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Abstract

Conventional wired detection of vital signs limits the
use of these important physiological parameters by many
applications, such as airport health screening, elder care,
and workplace preventive care. In this paper, we ex-
plore contact-free heart rate and respiratory rate detection
through measuring infrared light modulation emitted near
superficial blood vessels or a nasal area respectively. To
deal with complications caused by subjects’ movements,
facial expressions, and partial occlusions of the skin, we
propose a novel algorithm based on contour segmentation
and tracking, clustering of informative pixels, and dominant
frequency component estimation. The proposed method
achieves robust subject regions-of-interest alignment and
motion compensation in infrared video with low SNR. It re-
laxes some strong assumptions used in previous work and
substantially improves on previously reported performance.
Preliminary experiments on heart rate estimation for 20
subjects and respiratory rate estimation for 8 subjects ex-
hibit promising results. 1

1. Introduction and background

Human heart and respiratory rates are important vital
signs for heath monitoring. Conventionally, the heart and
respiratory rates are measured by attaching sensors to a hu-
man body that are wired to preamp and processing instru-
ments, e.g. Piezo Pulse Transducer and Electro-Cardio-
Graphy (ECG) electrodes for heart rate, and Piezo Respi-
ratory Transducer for respiratory rate measurement. These
wired measurement sensors place severe restrictions on
applications using these two parameters. Doppler ultra-
sound, photoplethysmopgraphy (PPG), and laser doppler
sensing [7] are more advanced technologies to measure
these vital signs. But, as subjects are exposed to some ac-
tive emission in these methods, it is uncertain whether their
long-term usages are safe. Recently, in pioneering work by

1The work was done during the internship of the first author in FXPAL.

Pavlidis and his colleagues [6, 9], a novel contact-free vital
sign detection technique has been introduced and explored
which is based on the infrared light emitted by the human
body itself. This approach has the merits of low risk of
harm and convenience for quick deployment. As heart and
respiratory rates can be detected safely and wirelessly, it is
more feasible to use these parameters in many applications,
such as airport health screening, long-term elder care, and
workplace preventive care.

Figure 1. Illustration of regions of interest for heart and respiratory
estimation from infrared video.

Periodic temperature changes of certain skin area can be
detected by passive thermal video and reveal the associated
heart or respiratory rates. The pulsating blood flow induces
subtle periodic temperature changes to the skin on top of
superficial vessels by heat diffusion [2]. The temperatures
of inhaled and exhaled air are noticeably different. These
temperature modulations can be detected through pixel in-
tensity changes in certain regions of interest (ROI) using a
high-sensitivity passive infrared camera. The correspond-
ing heart or respiratory rates can be measured quantitatively
by harmonic analysis of these changes. As illustrated in
Fig. 1, the ROI for the measurement of temperature modu-
lation is the skin area above the carotid artery for heart rate
and the exhaled breath from the nares for respiratory rate.

In practice, heart or respiratory rate estimation through
thermal video presents two fundamental challenges: accu-
rate subject alignment for temporal signal extraction and ro-
bust harmonic analysis with low signal-to-noise ratio (SNR)
temperature modulation signal. Harmonic analysis of tem-
poral signal is only meaningful when accurate correspon-
dences between pixels in consecutive infrared video frames
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are available. Although our subjects attempted to keep still,
involuntary muscular movements and slight voluntary mo-
tions are inevitable in a relatively long duration such as tens
of seconds. Thus, in order to extract the temperature varia-
tion of an ROI pixel over time, it is critical to align the ROI
by compensating the subject motion.

On the other hand, given the pixels are correctly associ-
ated, the harmonic analysis is still hard because of the low
SNR and other distractions. The temperature modulation
due to heart beat is usually less than 0.1K (Kelvin), which is
far less than the normal human temperature of around 310K.
Moreover, the temperature sensitivity of the state-of-the-art
infrared camera we used is about 0.025K, which is close
to the modulation signal level, resulting in a low SNR. Ad-
ditionally, occlusions of the skin by objects such as cloth-
ing, hair or jewelry can also complicate the task since they
have different heat diffusion properties from that of skin.
These facts make it hard to identify correct heart beat signal
through harmonic analysis, since the raw temperature of a
pixel is usually noisy, as shown in Fig. 2.

Figure 2. Raw temperature of a pixel on top of a superficial vessel.

