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ABSTRACT

This paper argues for an implicitly parallel programming
model for many-core microprocessors, and provides initial
technical approaches towards this goal. In an implicitly par-
allel programming model, programmers maximize algorithm-
level parallelism, express their parallel algorithms by assert-
ing high-level properties on top of a traditional sequential
programming language, and rely on parallelizing compilers
and hardware support to perform parallel execution under
the hood. In such a model, compilers and related tools re-
quire much more advanced program analysis capabilities and
programmer assertions than what are currently available so
that a comprehensive understanding of the input program’s
concurrency can be derived. Such an understanding is then
used to drive automatic or interactive parallel code genera-
tion tools for a diverse set of parallel hardware organizations.
The chip-level architecture and hardware should maintain
parallel execution state in such a way that a strictly sequen-
tial execution state can always be derived for the purpose
of verifying and debugging the program. We argue that im-
plicitly parallel programming models are critical for address-
ing the software development crises and software scalability
challenges for many-core microprocessors.

Categories and Subject Descriptors: D.1.3 [Software]:
Programming Techniques— Concurrent Programming

General Terms: Design, Human Factors, Languages

Keywords: Parallel Programming
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1. INTRODUCTION

The design of microprocessors, general-purpose and embed-
ded alike, is converging to that based on multiple processor
cores. These microprocessors vary in the number and size
of their processor cores, depending on market requirements
and fabrication capabilities. It will be tempting for vendors
to impose explicitly parallel programming models for these
platforms. The higher the level of hardware parallelism,
the stronger the temptation will be. In this paper, we take
a potentially unpopular position and argue that explicitly
parallel programming will be counterproductive for the vast
majority of programmers in the long run. Instead, implicitly
parallel programming models properly supported by compile
tools and hardware will be the preferred approach.

It is important to note that we are not advocating the use
of automatic parallelization of programs based on sequential
algorithms in general. The cases where a smart compiler
can recognize that an equivalent, more parallel algorithm
is available for a particular computation are limited. We
believe that programmers are better at understanding the
trade-offs necessary to choose a more parallel but not nec-
essarily completely equivalent algorithm.

Another important clarification is that we are not advocat-
ing the general use of legacy code as input to the tool chain.
Although the techniques and tools proposed for the implic-
itly parallel programming models will likely work to a cer-
tain extent on legacy code, we expect that they will deliver
their full benefit to code developed or revised under the pro-
posed methodology and flow for two reasons. First of all,
legacy code is often developed using sequential algorithms
and needs to be redeveloped with more parallel algorithms.
Second, legacy code often contains coding styles and un-
expressed high-level assumptions that makes it extremely
difficult for the tool chain to derive a correct, deep under-
standing of the high-level properties and assumptions of the
program. We believe that the legacy code base must be
revised or redeveloped not only to use many-core systems,
but also to enable future software engineering tools to help
increase the reliability of the code base [1].
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Figure 1. Current Programming Models of Major Semiconductor
Programmable Platforms. Ranges from sequential (a) to explicitly
parallel (d) models.

It is also important to point out that explicitly parallel pro-
gramming models have been used by expert programmers
for decades and will continue to be used in specialized situ-
ations. This is similar to how assembly-level programming
is still used today when code is performance-critical and re-
source usage must be tightly controlled. In addition, when
the set of executing applications is limited, it may be more
cost-effective to reduce hardware design cost and require
explicitly parallel software for the platform. However, just
as high-level programming paradigms enabled the explosive
growth of the software industry, we envision implicitly par-
allel programming models to have a similar effect.

We believe that domain- and processing model-specific lan-
guages [19, 21] with specialized compilers are near-optimal
choices when developing applications that fit the domain or
model. We do not consider them to be explicitly parallel
programming models. For example, Shah et al. [19] are able
to achieve both high productivity and execution efficiency
with this language-application matching. However, not all
domains will be of sufficient size or maturity to justify de-
velopment of specialized languages.

