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Abstract

Component-based detection methods have demonstrated

their promise by integrating a set of part-detectors to deal

with large appearance variations of the target. However,

an essential and critical issue, i.e., how to handle the im-

perfectness of part-detectors in the integration, is not well

addressed in the literature. This paper proposes a detec-

tor ensemble model that consists of a set of substructure-

detectors, each of which is composed of several part-

detectors. Two important issues are studied both in theory

and in practice, (1) finding an optimal detector ensemble,

and (2) detecting targets based on an ensemble. Based on

some theoretical analysis, a new model selection strategy is

proposed to learn an optimal detector ensemble that has a

minimum number of false positives and satisfies the design

requirement on the capacity of tolerating missing parts. In

addition, this paper also links ensemble-based detection to

the inference in Markov random field, and shows that the

target detection can be done by a max-product belief prop-

agation algorithm.

1. Introduction

The success of learning-based methods for face detec-

tion motivates the exploration of these methods for general

targets. However, it is found that these methods are often

limited when it is impractical to include sufficient repre-

sentative training data to cover the large uncertainty of the

target’s visual appearances. Such challenging situations are

not uncommon in practice, and occur when the target ex-

periences large deformations, or when the target is partially

occluded (some examples are shown in Fig. 1). In these sit-

uations, since the variability in appearance changes is enor-

mous due to, for example, virtually unlimited possibilities

of partial occlusion, it is generally very difficult, if not in-

feasible, to train such holistic detectors.

This has motivated the investigation of component-based

detection [1, 2, 3, 4, 7, 9, 10, 12, 13, 15, 17, 18, 19, 20, 25,

26], where the detection of the entire target is through the

integration of the detection of its parts by matching isomor-

Figure 1. Appearance variations.

phic graphs. This approach may provide a powerful means

to overcome the limitation of the holistic object detectors

mentioned above, because the variability of the appearance

of the entity is decomposed into the local variability of the

appearances of its parts and the variability of the structure

among these parts. Thus, the combination of multiple part-

detectors may ease the learning requirement based on an

impractical amount of training data.

However, an essential and critical issue, i.e., how to han-

dle the imperfectness of part-detectors in the integration

step, is not well addressed in the literature. Although the

training of part-detectors is more likely to converge, part-

detectors generally tend to produce larger number of false

positives, because the parts tend to be less discriminative. In

addition, parts may be missing due to occlusions and/or the

imperfectness of part-detectors. These situations have chal-

lenged many existing component-based detectors. To han-

dle the false positives, geometrical constraints among the

parts usually need to be considered. But the missing parts

bring difficulties. If the constraints are defined on all (or a

large portion) of the parts, a small number of missing parts

(or even a single one) will make these constraints invalid.

Thus detectors based on such constraints are not likely to

have good properties in tolerating missing parts.

This has motivated our idea of using substructures to dis-

tribute the geometrical constraints. It tends to be more ro-

bust because a small number of missing parts is less likely

to invalidate all the substructures. In this paper, we pro-

pose a detector ensemble model that consists of a set of

substructure-detectors, each of them consisting of several
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part-detectors. A substructure-detector provides a positive

detection only when all the related part-detectors are posi-

tive and the constraints among those parts are satisfied. This

integration rule tends to reduce the false positives in detec-

tion. Moreover, the ensemble provides a positive detection

when at least one substructure-detector is positive. This rule

tends to increase the probability of detecting the target.

This detector ensemble should not be arbitrarily com-

posed, because different compositions of the ensemble will

certainly have different capacities of tolerating missing

parts and have different detection performances. Therefore,

we ask the following interesting question: given a tolerance

capacity, does there exist an optimal detector ensemble that

has the minimum false positive rate?

In this paper, we analyze the capacity of tolerating miss-

ing parts based on the concept of a covering set in graph

theory, and obtain an analytical form that characterizes the

tolerance capacity. Combining this tolerance capacity and

our analysis on the detection rates and false positive mea-

sure of the substructures and the ensemble, we formulate

a novel constrained optimization problem, whose solution

gives the optimal ensemble. Based on that, a new model

selection strategy is proposed. In addition, we show the

relation between the ensemble-detector and the inference of

Markov random field, thus the detection task can be done by

the max-product belief propagation algorithm efficiently.