Confronted by the aforementioned difficulties, existing
methods resort to questionable assumptions to align sub-
jects and simple heuristics to suppress noises. In [9], the
vessels are located manually and regarded as long narrow
structures. In addition, it is assumed that the measured sub-
ject is perfectly motionless. Further, [10, 7] align the vessel
region using the hottest pixels to track the center of blood
vessels. However, since the derivative around the maximal
temperatures are relatively small, tracking based on those
hottest spots tends to be unstable. [3, 4] attempt to align
subjects based on foil makers placed on skin that are not
available under most measurement scenarios. To combat
noise, the signals of pixels in ROI are averaged in both spa-
tial and frequency domain [9, 10, 7, 3, 4]. Moreover, there
are a few ad hoc parameters that are difficult to incorporate
into an automatic detection system, such as the width of the

vessel [9], the sizes of the ROI [3], and the band width in
the inverse wavelet transform [4].

Another natural and critical question that remains un-
clear in the existing methods is whether the temperature
modulation does exist in the selected region of interest. As
the temperature modulation level due to blood pulsating is
far less than normal skin temperature, the subtle changes in
the raw thermal video are unnoticeable to human operators.
So, we design an effective way to visualize the subtle peri-
odic changes qualitatively based on frame differences. Af-
ter subject alignment, the frame differences against certain
reference frame are calculated for every frame. An exam-
ple is shown in Fig. 3, where the temperature differences
of the ROI close to a superficial vessel exhibit visible peri-
odic changes in video with 60Hz frame rate. The temper-
ature differences look like random noise in the first several
frames, but a definite pattern appears around 0.433 second
at frame 26, close to one half of the pulse period. The tem-
perature differences become noisy again around 0.983 sec-
ond at frame 59. This observation confirms that there does
exist periodic temperature fluctuation and implies that all
pixels are not equally informative. Thus, averaging the sig-
nals of different pixels may obscure the modulation signal.
Note, this visualization method can also be used to verify
the subject alignment performance subjectively.

Reference
frame

t = 1/60 s t = 25/60 s t = 26/60 s t = 27/60 s t = 58/60 s t = 59/60 st = 0/60 s

Frame
differences

Figure 3. Visualization of the periodic changes of temperature dif-
ferences in a thermal video with frame rate 60Hz.

In this paper, we propose a novel approach to heart rate
estimation by harmonic analysis of the skin temperature
modulation around superficial vessels. The method can be
also applied to respiration rate estimation by measuring the
periodic temperature changes around nasal area. The new
approach incorporates three modules: subject alignment by
motion compensation, signal enhancement and denoising,
and robust harmonic analysis. First, we propose an au-
tomatic contour segmentation and tracking algorithm for
tracking a region near a superficial blood vessel to align
every pixel frame by frame, without requiring markers or
predefined parameters. Then, to enhance the signal, we ap-
ply a fast Fourier transform (FFT) to the temperature signal
of each pixel over time in a sliding window, followed by
a non-linear filter to reduce the low-frequency signal leak-
age in the measurement frequency range. The observation
that some pixels may be less informative than others mo-
tivates us to leverage a clustering procedure to remove the



outliers. Afterwards, the pixels in the selected cluster vote
for the dominant frequency component and the final esti-
mated heart rate is post-processed by a median filter.

The proposed method requires less human intervention
and is robust to gentle subject movement, facial expres-
sions, and noise, so that it exhibits more stable estimation
results than the previous method [9, 7]. Evaluated on ther-
mal video sequences of 20 subjects captured by a mid-wave
infrared camera, the average differences of the estimated
heart rates from the ground truth range from 0.2 to 3.4 bpm
with less than 4.9 root mean square error (RMSE). To the
best knowledge of the authors, we first show the heart rate
estimation with respect to time and the variance of the es-
timates, which demonstrate the stability and reliability of
the proposed approach. The same method also achieves
promising results on respiration rate estimation.

The related work is discussed in Sec. 2 and the overview
of our approach is presented in Sec. 3. Then, three primary
modules, i.e. subject alignment, signal enhancement, and
harmonic analysis, are described in detail in Sec. 3, Sec. 4,
and Sec. 5, respectively. The experimental evaluation is
given in Sec. 7 with the concluding remarks in Sec.8.

