlabeled data ݑ௜, i.e., ݖ௜௝௧ ൌ ෥߱௝௧ିଵܩ൫ݑ෤௜௧ିଵห ෥߱௝௧ିଵ, ,෤௝௧ିଵߤ ∑෩௝௧ିଵ൯∑ ෥߱௞௧ିଵܩ൫ݑ෤௜௧ିଵห ෥߱௞௧ିଵ, ,෤௞௧ିଵߤ ∑෩௞௧ିଵ൯௞ . (5)

D-Step: Perform multiple discriminant analysis [20] based on the labeled data ܦ and 
soft labeled data ܷ, by solving the following optimization problem to identify the 
optimal embedding ܹ௧, i.e., 
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௧ݓ ൌ ݃ݎܽ max௪ (6) ,ݓ௪்ܵݓݓ௕்ܵݓ

where 

ܵ௕ ൌ ෍൫݉ െ ௝݉൯൫݉ െ ௝݉൯்,஼
௝ୀଵ  (7)

ܵ௪ ൌ ෍൫ݔ௜ െ ݉௟೔൯൫ݔ௜ െ ݉௟೔൯் ൅ ෍ ෍ ௜௝஼ݖ
௝ୀଵ

ேమ
௜ୀଵ

ேభ
௜ୀଵ ൫ݑ௜ െ ௝݉൯൫ݑ௜ െ ௝݉൯்,     (8)

݉ ൌ 1ଵܰ ൅ ଶܰ ቌ෍ ௜ݔ ൅ ෍ ௜ேమݑ
௜ୀଵ

ேభ
௜ୀଵ ቍ, (9)

௝݉ ൌ 1∑ ,ሺ݈௜ߜ ݆ሻேభ௜ୀଵ ൅ ∑ ௜௝ேమ௜ୀଵݖ ቌ෍ ,ሺ݈௜ߜ ݆ሻݔ௜ ൅ேభ
௜ୀଵ ෍ ௜ேమݑ௜௝ݖ

௜ୀଵ ቍ,  (10)

and ߜሺ݈௜, ݆ሻ is the Dirac delta function which takes value one when ݈௜ equals ݆ and zero 
otherwise. ܹ௧ is composed of the eigen vectors corresponding to the largest ܥ െ 1 
eigen values of the generalize eigen system ܵ௕ݓ ൌ  Then both the labeled and .ݓ௪ܵߣ
unlabeled data are projected into the embedding, i.e., ݔ෤௜௧ ൌ ܹ௧೅ݔ௜, ෤௜௧ݑ ൌ ܹ௧்ݑ௜. (11)

M-Step: Estimate the optimal parameters of the GMM in the embedding space, i.e., 

෥߱௝௧ ൌ 1ଵܰ ൅ ଶܰ ቌ෍ ,ሺ݈௜ߜ ݆ሻேభ
௜ୀଵ ൅ ෍ ௜௝௧ேమݖ

௜ୀଵ ቍ, (12)

෤௝௧ߤ ൌ ∑ ,ሺ݈௜ߜ ݆ሻேభ௜ୀଵ ෤௜௧ݔ ൅ ∑ ௜௝௧ேమ௜ୀଵݖ ∑෤௜௧ݑ ,ሺ݈௜ߜ ݆ሻேభ௜ୀଵ ൅ ∑ ௜௝௧ேమ௜ୀଵݖ , (13)

∑௝௧ ൌ ∑ ,ሺ݈௜ߜ ݆ሻேభ௜ୀଵ ൫ݔ෤௜௧ െ ෤௜௧ݔ௝௧൯൫ߤ െ ௝௧൯்ߤ ൅ ∑ ௜௝௧ேమ௜ୀଵݖ ൫ݑ෤௜௧ െ ෤௜௧ݑ௝௧൯൫ߤ െ ∑௝௧൯்ߤ ,ሺ݈௜ߜ ݆ሻேభ௜ୀଵ ൅ ∑ ௜௝௧ேమ௜ୀଵݖ . (14)

These three steps are iterated until convergence. As we have already discussed, 
although DEM itself is a semi-supervised algorithm, the D-step is a purely supervised 
step. This is not desirable because it fully trusts the labels estimated from the E-step. 
We proceed to replace it with a semi-supervised discriminant analysis algorithm. 