What we do advocate is that programmers should express
their parallel algorithms in a “canonical form,” where a se-
quential ordering exists among all parallel units of execution.
This sequentially-ordered representation will be in the form
of a traditional sequential language such as C/C++. We re-
fer to this representation as an implicitly parallel program-
ming model in the sense that systematic, efficient code anal-
ysis and transformations by the compiler and the underlying
hardware can fully expose, map, and exploit the concurrency
in the algorithms. We argue that the sequentially-ordered
representation allows a more tractable interface for testing,
debugging, and supporting parallel applications while allow-
ing the full exploitation of algorithmic parallelism. Applica-
tions based on these implicitly parallel programming models
will more readily take advantage of each additional step of
Moore’s Law [12] scaling to thousands of processor cores
than their explicitly parallel counterparts.

2. PREVIOUSLY SUCCESSFUL

MODELS

Microprocessors have long employed parallel processing at
the hardware level. They have, however, taken one of the
three approaches shown in Figures 1(a) through (c) to hide
the complexity of parallel execution from programmers. The
top horizontal line in Figure 1 depicts the interface to hu-
man, high-level programmers whereas the middle line de-
picts the machine-level programming interface to compilers
and debuggers.
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Figure 1(a) shows the approach where the instruction-set
architecture (ISA) and its hardware implementation com-
pletely hide the complexity of parallel execution activities
from both the human programmer and the compiler. This
is used by superscalar processors, such as the Pentium®) 4
processor [3], where the fact that the hardware can execute
instructions in parallel and out of their program order is
hidden by a sequential retirement mechanism; the execution
state exposed through debuggers and exception handlers to
human programmers is completely that of sequential execu-
tion. Thus, programmers never deal with any complexity or
incorrect execution results due to parallel execution. This
is the dominant model of managing parallel execution in
general-purpose microprocessors today, accounting for hun-
dreds of millions of units per year. It is also the program-
ming model for the vast majority of programmers today.
Figure 1(b) illustrates a model where parallel execution is
exposed at the machine programming level to compilers and
object-level tools, but not to human programmers. The
most prominent microprocessors based on this model are
VLIW processors in the embedded processor domain [11,
23] and EPIC processors in the server processor domain [9].
In these models, programmers see traditional sequential pro-
gramming models such as C/C++. They need to recompile
their source, and in some cases rewrite their source code
so that algorithms with more inherent parallelism are used
and coding style and constructs better match those that
can be analyzed and manipulated by the parallelizing com-
piler. Critical math libraries are often developed by vendor
engineers at the machine programming level to further en-
hance the execution efficiency of these processors, shown as
the domain application programming interface (API) in Fig-
ure 1(b). Note that the complexities of parallel execution are
exposed to human programmers whenever they need to use
debuggers, since the hardware does not maintain sequential
state. It is well known that the acceptance of these proces-
sors in the general-purpose market has been hampered by
the need to recompile source code and to deal with the par-
allel execution complexities exposed by the debuggers when
source program or compiler bugs arise.

Figure 1(c) shows a model that has been successfully used
in specialized market domains such as graphics processing.
In this model, the complexities of parallel execution in hard-
ware are hidden from application programmers via a layer
of domain-specific API functions. These API functions per-
form substantial computation tasks such as rendering a set
of 3-D objects using the parallel execution capabilities of the
underlying hardware. The application programmers, how-
ever, write sequential code that invokes these API functions.
Although graphics processing units (GPU) have long em-
ployed multiple dozens of processor cores, few application
programs in the graphics domain have had to deal directly
with parallel execution.