2. Related work

Recently, [9] proposed to estimate average cardiac heart
rates from thermal imaging of major superficial vessels on
faces and demonstrated preliminary results. The locations
of the vessels were manually labelled and it was assumed
that the measured subject was perfectly motionless. The
major blood vessels were assumed to be long narrow struc-
tures. A fixed number of pixels on the normal line directions
were averaged to suppress noise. The FFT spectrum of the
temperature of each pixel was averaged with the historical
spectrums and the dominant frequency in the band of 40-
100 beats per minute (bpm) was regarded as the heart rate.
The method was further improved in [10, 7] to employ the
hottest pixels to track the center of blood vessels in order
to align the vessel regions. Since hottest pixels may not
exactly correspond to the center of the vessels and the hot
regions may be flat, tracking based on those hottest spots
tends to be noisy and unreliable.

[3, 4] described a Superficial Temporal Artery (STA)
measurement model to estimate heart rates based on arte-
rial wall volumetric change corresponding to blood pres-
sure modulation. Subjects were aligned based on foil mak-
ers placed on their skin. The ROI close to superficial ves-
sels was divided into multiple cells and averaged. Then,
one cell was picked to estimate the transient heart rate and
waveform using band-pass filtering. The criteria to select
ROI scale, the optimal ROI cell, and the band width in the
inverse wavelet transform [3, 4] were not fully justified.

In contrast to previous methods, other than giving a
rough initial region, our approach makes no assumptions

about the location and scale of the vessel used in estimation.
The regions of interest for analysis are automatically seg-
mented and tracked, so that they are robust to gentle subject
motion and facial expressions and applicable in cases where
the skin area is partially occluded by hair or jewelry. In ad-
dition, as we employ a clustering procedure to remove some
outliers, the results are more stable than those obtained by
directly averaging the signals of all pixels in ROI.

3. Overview of our approach

The proposed approach is composed of three building
blocks: subject alignment by contour segmentation and
tracking, signal enhancement with a non-linear filter and
outlier removal by a K-means clustering, and dominant fre-
quency component by voting. The entire procedure is sum-
marized in Fig. 4.

Subject alignment and
motion compensation

Thermal video captured by
an infrared camera

Signal enhancement
and  denoising

Robust harmonic
analysis

ROI
segmentation

Contour
tracking

Pixel of
interests

clustering

Median
filtering

FFT
transform

Dominant
frequency  voting

time

bpm

Figure 4. The block diagram of our approach.

Given the thermal video sequence, we define the region
of interest as the skin area on top of a superficial vessel.
First, a large bounding box is manually cropped as a rough
initialization. Then, we compute all the isotherms with a
small temperature step. This incremental temperature step
is determined based on the temperature modulation level
and the sensitivity of the camera. The contour correspond-
ing to the steepest temperature changes specifies the bound-
ary of the ROI. This contour is least sensitive to small tem-
perature variations and capable of addressing the question
of whether the temperature changes are due to subject mo-
tion or blood pulsating.

This contour enables it to mimic artificial markers, more-
over, since the human body is not rigid, the contour inside
the measurement region is less affected by movement than
artificial markers placed farther away from the critical mea-
surement region. Since the ROI inside the contour is very
small, it is reasonable to assume most if not all pixels be-
long to one rigid object. Therefore, after contour tracking



using an active contour model [8], we can establish the cor-
respondences of pixles between frames and align the pixels
within the contour based on the center and size of the ROI.
In this way, the temperature variation can be extracted for
each pixel for further harmonic analysis.

After applying an FFT on the windowed raw temperature
signal of each pixel, we employ a non-linear filter to reduce
low frequency leakage. As can be seen in Fig. 3, all pix-
els do not contain the same level of periodic changes, and
their phases could be different due to heat diffusion. Thus,
rather than averaging the signal in either the time or fre-
quency domain, we cluster the pixels according to the fre-
quency components in the band of interest and discard the
minor clusters as outliers. The clustering procedure largely
reduces the influence of noise and other small temperature
distractions. The largest cluster is selected to vote for the
dominant component frequency. This is post-processed by
a median filter to produce the final estimate.