The proposed detector ensemble approach has several

advantages. First of all, its training is relatively simple. It

does not require a huge training set to cover virtually un-

limited cases of partial occlusion. In addition, as demon-

strated in our experiments, even if the part-detectors are not

fine-tuned and only trained on very limited cases, the entire

ensemble can still achieve a better performance than finely-

tuned holistic detectors on many difficult cases including

partial occlusions. More importantly, the proposed method

has a theoretical guarantee for the detection rate.

2. Related work

Various algorithms have been proposed to integrate com-

ponent detection results. Global methods try to characterize

the relationship among all parts simultaneously. The model

can be deterministic by placing the component detectors at

specific locations [15, 18], or probabilistic, such as mod-

eling the relative position among parts as a joint Gaussian

distribution [5, 12]. In [1], the spatial relations of the parts

are encoded as a high-dimensional feature vector to train a

sparse network of Winnows. Mutual occlusion is investi-

gated in [25] under a Bayesian framework.

To decompose the model variety, and achieve higher tol-

erance for missing part, distributed methods have been ex-

tensively studied recently, which model the consistency of

one part subset at each time, and describe the entire object

by choosing a number of such part subsets. For part subset

consistency, pairwise model is widely used due to its sim-

plicity. The relative position of two parts is usually modeled

as a Gaussian distribution [6, 10, 17]. To achieve rotation

invariant, triple [13, 20] or higher order [2] relation is also

explored. To compromise between efficiency and accuracy,

various subset selection strategies are proposed, mainly

based on methods from graph theory. The entire graph

topology can be constructed by a mixture tree model [10],

acyclic graph [4], star model [6], k-fan model [2], mini-

mal spanning tree [26], or triangulation method [13, 17].

A compositional model [16] is another distributed method

motivated by the study of human vision, where intermedi-

ate abstraction of images is learnt in a generative manner for

object category recognition. Although the existing methods

can achieve the missing part tolerance ability to some ex-

tend, as far as we are aware, no quantitative analysis of the

relationship between model selection and detection perfor-

mance has been constructed in the literature.

3. Detector ensemble

3.1. Model overview

The overview of the proposed detector ensemble model

is shown in Fig. 2. Suppose an object O contains n parts

{p1, p2, . . . , pn}. Each part pi is associated with a part-

detector whose detection rate is d
p
i and false positive rate

f
p
i . The part-detectors could be any existing detectors, and

they are generally far from perfect. A lot of false positives

may be present since a part is less discriminative than the

entire object. In addition, parts are likely to be missing due

to appearance variations and occlusions. Here we do not

differentiate between these two cases, and use d
p
i to charac-

terize both of them.

A substructure-detector is composed of a set of part-

detectors and the constraints among those parts. A

substructure-detector is positive only when all its part-

detectors are positive and the constraints are satisfied. One

key feature of the substructure-detectors is that they do not

allow missing parts. In other words, all related parts must

be detected in order to form a valid detection of the sub-

structure. The detection rate and false positive measure of a

substructure Si are denoted by ds
i and fs

i , respectively.

The detector ensemble consists of a set of substructure-

detectors. It gives a positive detection if and only if at least

one substructure is detected positively, and none of them has

a negative response. We denote by dE and fE its detection

rate and false positive measure, respectively.

3.2. Substructure detectors

Assume that there are ki detections for part pi, which

we call part candidates. Each object candidate can be

described by a labeling state L = {l1, l2, . . . , ln}, where

li ∈ {0, 1, . . . , ki} indicates the selected candidate for part

pi, and li = 0 if pi is missing.



Figure 2. Architecture of a detector ensemble.

Each substructure Sj = {Pj, hj(Lj)} has two compo-

nents, Pj ⊆ O contains all the related parts, Lj is the pro-

jection of labeling state L on Pj , and hj(Lj) is a decision

function that determines how well the candidate set Lj fits

the training data. The decision function is as follows:

hj(Lj) =

{

0 ∃ i, pi ∈ Pj , li = 0

log
Hj(L|1)
Hj(L|0) − λj otherwise,

(1)

where Hj is the likelihood term derived from the training

data, and the log likelihood ratio log
Hj(L|1)
Hj(L|0) is compared

with a pre-defined threshold λj .