3.3   Regularized Discriminant EM Algorithm 

Cai et al. [25] and Yang et al. [26] propose a semi-supervised discriminant analysis 
algorithm to leverage both labeled and unlabeled data to identify a discriminant 
embedding for classification. Following the common principle of learning from 
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unlabeled data, which is to respect the structure of the data, semi-supervised 
discriminant analysis introduces a graph Lapacian regularization term into multiple 
discriminant analysis, based on the regularized discriminant analysis framework 
proposed by Friedman [27]. The intuition of applying the graph Laplacian 
regularization is that in a classification problem, data points which are close to one 
another are more likely to be categorized in the same class. More formally, for the 
unlabeled data set ܷ, let ܷ ൌ ሾݑଵ, ,ଶݑ ڮ , ݊ ேమሿ be theݑ ൈ ଶܰ data matrix, we define ݏ௞௟ ൌ ൜1, ௞ݑ א ௣ܰሺݑ௟ሻฮݑ௟ א ௣ܰሺݑ௞ሻ0,         ݁ݏ݅ݓݎ݄݁ݐ݋ , (15) 

where ௣ܰሺݑሻ indicates the ݌-nearest neighbors of the data point u. Let ܵ ൌ ሾݏ௞௟ሿ, and ܦ ൌ ݀݅ܽ݃ሾ݀௞௞ሿ  where ݀௞௞ ൌ ∑ ௞௟ேమ௟ୀଵݏ . Both are ଶܰ ൈ ଶܰ  matrices. ܵ  defines a ݌ -
nearest neighbor graph. Following previous work on spectral cluster [22, 23], the 
graph Laplacian is naturally defined as ܬሺݓሻ ൌ ∑ ∑ ௞ݑ்ݓ௞௟ሺݏ െ ௟ሻଶேమ௟ୀଵேమ௞ୀଵݑ்ݓ   (16)

ൌ 2 ෍ ௞்ݑ௞݀௞௞ݑ்ݓ ݓ െ 2ேమ
௞ୀଵ ෍ ෍ ௟்ݑ௞௟ݏ௞ݑ்ݓ ேమݓ

௟ୀଵ
ேమ

௞ୀଵ  (17)

ൌ ܦሺ்ܷݓ2 െ ܵሻ்ܷݓ ൌ (18) ,ݓ்ܷܮ்ܷݓ2

there ܮ is the Laplacian matrix [22, 23]. It is clear minimizing ܬሺݓሻ with respect to ݓ 
would result in that data close to one another would be also close to one another in the 
embedding space. Following the regularized discriminant analysis [27], we introduce 
this graph Laplacian [22] regularization term into the multiple discriminant analysis 
cost function (i.e., Equation 6), i.e., ݓ௧ ൌ arg max௪ ݓ௪்ܵݓݓ௕்ܵݓ ൅ ݓ்ܷܮ்ܷݓߚ , (19)

where ܵ௕ and ܵ௪ are defined in Equation 7-10, and ߚ is a control parameter to balance 
between the supervised term and unsupervised term, respectively. In the D-Step, we 
shall replace Equation 6 with Equation 19 and perform a semi-supervised 
discriminant analysis. We denote ܵ௪ᇱ ൌ ܵ௪ ൅ ்ܷܮܷߚ . Because of the graph Laplacian 
regularization term, W�is composed of the ܥ  eigenvectors corresponding to the ܥ 
largest eigen values in the generalized eigen system ܵ௕ݓ ൌ ௪ᇱܵߣ  Keep the other two .ݓ
steps unchanged in the DEM algorithm discussed in the previous subsection, we 
propose an improved DEM algorithm. Named after the regularized discriminant 
analysis, we call it regularized DEM algorithm (RDEM). One thing we should notice 
that there is a small difference between Equation 19 and the formulation proposed by 
Cai et al. [25], because our formulation also takes the soft labels of the unlabeled data 
into consideration. It is clear that when 0 =ߚ, Equation 19 degenerates to Equation 6. 
In a sense, DEM is a special case of the regularized DEM algorithm. 