4. Subject alignment and motion compensation

Due to heat diffusion [2], the skin temperature on top
of the superficial vessels are generally higher than that of
the nearby skin. We utilize this property to select and align
the ROI for subjects. This is done by selecting an optimal
isotherm that corresponds to the sharpest spatial tempera-
ture change and tracking this contour to compensate for an
ROI’s motion. Specifically, the captured infrared video se-
quence is denoted as {I0, I1, · · · , It, · · · } where the tem-
perature of one pixel x = (u, v) at frame t is denoted by
It(x). We first segment the ROI R∗

0 from I0 which is asso-
ciated with the skin area on top of a superficial vessel, then
track the ROI R∗

t in successive frames to compensate for
any subject movement.

4.1. Automatic ROI segmentation

For the first frame I0, the rough initialization region is
denoted by R0. Given a temperature step ΔI and a refer-
ence temperature Iref that is the average temperature of the
pixels on the bounding box of R0, we segment the initializa-
tion region R0 into a series of nested regions, Ri ⊃ Ri+1.
The boundary of Ri, i.e. the isotherm, is defined by Γi =
∂Ri with the property that for each pixel x ∈ Γi, there
exists at least one pixel in its neighborhood N(x) whose
temperature is higher than Iref + iΔI , i.e.

∀x ∈ Γi,∃x′ ∈ N(x), s.t. I0(x
′
) > Iref + iΔI, (1)

where N(x) is the 4-connected neighborhood of pixel x.
The incremental temperature step ΔI is chosen as 0.1K
based on the temperature modulation level (0.08K) and the
sensitivity of the camera (0.025K). More specifically, if the
incremental step is smaller than 0.08K, not only determined
by the subject motion solely, temperature changes due to

blood pulsating could also affect the ROI segmentation and
tracking. On the other hand, if the step is too large, there
could be large changes in the derived regions of interest
across successive frames.

The optimal threshold, I∗ = (Iref + i∗ΔI), is selected
such that the area of the region Ri∗ has the steepest drop
against the area of Ri∗−1, so Ri∗ is less sensitive to small
temperature fluctuations. The largest connected component
in Ri∗ is selected as the ROI R∗

0 with its boundary Γ∗
0 at the

first frame I0. These series of isotherms are efficiently cal-
culated by a flooding procedure implemented by dynamic
programming. Note that this is different from pure thresh-
olding, as the temperatures of pixels inside Ri∗ could be
less than the optimal threshold I∗. This procedure is illus-
trated in Fig. 5.

Rough manual
initialization

Isotherm
extraction

Optimal threshold
selection

3D
visualization

Figure 5. The procedure for automatic ROI segmentation.

4.2. ROI alignment by contour tracking

For the following frames, we employ the same threshold
I∗ to extract the isotherm and track the contour Γ∗

t by min-
imizing the energy similar to [8]. The energy of a contour
Γt is defined as

E(Γt) =
∮

Γt

(Eimage(Γt) + Eext(Γt)) (2)

=
∮
xj∈Γt

||It(xj) − I∗||2 + α||xj − x̃j ||2,

where x̃j is the closest point to xj on the tracked con-
tour in It−1, that is, x̃j = argminx∈Γ∗

t−1
||x − xj ||2, and

α = 0.001 is a coefficient to control the trade-off between
consistency with the threshold I∗ and temporal smoothness.
The image energy Eimage is the integration of temperature
differences against the optimal threshold I∗ selected at I0.
Unlike [8], we do not impose an internal smoothness con-
straint on the contour, but use a temporal smoothness con-
straint modelled by the external energy Eext. The contour
tracking result Γ∗

t minimizes the energy in Eq. 2 by a local
gradient decent search.

After contour tracking, we align the pixels within the
ROI R∗

t based on its gravity center and size. Thus, the tem-
poral signals for individual pixels inside the ROI are ex-
tracted and denoted by s(xj , t) = {· · · , It−1(x̃j), It(xj)}
for every xj ∈ R∗

t .



5. Signal enhancement and outlier removal

Since the temperature modulation magnitude 0.08K is
approximately 4000 times less than the skin temperature
310K and only 3 times larger than the camera sensitivity,
it is critical to enhance the signal and reduce the influence
of noise before doing a harmonic analysis.

5.1. Non-linear band-pass filtering

For every frame, we analyze the temperatures signal
s(xj , t) of all pixels in R∗

t using a sliding window with N
frames to estimate the underlying heart rates. We compute
an N -point FFT of s(xj , t) with a window function W (t).