A labeling state L is valid for substructure Sj if and only

if hj(Lj) is positive. A valid substructure Sj must satisfy

two conditions: (1) no part in Sj is missing, and (2) the

log likelihood ratio must be larger than λj to enforce the

part consistency. For a substructure-detector, we denote by

dS
j the detection rate of Sj (the probability that the set of

parts from a real object is detected as valid substructure by

this detector, given that no related part is missing) and by

fS
j the false positive measure (the false positive number on

negative training set). The benefit of using substructure-

detectors is that its training is quite easy since no missing

part need to be considered.

It is critical to chose an appropriate substructure pool. If

a substructure contains too many parts, the chance to detect

such a substructure is low. On the other hand, if it has very

few parts, the corresponding decision function can be eas-

ily satisfied and thus tends to induce many false positives.

We choose part triples as substructure candidates, because

they can achieve a trade-off between modeling efficiency

and false positive control. In addition, this is also consis-

tent with our intuition: if three parts are detected, then it is

likely that there exists a real object. Even more so, the use

of part triples can achieve rotation invariance during inte-

gration, which is not achievable in pairwise modeling.

In our experiments, the positive substructure likelihood

is defined as a combination of the inner angle distribution

(2D distribution), the pair-wise scale ratios (three of them),

and the pair-wise scale to distance ratios (three of them).

Only the inner angle distribution is considered for negative

likelihood. λj is chosen to guarantee a high detection rate

(≥ 99%) in training.

3.3. Ensemble detector

Although each substructure requires that all related parts

must be present, the cooperation of multiple substructures

will enable the entire detector to be robust to missing parts.

The ensemble-detector E consists of a set of substructure-

detectors. The decision for a labeling state L can be made

by fusing the decisions of all substructures. It is positive if

and only if: (1) there exists at least one valid substructure in

the labeling state L, and (2) no substructure gives negative

decision on L.

How should substructures be chosen to compose the en-

semble? Does there exist an optimal one? To answer these

questions, we need to analyze the detection rate and false

positive number of the ensemble based on the fusion rule.

Detection rate: Including more substructure-detectors

in the ensemble tends to raise the detection rate of the en-

semble in general, because more occlusion cases can be

covered. The quantitative analysis is given as follows.

It is reasonable to assume that the missing parts are in-

dependent of each other, since part-detectors work indepen-

dently. Then the detection rate of the ensemble E is

dE =
∑

D⊆O

(

p(D)d(D)
)

, (2)

where D is a detection event indicating which parts are

present, the sum is over all possible D (2n cases),

p(D) =
∏

pi∈D

d
p
i

∏

pi /∈D

(1 − d
p
i ) (3)

is the probability that the event D happens, and d(D) is

the probability that one of the substructures is actually valid

given the detection event D. If each substructure-detector

reaches decisions independently, we have

d(D) = 1 −
∏

Sj∈E,Pj⊆D

(1 − dS
j ). (4)

Without the independency assumption, a conservative esti-

mation gives:

d(D) ≥ 1 − min
Sj∈E,Pj⊆D

(1 − dS
j ) (5)

=

{

maxSj∈E,Pj⊆D dS
j ∃ such j

0 otherwise.
(6)

Furthermore, if we assume that all part-detectors have

roughly the same detection rate, or d
p
i = dp, and all
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Figure 3. Illustration of the idea of covering set.

substructure-detectors have roughly the same detection rate

dS
j = dS (since they are all close to 1), the detection rate

for the ensemble can be further simplified as follows:

dE =
∑

D⊆O

(

(dp)|D|(1−dp)n−|D|(1−(1−dS)|{j|Pj⊆D}|)

)

.

(7)
False positive: Since each substructure-detector alone

can make positive decisions for the entire detector en-

semble, the total number of false positives is approxi-

mately equal to the summation of the false positive numbers

from all substructure-detectors. Although all substructure-

detectors have similar detection rates, their false positive

numbers can be very different. Substructure-detectors in

which the parts present large shape deformation of rela-

tive position tends to have a high false positive measure,

as the requirement for making positive decision has to be

relatively loose to accommodate deformation.