All three models have been successfully used in their re-
spective target markets by carefully hiding the complex-
ity of parallel execution from their applications program-
mers. These arrangements are, however, being changed in
the strategies adopted by virtually all semiconductor ven-
dors. Figure 1(d) illustrates examples of the contemporary
strategies adopted by vendors. In the general-purpose do-
main, MPI [10] and threading [7, 20] are currently the main
programming models for using many-core microprocessors
to exploit parallel execution within an application. The



new CUDA programming model [13] from NVIDIA allows
programmers to write massively threaded parallel programs
for GPUs without dealing with domain-specific API func-
tions. Multiple Instruction Stream Processing (MISP) [6] is
proposing to move some of the complexity of thread schedul-
ing to the user-level above the OS. We argue that while these
programming models could serve as good machine-level pro-
gramming models targeted by parallelizing compilers, they
are unlikely to be cost-effective for the vast majority of ap-
plication programmers.

3. COST OF PARALLEL PROGRAM-

MING

In order to appreciate the need for implicitly parallel pro-
gramming models, one must first understand the reasons
why software development using explicitly parallel program-
ming models is an expensive proposition. Explicitly parallel
programming models are not new. The high-performance
scientific computing community has been developing appli-
cations based on models such as OpenMP [14] and MPI for
more than two decades. The transaction processing commu-
nity has also been developing explicitly parallel application
programs for a long time. The complexity of parallel pro-
gramming is well documented in the literature [4, 8, 15].

In order to develop an explicitly parallel program, program-
mers must understand the concurrency of the algorithms,
determine the granularity of parallel execution, set up data
structures to allow correct parallel execution, and rewrite
the program to execute in parallel. However, to achieve effi-
cient implementation of parallel applications, programmers
must also understand the underlying hardware and perform
optimizations whose effects are often determined by tedious
and error-prone experimentation.

There are additional issues that further increase the cost
of explicitly parallel programming models. First, scaling of
software performance is difficult. Moving software from one
hardware platform to a successor with more parallelism of-
ten requires the repetition of the experimentation process.
The requirement of general purpose software to be capable
of running on a plethora of platforms from different vendors
further exacerbates this issue. Second, explicitly parallel
code does not compose well. In general, one cannot use par-
allel code components and build large parallel systems and
expect to have correct and efficient execution. Furthermore,
one must verify and debug these programs in the presence
of non-deterministic execution states that vary according to
execution timing. These complexities have limited the pro-
duction use of parallel programming models to a very small
fraction of the applications programming community.

With the complexity of parallel programming in mind, let
us now put the implications of the various models in Fig-
ure 1 into the perspective of the overall industry. Figure 2(a)
illustrates the traditional, sequential interface between hard-
ware and software [18]. The bottom triangle represents the
semiconductor industry with its hardware and software tool
products. The top triangle represents the application devel-
opment industry including independent software vendors,
information technology service providers, and information
technology consulting firms. Note that there is a very nar-
row interface between the top and bottom triangles, symbol-
izing the fact that very few details and complexities are ex-
posed across the interface. This situation corresponds to the
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Figure 2. Cost and Complexity Exposed to Programmers

models shown in Figure 1(a)-(c): application programmers
know nothing or very little about the complexity of parallel
hardware execution. It is also true that in this traditional
model of interface, the programmers inform the tools and
hardware of nothing or very little about the nature of the
computation being performed.

Figure 2(b) shows the interface model currently being a-
dopted by the semiconductor industry. The interface has
been widened, exposing more information and complexity
between the two industries. From the bottom-up direction,
the application programmers are now exposed to the com-
plexities of parallel execution. Conversely, tools and hard-
ware are now required to deal with the explicitly-expressed
concurrency in the applications they process. The problem
is that such an exposure of complexity creates a major road-
block for the future growth of the semiconductor industry.

The triangles in Figure 2(b) are sized according to the esti-
mated sizes of the two industries. The 2005 revenue of the
global integrated circuit market is estimated to be $207B
whereas the revenue of the global applications industry is
estimated at $1,141B [5] and has generally grown at a faster
rate. This size ratio means that effort by the semiconductor
industry to increase productivity and value of applications is
magnified by about 5 times. This positive magnification has
been an important ingredient of the positive cycle feeding
the growth of the semiconductor industry.