H(xj , f) = F [W (t)s(xj , t)]. (3)

Since the low frequency component of the thermal signal
is several thousand times higher than the temperature mod-
ulation level caused by periodic pulsating blood flow, the
low-frequency signal leakage due to a finite sliding window
may overwhelm the modulation. A simple way to reduce
disturbances from low frequency is a Hamming window,
which has much smaller side lobes than does a rectangular
window. However, to reduce nearby nuisance disturbances
and increase frequency estimation resolution, we prefer the
main lobe of the frequency response narrower than that of
the Hamming window. Increasing the length of the sam-
pling window can achieve that, but at the cost of longer
measurement times. Instead we design a non-linear filter
to tackle this low-frequency leakage problem by combining
the advantages of rectangle and Hamming windows. After
performing an N -point FFT on the windowed signal using
both a rectangle window Wr(t) and a Hamming window
Wh(t), we take the point-by-point minimum of these two
spectrums in the frequency domain,

H(xj , f) = min(F [Wr(t)s(xj , t)],F [Wh(t)s(xj , t)]).
(4)

Thus, the combined non-linear filter has as narrow a
main lobe as a rectangular window yet efficiently reduces
the signal leakage from low frequencies as would be ex-
pected by a Hamming window. Fig. 6 shows the frequency
responses of a rectangular and a Hamming window for one
sinusoid signal, contrasted with the frequency response of
the combined filter drawn with red line.

5.2. Pixels of interest clustering

The temporal signal s(xj , t) extracted after ROI align-
ment is vulnerable to noise and short term disturbances. In
the existing approaches, signals of the pixels in the ROI are
averaged in either the spatial domain or the frequency do-
main to reduce the influence of noise. However, as shown in
Fig. 3, the pixels may have unknown phase shifts and some
may not have clear temperature modulation. Therefore, in

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
FFT of a rectangular window
FFT of a Hamming window
FFT of the non−linear filter

Figure 6. Illustration of the frequency response of the non-linear
filter with a 256-point FFT.

contrast to other approaches, we propose to use a clustering
procedure to remove outliers, with the result that the ROI is
more robust to short time disturbances in a small region.

The frequency components of H(xj , f) in the band of
interest (40-100 bpm for heart rates, and 6-30 bpm for res-
piratory rates) are represented as an M -dimensional feature
vector {h1(xj , f), · · · , hM (xj , f)}. Then, these features
for all pixels in R∗

t are feed into a K-means clustering mod-
ule. The cluster number K is set as the number of frequency
components M empirically. After the clustering, the largest
cluster is selected to estimate heart beat rates. We refer to
the set of pixels in this cluster as the pixels of interest. This
is based on the assumption that the outliers are sparsely dis-
tributed. If more prior knowledge about the frequency re-
sponse is available, e.g. the prior distributions of heart or
respiratory rates, we can use a different criterion to select
the cluster. Though an individual signal s(xj , t) can be
very noisy, we can isolate the disturbances by performing
the cluster analysis, thus effectively reducing their impacts
on the final estimation.

6. Robust harmonic analysis

We determine the dominant frequency in the band of in-
terest by majority voting, as the mean spectrum [9, 7] tends
to be vulnerable to some abrupt distractions, such as invol-
untary facial expressions and partial occlusions by hair. The
frequency peaks of {h1(xj , f), · · · , hM (xj , f)} in the set
of pixels of interest are used to vote for the dominant fre-
quency component. The bin with the most votes is selected
as the dominant frequency, as shown in Fig. 7. The final
heart rate estimates are the median filtered results of the
dominant frequency components in a small sliding window
(1 second in the experiments below).

7. Experimental results

7.1. Experiment settings

In the experiments, we use a mid-wave infrared cam-
era [5] that can capture infrared light in the range of 3.0-5.0



Figure 7. Voting for the dominant component.

microns with the temperature sensitivity 0.025K. Twenty
people including 6 females and 14 males between the ages
of 20 to 60 volunteered to participate. For each subject, we
captured 5 one-minute thermal video clips at a resolution of
640× 512 with 14 bits for one pixel. The testing sequences
had three different frame rates 30, 60 and 115 frame per
second (fps) with the corresponding sliding window length
N = 1024, 2048, and 4096 respectively. The band of inter-
est has M = 34 components. The latency of the estimation
is about 34 seconds.