To summarize, an ensemble with more substructure-

detectors tends to have a higher detection rate, as well as

a larger number of false positives. Therefore, there must

exist a trade-off that gives the best ensemble.

4. Learning the optimal ensemble

Selecting a subset from all possible triple substructures

has a combinatorial complexity O(2n3

). This poses a great

difficulty in finding the optimal solution. Before we can

learn the optimal ensemble, we need to characterize its ca-

pacity of tolerating missing parts. To answer this question,

we introduce the concept of the covering set that is related

to the graph topology and can be used to characterize the

tolerance capacity.

4.1. Covering set

Inappropriate choice of the ensemble E will result in low

detection rate due to vulnerability to missing parts. Fig. 3

shows a simple example to explain this phenomenon. In

Fig. 3(a), E , containing four substructures (each of which

is a part-pair), is used to detect a five-part object. If part

A is missing, none of the substructures will be valid and

the entire object cannot be appropriately detected. This is

not “fair” since the miss detection of the target is only be-

cause of the missing of one particular part. In this case,

the detection rate of the ensemble is no more than that of

part A, which can be very small if A is a frequently miss-

ing part. Similarly, if we use triple-substructures as shown

in Fig. 3(b), two triples cannot cover all the “unfair” cases

where one missing part (A) will lead to the missing de-

tection of the entire target. But once more substructures

are involved, these “unfair” cases are less likely to hap-

pen. Fig. 3(c) shows an ensemble that has three triple-

substructures, and this ensemble has a better capacity of

tolerating missing parts. No matter which part is missing,

there always exists at least one valid substructure. As long

as such remaining substructures are detected, the entire tar-

get can be detected. This implies a fairly high detection

rate. Besides, the number of substructures in this covering

set is much smaller than the total number of all possible

triple-substructures (
(

5
3

)

= 10). This example explains that

the capacity of tolerating missing parts and detection rate of

the ensemble are closely related to some set covering prop-

erty. Next, we formally introduce the concept of covering

set, and show that a high detection rate can be guaranteed

by this covering set property.

Definition 1 Given a set O containing n elements, denoted

by Cm = {c | c ⊆ O, | c | = m} the set containing all sub-

sets of N with cardinality m. We call a set S ⊆ Cm a (t, m)
cover of set O if and only if for any c ∈ Ct, there is at least

one s ∈ S, satisfying s ⊂ c, where Ct is the set contain-

ing all subset of O with cardinality t (t ≥ m). A minimum

(t, m) covering set is the covering set which has no other

(t, m) covering set as its subset.

In other words, a (t, m) covering set is a set of m element

subsets, such that for any t elements, there must exists at

least one subset in this covering set, whose elements are

all included by those t elements. If we select the ensemble

as a (t, m) covering set of the part set O, then for a real

object, and if t parts are correctly detected, there must exist

at least one substructure, whose corresponding parts are all

detected. Thus the entire object will have a good chance to

be detected, and a high detection rate can be guaranteed.

This definition is closely related to the concept of Turán

number in graph theory [8], which is defined as

T (n, t, m) = min{ | c | | c is a (t, m) cover of O}. (8)

It is the minimum size of a (t, m) covering an n element set

(n ≥ t ≥ m). Some Turán numbers for small n are shown

in Table.1 [8]. When t = 3, T (n, 3, 3) =
(

n
3

)

, all triples

should appear in the covering set. Fig. 3(c) is an example

of a (4, 3) covering of a 5 element set. Although the Turán

number is not achievable for all the minimum covering sets,

those with the same covering property usually have roughly

the same cardinality as confirmed experimentally.

For object detection, we define the missing tolerance

number K(E) for a given ensemble E as follows:

K(E) = max { p | E is a (n − p, 3) cover of O}. (9)

It means that even if K(E) parts are missing, there is still

at least one substructure in the ensemble E such that all its

parts are detected.