The problem with pushing explicitly parallel programming
models on application developers is that it is an exposure
of complexity and elevation of costs to the applications in-
dustry as a result of lack of effort, innovation, or support by
the semiconductor industry. It diminishes the positive cycle
mentioned before and takes away one of the fundamental
driving forces of the growth of the semiconductor industry.

4. IMPLICITLY PARALLEL

PROGRAMMING

The practice of implicitly parallel programming is not new.
The high-performance scientific community has been work-
ing on parallelizing FORTRAN compilers for a long time.
The architecture community has also worked on speculative
multi-threading techniques to maintain sequential execution
state while using multiple processors to speed up a sequen-
tial thread. In this section, we will present more details of
the proposed implicitly parallel programming model and its
relationship to the previous work.
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Figure 3 shows the tool and execution flow of our proposed
implicitly parallel programming model. In this model, paral-
lel algorithms are expressed in C/++/# and Java without
using explicitly parallel libraries or parallel language con-
structs. The programmer can also provide assertions about
the high-level properties and invariants of the application
software. Examples include marking user custom memory
allocation pools to enable heap sensitive pointer analysis and
memory access behavior analysis of library functions whose
source code may be missing from the compilation process.
These are in contrast to programmer-inserted directives [14]
used by previous parallelizing compilers to drive transfor-
mations in the absence of compiler analyses.

We have mentioned the need to use parallel algorithms rath-
er than serial ones. Figure 4 shows pseudo-code for two pos-
sible implementations of the motion estimation loop for an
MPEG-4/H.263 encoder, with corner/boundary cases omit-
ted for brevity. In both algorithms, GetMatch, which has
no memory side effects, searches for a good fit for a 16x16
pixel partial image, or macroblock, cur _frame[i] within the
previous frame prev_frame, with the search guided by an
estimated offset vector guess. The algorithms differ only in
their methods for generating the guess vector. We will use
this example to demonstrate the types of algorithmic trade-
offs a programmer must consider when using an implicitly
parallel programming model.

In Figure 4(a), the motion estimator obtains a guess from
the previous macroblock in horizontal scan order. The the-
ory underlying this choice is that objects tend to be larger
than a single macroblock and the pieces of the object move
with the same vector. This technique is an example of adap-
tive search and provides a reasonably accurate and efficient
result on a uniprocessor system. However, this particular
adaptive search has poor parallelism between macroblocks.
The previous macroblock in the chain must be completely
processed before a macroblock can obtain its guess vector
and begin processing. Thus, this algorithm is not preferred
for execution on a many-core system.

Figure 4(b) shows another adaptive motion estimation al-
gorithm that obtains guess vectors from the corresponding
macroblock in the previous frame, rather than the previous
macroblock in the current frame. The theory underlying
this guess is that objects tend to have inertia and do not
have radical shifts in velocity between frames because the
time slices are small. This search has far better parallelism
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between macroblocks: macroblocks in a frame can be pro-
cessed independently because there is a dependence only
between a macroblock in the current frame and the corre-
sponding macroblock in the previous frame, rather than be-
tween the current macroblock and the previous macroblock
in the same frame. Moreover, removing this dependence
would not expose more parallelism for MPEG-4 motion es-
timation, because the image data for the previous frame is
inherently required to create the new frame. Consequently,
this choice of guess vector fits well with the existing depen-
dences in the overall encoding algorithm.

Note that these two algorithms do not produce exactly the
same result, which has ramifications on image quality, en-
coded video size, and more. This trade-off between available
parallelism and various other desirable characteristics is ex-
actly where human innovation and problem domain knowl-
edge is required. We believe that no proposed tool or pro-
gramming language should make this decision.