7.2. Ground truth acquisition

During the capture of the thermal video, the ground
truths (GT) for subjects’ heart rates were detected by a
piezoelectric pulse transducer and ECG electrodes, while
the ground truths for respiratory rates were measured by
a piezoelectric respiration transducer. These ground truths
were recorded by a PowerLab data acquisition system [1]
and synchronized with the thermal video using time stamps.
One thousand data points were sampled and recorded per
second. The entire setup is shown in Fig. 8.

To obtain the ground truth rates from the waveforms
(Fig. 9 shows some representative waveforms), we averaged
the intervals between the local maxima in a small time win-
dow to estimate the GT periods. The length of this window
corresponded to the highest possible rate. Specifically, we
employed windows of 0.333 seconds (180 bpm) for heart
rate estimation and 2 seconds (30 bpm) for respiratory rate
estimation. After that, the GT rates obtained by the piezo-
electric pulse transducer and ECG electrodes were averaged
to generate the GT heart rates used in the evaluation.

Figure 8. Illustration of the experiment setup.

piezoelectric
respiration
transducer

piezoelectric
pulse transducer

ECG
electrodes
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Figure 9. Illustration of the ground truth waveforms.

7.3. Heart rate estimation

We compared the proposed approach with the state-of-
the-art heart rate estimation algorithm [9, 7]. The window
size used in [9, 7] is 512 points at frame rate 30 fps. That
window size limits the frequency resolution to 0.059Hz, or
3.52 bpm. Since 3.52 bpm is usually greater than people’s
heart beat variation in one minute, we increased the win-
dow size to reduce possible aliasing. For video sequences
at frame rates 30, 60, and 115 fps, we used 1024, 2048, and
4096 points, respectively, as N in the FFT. Our band of in-
terest was 40-100 bpm, the same as [9, 7], with M = 34
for all sequences. Fig. 10 illustrates the initial ROI segmen-
tation results drawn as green contours for all subjects.

Table. 1 shows the ground truth heart rate, and the es-
timated average heart rate (Est. bpm), average difference
(Diff. bpm), and RMSE against the GT rate (GT bpm) for
our method and for the comparison method (indicated by
a postfix (S)), where possible. Note, since [9, 7] require
that subjects are completely still and assume that blood ves-
sels are long narrow structures, it is not applicable for the
majority of our test sequences. For 4 sequences where the
baseline system [9, 7] can yield reasonable results, the pro-
posed method consistently outperforms [9, 7], both in terms
of average difference in bpm and RMSE. Two representa-



Figure 10. The initial ROI segmentation results of all subjects which are drawn as green contours.

tive point-by-point comparisons of both methods with the
GT is shown in Fig. 11. It shows that the proposed method
exhibits more stable estimation than [9], largely due to our
more accurate ROI alignment and the removal of outliers
representing significant noise in the pixels. Note that the
34-second latent periods are omitted in Fig. 11.

7.4. Respiratory rate estimation

The proposed approach was also applied to respiratory
rate estimation with the same parameters except that the
isotherms in descending order in ROI segmentation, i.e
I0(x

′
) < Iref − iΔI in Eq. 1. The frequency band of in-

terest was set as 6 to 30 bpm. The comparison with the GT
rates is listed in Table. 2. The average differences are less
than 2.2 bpm. Because the nasal area of the subject had to
be clearly visible, only test video clips for 8 subjects yielded
reasonable estimates.

8. Conclusion

In this paper, we propose a new vital sign measure-
ment approach using passive thermal video. Specifically,
heart and respiratory rates are estimated by extracting the
dominant frequency component of the periodic temperature
changes around the skin area on top of a superficial ves-

Table 2. Respiratory rate estimation results.

Subject # fps # of frames GT bpm Est. bpm Diff.

4 60 3000 18 15.8 -2.2
7 60 3000 17 15.1 -1.9

10 105 5000 11 11.8 +0.8
11 105 5000 17 16.8 -0.2
14 105 5000 16 13.9 -2.1
15 105 5000 15 13.1 -1.9
17 105 5000 20 18.5 -1.5
19 105 5000 16 15.2 -0.8

sel or the nasal area. Human intervention is minimized by
automatic contour segmentation and tracking. The signal,
which has a low SNR, is enhanced by non-linear filtering
and clustering of pixels of interest. Consequently, the pro-
posed method is insensitive to initialization and robust to
gentle subject movement and facial expressions. The exper-
iments demonstrate more stable estimation compared with
the state-of-the-art method and show that this new method
is promising for quick vital sign measurement in uncon-
strained environments.