Table 1. T (n, t, 3) and upper bound of missing rate (m̄%) es-

timated by Eqn. 10 when dp = 0.8, dS = 0.95. The values are

shown in the format Tm̄, and * marks the value higher than 1−dp.

t\n 5 6 7 8 9 10

3 1010.5 206.6 355.4 565.1 845.0 1205.0

4 330.0∗ 614.4 128.2 206.0 305.3 455.1

5 168.9∗ 237.7∗ 519.1 810.4 126.9 205.6

6 - 175.1∗ 245.2∗ 424.3∗ 713.1 108.1

For any given ensemble E , based on Eqn. 7 and Eqn. 6,

the lower bound of the detection rate of the entire object can

be further estimated as follows:

dE ≥
∑

|D|≥q

(

(dp)|D|(1 − dp)n−|D|(1 − (1 − dS))

)

= dS
n

∑

k=q

(

n

k

)

(dp)k(1 − dp)n−k, (10)

where q = n − K(E). Thus a larger K(E) will result

in a larger tail of a binomial distribution. As a result, a

higher detection rate of the entire target can be guaranteed.

The above analysis is only a conservative estimation, since

in the first step, all the terms correspond to |D| < t are

dropped. Some missing rates estimation with given para-

meters are listed in Table. 1. It shows that by integrating the

part-detectors, the detection rate of the object can be much

higher than that of each part.

4.2. Model selection strategy

There is a trade-off between detection rate and false posi-

tive number. In general, more substructures in the ensemble

E will result in a higher detection rate and a larger number of

false positives. Given the missing tolerance ability require-

ment t, i.e., to cover or tolerate all cases at most t missing

parts, the optimal ensemble Eopt(t) is defined as follows:

Eopt(t) = arg min
E

{
∑

Sj∈E

fS
j }, (11)

s.t. K(E) ≥ n − t, E ⊂ T,

where T = {S1, S2, ..., Sm} is the set of all substructure

candidates (m =
(

n
3

)

for triple substructures), and fS
j is the

false positive measure of Sj defined in Sec. 3.2. The opti-

mal ensemble has the minimum number of false positives

while satisfies a required tolerance ability of missing parts.

Finding Eopt(t) is a combinatorial optimization problem.

A randomized strategy is used for searching. The ensem-

ble E is initialized to T . In each step, one substructure is

removed if the covering property can be maintained. It is

randomly selected according to the false positive measure.

Those with a larger false positive measure have a larger

probability to be removed. This is done until a minimum

covering set is obtained. The entire process runs for N

(= 1000) times, and the ensemble that gives the least value

of the objective function in Eq. 11 is selected.

Input Part number n, substructure candidate set T =
{S1, S2, ..., Sm}, false positive measure fS

j for Sj , missing

tolerance number t (n ≥ t ≥ 3).

Output Optimal ensemble Eopt(t) ⊆ T .

1. For i = 1 to N
(a) Initialize Ei = T .

(b) While Ei is not a minimum (t, 3) covering set

i. Find all removable substructures

{Si1 , Si2 , · · · , Sik
}.

ii. Choose one of them with probability

αfS
it /z, with z a normalization factor and α

a constant. Assume Si0 is chosen.

iii. Ei = Ei\Si0 .

2. Eopt(t) = arg minEi
{
P

Sj∈Ei
fS

j |1 ≤ i ≤ N}.

Figure 4. Learning the optimal model E .

Given the model complexity (i.e., the number of sub-

structures), there are some other model selection strategies,

such as the triangulation-based model, star model [6], k-

fan structure [2], or random selection. It is easy to see that

if some parts are shared by many substructures in the en-

semble, the risk of detection failure can be high if these

common parts are frequently missing parts. In view of this,

the triangulation-based model, star model, and k-fan model

are less preferable. The random selection strategy might be

better than these methods, due to the decentralization of the

substructures, although this is not guaranteed. The concept

of covering set constructs an explicitly connection between

the topology of substructures and the detection rate of the

ensemble. As shown in our experiments, the model selected

by the proposed algorithm outperforms others.

5. Ensemble-based object detection

Detecting the target from the part candidates is a combi-

natorial optimization problem. In this section, we connect

this task with the inference of a Markov random field which

can be solved efficiently with belief-propagation.

Define the energy of a labeling state L w.r.t. the given

ensemble E as follows

E(L) =
∑

pi

φi(li) −
∑

Sj∈E

hj(Lj), (12)

where φi(li) is the likelihood computed by the i-th part-

detector, which can be ignored given the binary decision.

The second term measures the consistency with each sub-

structure. The MAP labeling state is the one with minimal

energy, which corresponds to the most likely object in the

input image.