Inherited from the DEM, our proposed approach performs both transductive 
learning and inductive learning. It performs transductive learning since the unlabeled 
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data will be labeled after the training process by the maximum a posteriori estimation. 
Meanwhile, the induced GMM model in the discriminative embedding space can be 
used straightforwardly for classifying new data samples. 

4   Image Features 

We adopt an effective set of 23 image statistics [28–30] integrating color, texture, 
shape, and appearance properties for image spam detection. 

Color Statistics: We build a 10ଷ dimensional color histogram in the joint RGB space, 
i.e., each color band is quantized into 10 different levels. The entropy of this joint 
RGB histogram is the first statistics we adopted. We also build an individual 100 
dimensional histogram for each of the RGB band, 5 statistics are calculated from each 
of these three histograms, including the discreteness, mean, variance, skewness, and 
kurtosis. The discreteness is defined as the summation of all the absolute differences 
between any two consecutive bins. The other four are all standard statistics. Hence we 
adopt 16 color statistics in total. 

Texture Statistics: We employ the local binary pattern (LBP) [31] to analyze the 
texture statistics. A 59 dimensional texture histogram is extracted. It is composed of 
58 bins for all the different uniform local binary patterns, i.e., those with at most two 0~1 transitions in the 8-bit stream, plus an additional bin which accounts for all other 
non-uniform local binary patterns. The entropy of the LBP histogram is adopted as 
one feature. This adds in 1 texture statistics. 

Shape Statistics: To account for the shape information of the visual objects, we build 
a 40×8 = 320 dimensional magnitude-orientation histogram for the image gradient. 
The difference between the energies in the lower frequency band and the higher 
frequency band are used as 1 feature. The entropy of the histogram is another feature. 
We further run a Canny edge detector [32] and the total number of edges and the 
average length of the edges are adopted as two statistics. These produce 4 shape 
statistics in total. 

Appearance Statistics: We build the spatial correlogram [33] of the grey level pixels 
within a 1-neighborhood. The average skewness of the histograms formed from each 
slice of the correlogram is utilized as one feature. Another feature is the average 
variance ratio of all slices, where the variance ratio is defined as the ratio between the 
variance of the slice and the radius of the symmetric range over the mean of the slice 
that accounts for 60% of the total counts of the slice. These add up to 2 appearance 
statistics. 

5   Experiments 

Three quantities, i.e., recognition accuracy, true positive rate, and false positive rate, 
are adopted to compare the different approaches. The recognition accuracy stands for 
the overall classification accuracy of both spam and non-spam images. The true  
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Fig. 3. The recognition accuracy of the RDEM algorithm with different setting of ߚ. Each bar 
presents the average recognition accuracy and the standard deviation over 20 random 
label/unlabel splits. Note 0 = ߚ is equivalent to run the original DEM algorithm. 

positive rate represents the portion of the spam images being classified as spams, 
while the false positive rate indicates the portion of the non-spam images being 
classified as spam. We have to remark that most often a spam detection system would 
prefer to work with low false positive rate, and very few missing detections of spams 
are acceptable. 

5.1   Data Collection 

We collected two sets of images to evaluate our semi-supervised spam hunter system: 
normal images and spam images. We collected 1190 spam images from real spam 
emails received by 10 graduate students in our department between Jan 2006 and Feb 
2009. These images were extracted from the original spam emails and converted to 
jpeg format from bmp, gif and png formats. Since we anticipate the statistics of 
normal images will be similar to those photo images found in social networking sites 
and image search results from popular search engines, we collected 1760 normal 
images by either randomly downloading images from Flickr.com or fetching the 
images from other websites from the search results on Microsoft Live Image Search 
(http://www.live.com/?scope=images). 

5.2   Comparison to DEM 

To simulate the real application scenarios, we randomly sample 10% (small portion) 
of the images from the data we collected to represent the labeled data, and the rest are 
regarded as the unlabeled data. We call one such random sample as 1 split. Since ߚ in 
Equation 19 controls the impact of the graph Laplacian regularization in the RDEM 
algorithm, we first explore the impact of it. The recognition accuracy is calculated 
based on the maximum a posteriori label estimate.  
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Figure 3 presents the recognition accuracy with different settings of ߚ. We test 10 
different settings to vary ߚ from 0.1 to 1.0 with a stride of 0.1. Each black marker 
presents the average recognition accuracy over 20 random splits. The bar overlayed 
on each marker presents standard deviation of the recognition accuracy over 20 splits. 
As we can clearly observe, the recognition accuracy of RDEM is not that sensitive to 
the setting of ߚ . For ߚ ് 0, the average detection accuracies are all above 90%. 
Indeed, the marker corresponding to ߚ ൌ 0 is exactly the recognition accuracy of the 
DEM algorithm. It shows that RDEM is superior to DEM with all the different 
settings of ߚ.  