References

[1] ADInstruments. http://www.adinstruments.com. 6



Table 1. Heart rate estimation results.
Subject # fps # of frames GT bpm Est. bpm Diff. bpm RMSE Est. bpm (S) Diff. bpm (S) RMSE (S)

1 30 2000 65.3 65.8 +0.5 1.9
2 30 2000 66.6 63.9 -2.7 3.9
3 30 1750 65.7 64.7 -1.0 3.3
4 60 3000 59.8 60.7 +0.9 2.5 61.4 +1.6 3.3
5 60 3500 60.7 60.3 -0.4 3.3 56.1 -4.6 8.2
6 60 2500 66.3 63.0 -3.3 3.9
7 60 3000 61.1 60.9 -0.2 2.3
8 115 5000 64.0 65.0 +1.0 3.8
9 115 5000 78.9 80.1 +1.2 1.9

10 115 5000 65.2 64.4 -0.8 1.7
11 115 5000 62.8 66.2 +3.4 4.2
12 115 5000 63.5 62.4 -1.1 3.1
13 115 5000 73.3 72.6 -0.7 1.8
14 115 5000 86.6 87.9 +1.3 4.9 88.9 +2.3 5.8
15 115 5000 78.7 76.5 -2.2 3.1
16 115 5000 75.3 74.7 -0.7 1.9
17 115 5000 83.1 83.2 +0.1 2.1
18 115 5000 67.2 68.2 -1.0 1.3
19 115 5000 67.6 69.3 +1.7 2.8 64.6 -2.0 6.4
20 115 5000 68.7 70.1 +1.4 2.9

[2] H. Arkin, L. X. Xu, and K. R. Holmes. Recent developments
in modeling heat transfer in blood perfused tissues. IEEE
Trans. Biomed. Eng., 41(2):97 – 107, Feb. 1994. 1, 4

[3] S. Y. Chekmenev, A. A. Farag, and E. A. Essock. Multires-
olution approach for non-contact measurements of arterial
pulse using thermal imaging. In CVPR’06 Workshop, page
129, NYC, NY, June 17 - 22, 2006. 2, 3

[4] S. Y. Chekmenev, A. A. Farag, and E. A. Essock. Ther-
mal imaing of the superficial temporal artery: An arterial
pulse recovery model. In IEEE Workshop on Object Track-
ing and Classification in and Beyond the Visible Spectrum
(OTCBVS’07), pages 1 – 6, Minneapolis, MN, June 22, 2007.
2, 3

[5] FLIR Systems. www.flirthermography.com/cameras /cam-
era/1086/. 5

[6] M. Garbey, A. Merla, and I. Pavlidis. Estimation of blood
flow speed and vessel location from thermal video. In
CVPR’04, volume 1, pages 356 –363, Washington, DC,
Jun.27 - Jul.2, 2004. 1

[7] M. Garbey, N. Sun, A. Merla, and I. Pavlidis. Contact-free
measurement of cardiac pulse based on the analysis of ther-
mal imagery. IEEE Trans. Biomed. Eng., 54(8):1418 – 1426,
Aug. 2007. 1, 2, 3, 5, 6

[8] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. Int. Journal of Computer Vision, 1(4):321 –
331, Jan. 1988. 4

[9] N. Sun, M. Garbey, A. Merla, and I. Pavlidis. Imaging the
cardiovascular pulse. In CVPR’05, volume 2, pages 416 –
421, San Diego, CA, June 20 - 25, 2005. 1, 2, 3, 5, 6, 7

[10] N. Sun, I. Pavlidis, M. Garbey, and J. Fei. Harvesting the
thermal cardiac pulse signal. In International Conference on
Medical Image Computing and Computer Assisted Interven-
tion (MICCAI’06), volume 2, pages 569 – 576, Copenhagen,
Denmark, Oct. 1 - 6, 2006. 2, 3

Figure 11. Point-by-point comparison of estimated heart rate with
the ground truth for subject #4 at 60 fps (top) and subject #19 at
115 fps (bottom).