4.1 Concurrency Discovery

The Concurrency Discovery module in the flow is responsible
for rediscovery of concurrency from the sequential language
representation of the parallel algorithms. Although this
sounds like redundant work on the surface, it is a worthwhile
effort that reduces the tedious and error-prone work other-
wise performed by the programmer. The techniques com-
prising this module include, for example, advanced pointer
and memory data flow analyses that construct the program
concurrency and dependence information from the bottom
up. The fundamental approach is to summarize all of the
memory locations that each code region can access and use
the information to determine if two code regions can be exe-
cuted in parallel without interference. It also identifies exe-
cution dependences that can be removed by data replication.
Referring again to the motion estimation algorithms of Fig-
ure 4, the Concurrency Discovery module detects that the
algorithm in part (a) contains a loop-carried dependence;
therefore, it cannot be parallelized. The loop in part (b)
contains no such loop-carried dependence. However, if the
current and previous frames were allocated with a single
call to malloc, the compiler may yet be unable to determine
that the elements of the current and previous frames are
not aliased. In a subtle case like this, the module needs to
indicate to the programmer what dependences are holding
back concurrency discovery, i.e. the feedback loop in Fig-
ure 3. The programmer, who understands the high-level par-
allelism, can then assert that the two frames do not overlap
(user_assert), allowing the Concurrency Discovery module
to determine that the loop is parallelizable.

Previous work [17] has discussed the battery of analyses that
can be used to expose the parallelism in an MPEG-4 en-
coder, including a context sensitive, interprocedural pointer
analysis capable of distinguishing among heap objects allo-
cated from different malloc call chains, the Omega test [16],
and accurate analysis of non-affine index expressions for
cross-iteration dependences. Mileage can vary significantly
across different types of analysis techniques. An automatic
parallelizing compiler equipped with deeper analysis capa-
bilities can be much more effective than another with more
traditional, weaker versions of the same general categories
of analysis techniques. Work also exists for profile-based
discovery of parallelism, which can provide additional infor-
mation when analysis information is incomplete [24].
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Figure 4. MPEG-4/H.263 Encoder Motion Estimation Example and Dependence Visualization. The algorithm on the left is sequential because
every iteration depends on the previous macroblock. The loop on the right can be parallelized because this dependence has been removed.
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4.2 Code-Gen Space Exploration

In an application, there are usually multiple ways to exploit
concurrency; the choice often depends upon the underlying
hardware organization. Figure 5 shows two example strate-
gies for executing the MPEG-4/H.263 encoder with execu-
tion timing of each core shown in a horizontal time frame.

In Figure 5(a), iterations of the motion estimation outer
loop are executed in parallel, followed by parallel execu-
tion of iterations of the loops for motion compensation,
DCT/quantization, and dequantization/IDCT. Each loop
body contains multiple levels of inner loops and function
calls. The advantage of this approach, loop partitioning,
is that it is simple and requires very little synchronization
among processor cores. The disadvantage of this strategy
is that it tends to make poor use of cache memories. The
information generated by an iteration of the motion estima-
tion loop is wiped out of the cache by subsequent iterations
before it can be consumed by the motion compensation loop.
The strategy in Figure 5(b) solves the data cache efficiency
problem by fusing the four outer loops into a single large loop
body. In each iteration of the fused loop, the motion esti-
mation result is immediately consumed by motion compen-
sation. This eliminates unnecessary data movement in and
out of the data cache. However, the fused loop also signif-
icantly increases the instruction working set per processor.

In processors with small instruction caches, this strategy can
actually incur more cache misses than that in Figure 5(a).

This illustrates the cost of explicitly parallel programming
models: different underlying hardware organizations often
require different parallelization strategies to achieve good
performance. Instead of performing transformations by hand,
we propose that programmers write a single source code and
let the compiler determine the appropriate code generation
strategy, whether by trial and error [2] or by realistic perfor-
mance estimates [22], and perform the code transformations
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to achieve it. These actions are performed by the Code-Gen
Space Exploration module in Figure 3.