Positive detection decision is made if and only if the

MAP labeling state L satisfies E(L) < λ, where λ is a

pre-determined energy threshold. We have the following

remark which can relate the above MAP decision strategy

with our ensemble-detector.



Remark 1 The MAP labeling state L satisfies E(L) > 0,

if and only if there exists a valid substructure in L.

Proof: if no valid substructure exists, then all hj(Lj) will

be non-positive (∀Sj ∈ E), thus E(L) ≤ 0, for all possi-

ble L, including the MAP one. On the other hand, if there

is a valid substructure, then assume that L0 is the labeling

state that contains parts that are only present in this valid

substructure and all the other parts are missing. Then the

energy of L0 will be equal to the h value returned by this

valid substructure, which is positive. So the MAP labeling

state must also have positive energy. �

The searching, therefore, of valid substructures can be

transformed to the searching of the MAP labeling state

which is the inference problem of a Markov random field

defined by Eq. 12. We employ the max-product belief prop-

agation algorithm [11, 24] to find the MAP labeling state

on a factor graph, where each variable node corresponds to

one part label, and each function node corresponds to a sub-

structure. If and only a part is included in a substructure, the

corresponding variable and function nodes are connected.

Assume that each part candidate can only belong to at

most one object, then multiple objects can be detected se-

quentially. In each iteration, the most likely object is de-

tected. Those part candidates overlapped with previous de-

tections are removed before detecting the next one.

6. Experiments

The proposed approach is tested on frontal face detec-

tion for comparison with the state-of-the-art detection meth-

ods [14, 23], and further on car rear detection to demon-

strate its general applicability. Part-detectors are all trained

by AdaBoost [14].

6.1. Experiments on frontal face detection

For face, the training set contains 995 frontal upright

faces collected from the Caltech-101 Object Categories [5],

the GTAV Face Database [21], and the Internet. Eight parts

(forehead, left/right eye, nose bridge, nose tip, left/right

check, lips) are manually labeled. The first image in

Fig. 7(a) shows an example of these parts. The baseline

detector for the entire face and the part-detectors for the en-

semble are all AdaBoost detectors with extended Haar-like

feature [14]. Each part-detector has 16 stages, and the train-

ing time is about 10 hours. Some results for part detection

are shown in Fig. 5. The testing set is composed of 561 im-

ages (225 images from GTAV with appearance variations,

39 images taken by ourselves in office environments, and

other images collected from the Internet). Our ground truth

data contain 686 faces that exhibit appearance variations to

different extents. This set only contains faces with height

larger than 100 pixels, since we do not expect part-based

detectors to work on low-resolution objects.

The learned optimal ensembles for (4, 3) and (5, 3) cov-

ering contain 22 and 10 substructures respectively. Their

corresponding ROC curves are shown in Fig. 6. They

are compared with (3, 3) covering ensemble (all 56 triples

included), AdaBoost.1 (AdaBoost face detector trained

by [14]) and AdaBoost.2 (AdaBoost detector trained on the

same set of training data). The ROC curves are obtained by

changing the operating point of part-detectors.

The proposed algorithm shows a better performance than

a finely-tuned AdaBoost detector (AdaBoost.1). The im-

provement is basically from faces with large appearance

variations or severe occlusion. Since such extreme cases

only take a small portion of the entire testing set, the im-

provement over the entire testing set is not significant. For

those relatively easy cases, similar results can be achieved.

The improvement over the holistic face AdaBoost detec-

tor trained on the same data set (AdaBoost.2) is substan-

tial, since our method can work very well on cases with

appearance change and occlusion, which are not included

in the limited number of training data. Some example re-

sults are shown in Fig. 7. Various appearance changes due

to occlusion, illumination, rotation are included. Since the

part-detectors are only trained with up-right samples, some

faces with large in-plane rotation (such as in the third image

of Fig. 7(c)) are not detected due to failure of part-detectors,

however, the proposed ensemble framework itself is rota-

tion invariant given rotation variant part-detectors.

Compared to the (3, 3) covering ensemble, the perfor-

mance of the learned optimal (4, 3) covering ensemble and

optimal (5, 3) covering ensemble degrades slightly, with

a much simpler ensemble structure. Given the same part

detection result, (4, 3) and (5, 3) covering ensemble can

greatly suppress the false alarm number without much drop

of the detection rate.