In the experiments, we use 3 Gaussian components to model the spam images, and 
another 3 Gaussian components to model ordinary images. Since 0.8 = ߚ presents the 
best recognition accuracy of 94.84% for RDEM, we use it for all the other 
comparisons. We further compare RDEM and DEM in terms of the average true 
positive rate and false positive rate in Table 1. As we can see the RDEM outperforms 
the original DEM algorithm significantly, i.e., it achieves both higher true positive 
rate and lower false positive rate than the DEM. It is also worth noting that the 
detection results of the RDEM algorithm are also more consistent, i.e., the standard 
deviation of the detection rates from it are smaller. This manifests that RDEM is 
statistically more stable. 

Table 1. Comparison of RDEM with DEM algorithm. 

Method Ave. True Positive Ave. False Positive 
DEM 85.38%േ5.20% 9.69%േ7.00% 

RDEM(ߚ ൌ 0.8) 91.66%േ2.33% 2.96%േ1.45% 

5.3   Comparison to Supervised Learning Methods 

Table 2 shows the comparison of the accuracy of our RDEM method against two 
popular supervised learning methods, the Boosting tree [34] and SVM [35], with 
different amount of labeled data. The Boosting tree [34] was leveraged by Gao et al. 
[14] to detect the spam images, and SVM [35] has demonstrated to be the optimal 
classifier in many applications. We can observe that RDEM demonstrates consistent 
performance gain over the Boosting tree and SVM with either 1%, 5% or 10% of 
labeled data. For example, RDEM can still achieve 88.40% true positive rate with a 
false positive rate of 5.61%, given the labeled data only accounts for 1% of the total 
data in our data collection (i.e., 12 spam images and 18 normal photos).  

As we also observe, when the number of labeled data is small, the variances of the 
true positive rates of both the Boosting tree and the SVM are much higher than that of 
the RDEM algorithm. This is quite understandable since for strong supervised 
learning algorithms such as boosting tree and SVM, lacking of labeled training data 
would make the learning process very brittle and unstable. Hence they show very high 
variances. Our preliminary results show a very good cost performance of RDEM. The 
small number of labeled data in the training stage is extremely valuable for the real 
client-side email spam detection system, as it avoids annoying the end users by the 
tedious task of labeling a lot of image spams, and provides the spam detection system 
a good start. 
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Table 2. Comparison of the RDEM against the Boosting tree and SVM methods with different 
amounts of labeled data 

Method Ave. True Positive Rate 
 1.0% 5.0% 10.0% 

RDEM (ߚ ൌ 0.8) 88.40%േ3.19% 90.89%േ3.57% 91.66%േ2.33% 
Boosting tree 67.09%േ38.92% 72.99%േ36.64% 86.87%േ5.71% 

SVM 19.39%േ33.74% 51.59%േ25.21% 68.51%േ17.48% 
Method Ave. False Positive Rate 

 1.0% 5.0% 10.0% 
RDEM (ߚ ൌ 0.8) 5.61%േ4.09% 3.61%േ2.82% 2.96%േ1.45% 

Boosting tree 4.85%േ4.15% 5.06%േ3.94% 3.44%േ1.94% 
SVM 12.65%േ29.72% 9.80%േ13.48% 9.25%േ9.60% 

6    Conclusion and Future Work 

We proposed a semi-supervised system prototype based on a regularized discriminant 
EM algorithm to detect the spam images attached in emails. The proposed method 
employs a small amount of labeled data and extracts efficient image features to 
perform both transductive and inductive learning to detect the spam images, and 
achieves promising preliminary results. Future research will be focusing on further 
improving the computational efficiency of the RDEM algorithm, and exploring more 
discriminative image features. 
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