4.3 Parallel Execution Hardware

The execution hardware in Figure 3 has a wide spectrum
of design alternatives. In the general-purpose domain, we
argue that the hardware should be capable of producing
a strictly sequential execution state in the presence of any
exceptions or breakpoints. This can be achieved by a vari-
ety of combinations of compiler and hardware support. In
one embodiment, the machine-level executable binary con-
sists of two parts, sequential code and parallel annotations.
The sequential code can be correctly executed by a tradi-
tional single-threaded processor. It defines the sequential
semantics of the executable code. The parallel annotations
specify the modifications to be made to the sequential code
by the hardware in order to execute the program in paral-
lel. We envision the annotations to be similar to OpenMP,
but treated by the hardware as hints, rather than directives.
During normal execution, the parallel annotation directs the
hardware to execute the code in parallel. The hardware en-
forces execution rules so that one can always produce an
equivalent sequential execution state on a need basis. This
requirement necessitates extra hardware support and may
result in situations where a particular form of concurrency
may not be exploited due to this requirement.

For some algorithms, the system can easily provide sequen-
tial state for exception handling even with minimal hard-
ware support. For the example above, the motion esti-
mator does not overwrite the input arrays during paral-
lel execution and writes to each output array element at
most once. Consider an exception that arises while comput-
ing cur_frame[37] .best_vector. A simple, naive approach
would be to let all computation finish before the except-
ing core reports the corresponding program counter value
and the values of i and guess. Given those values, a “se-
quential controller” could then synthesize a sequential state,
thereby allowing the exception handler to see all elements
of cur_frame before cur_frame[37] correctly. Although the
handler would also see elements after cur_frame[37] com-
puted too early, the exception handlers are only concerned
with the values generated before the exception point.
Because the input prev_frame array is not overwritten, ex-
ecution can simply resume after the exception handler with
the sequential state. Note that there are many other po-
tential strategies and specific mechanisms to support more
sophisticated forms of parallelism and to reconstruct the se-
quential state more efficiently. This particular strategy is



given to illustrate the basic ideas of our proposed machine-
level programming models.

If we consider the other end of the spectrum, the embedded
computing domain, this level of hardware support is prob-
ably undesirable due to the associated cost and smaller set
of applications. In this case, the hardware can provide an
explicitly parallel, multi-threaded interface to the compiler
to allow for low-cost, low-power implementations. Although
programmers still program in sequential languages, the com-
piler generates explicitly parallel machine-level code. This
model exposes the complexity of parallel execution through
debuggers to the human programmers.

5. CONCLUSION

In this paper, we presented the main reasons why implic-
itly parallel programming models are critical to address the
software crisis of microprocessors. Although it is extremely
tempting for the semiconductor industry to require program-
mers to write explicitly parallel programs, we argue that it
will become a major roadblock to the future growth of the
semiconductor industry. Instead, we present an implicitly
parallel programming model that requires much more com-
piler and hardware capabilities than are currently available.
One may ask why we believe that such capabilities will come
into being after thirty years of futile attempts. Our answer
is that two major new developments have occurred in the
meantime. First, parallelizing compilers with much more
advanced, robust analysis capabilities have been success-
fully commercialized for instruction-level parallel processing
systems such as the Intel Itanium® and TI's C60. Solid
progress has been made in the area of concurrency detec-
tion and code generation for parallelism. Much progress has
also been made on program analysis on large applications
for software engineering purposes at companies such as Mi-
crosoft. The technical foundation of parallelizing compila-
tion has advanced greatly without much general recognition.
The second development is that the amount of hardware re-
sources that can be spent on maintaining execution state and
checking equivalence to sequential execution has increased
in a dramatic way in the past decade. Based on these ob-
servations, we believe that implicitly parallel programming
models will begin to be widely adopted by application de-
velopers in the next few years.
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