Figure 6(b) and (c) show the comparison of our model

selection strategy with others. The performance of 7 ran-

domly generated ensembles with the same number of sub-

structures as in the optimal (4, 3) and (5, 3) covering en-

semble are shown in (b) and (c) respectively. Besides ran-

dom selection strategy, (c) also shows the performance of a

triangulation-based substructure selection strategy (this en-

semble contains 8 substructures from Delaunay triangula-

tion, and two more other randomly selected substructures,

to make the total number of substructures the same as the

optimal (5, 3) covering ensemble), which is very low. The

optimal ensemble found by our algorithm outperforms oth-

ers with a considerable gain in detection rate and a relatively

small false alarm number.

Figure 5. Sample detection results of the parts of the face.



0 100 200 300 400
0

0.2

0.4

0.6

0.8

False Alarm Number

D
et

ec
ti

o
n

 R
at

e

 

 

(3,3) cover ensemble

Optimal (4,3) cover ensemble

Optimal (5,3) cover ensemble

AdaBoost.1

AdaBoost.2

0 100 200 300 400
0.5

0.6

0.7

0.8

0.9

False Alarm Number

D
et

ec
ti

o
n

 R
at

e

 

 

Optimal (4,3) cover ensemble

Random ensembles

(a) (b)

0 100 200 300 400
0.4

0.5

0.6

0.7

0.8

0.9

False Alarm Number

D
et

ec
ti

o
n

 R
at

e

 

 

Optimal (5,3) cover ensemble

Triangulation ensemble

Random ensembles

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

False Alarm Number

D
et

ec
ti

o
n

 R
at

e

 

 

(3,3) cover ensemble

Optimal (4,3) cover ensemble

Optimal (5,3) cover ensemble

AdaBoost.2

(c) (d)
Figure 6. Performance comparison for (a) face detection, (d) car rear detection, and (b) comparison between optimal (4, 3) covering

ensemble with random ensemble, (c) comparison between optimal (5, 3) covering and random generated or triangulation-based model.

(a) Some results with (3,3) covering ensemble. The first image also illustrate the part selection.

(b) Some results with optimal (4,3) covering ensemble.

(c) Some results with optimal (5,3) covering ensemble.

Figure 7. Face detection results and corresponding parts.



6.2. Experiments on car rear detection

For car rear detection, seven parts are selected (plate,

left/right light, left/right base, left/right window). There are

652 images from the Caltech image database. We randomly

select 225 and label them as training data, and use 336 of

them as testing data (some very similar images looking like

successive frames from a video are removed). We label

those whose widths are greater than 50 pixels as the ground

truth, and there are 414 ground truth cars in total. The above

ground truth selection makes the task more challenging than

the traditional object recognition task, since those cars not

in the center of each image exhibit large appearance varia-

tions due to occlusion, illumination changes, and car direc-

tion changes. The ROC curves and some sample results are

shown in Fig. 6(d) and Fig. 8 respectively. The proposed

algorithm has an excellent generalization ability.

6.3. Complexity

On a PentiumIV 3.4 PC, without code optimization, the

speed is evaluated on 266 car rear images (360 × 240),

since they have the same image size. On average, there are

7.57 candidates for each part. Part detection takes 1.59 sec-

onds. The average time for detector ensemble is 1.76 sec-

onds for (3, 3) covering ensemble (35 substructures), 0.58
seconds for optimal (4, 3) covering ensemble (13 substruc-

tures), 0.17 seconds for optimal (5, 3) covering ensemble (5
substructures). The complexity is approximately linear with

the number of substructures in the ensemble. In fact, with

the idea of sharing feature [22], the complexity for detecting

multiple parts could potentially be largely reduced.

7. Conclusion

In this paper, to detect objects under severe occlusion,

the detector ensemble model is introduced as a set of co-

operative substructure-detectors. Our theoretical analysis

provides the condition that guarantees the tolerance abil-

ity of missing parts, based on which, the optimality of the

detector ensemble is studied, and a randomized search al-

gorithm is designed to find the optimal ensemble. Encour-

aging results demonstrate the merits and advantages of the

ensemble-detector that only uses very limited training data.
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