
2-1ECE 361

ECE C61
Computer Architecture

Lecture 2 – performance

Prof. Alok N. Choudhary

choudhar@ece.northwestern.edu

2-2ECE 361

TodayToday’’s Lectures Lecture
Performance Concepts

• Response Time
• Throughput

Performance Evaluation
• Benchmarks

Announcements

Processor Design Metrics

• Cycle Time
• Cycles per Instruction

Amdahl’s Law
• Speedup what is important

Critical Path

2-3ECE 361

Performance Concepts

2-4ECE 361

Performance PerspectivesPerformance Perspectives

Purchasing perspective
• Given a collection of machines, which has the

- Best performance ?
- Least cost ?
- Best performance / cost ?

Design perspective
• Faced with design options, which has the

- Best performance improvement ?
- Least cost ?
- Best performance / cost ?

Both require
• basis for comparison
• metric for evaluation

Our goal: understand cost & performance
implications of architectural choices

2-5ECE 361

Two Notions of Two Notions of ““PerformancePerformance””

Which has higher performance?
Execution time (response time, latency, …)

• Time to do a task

Throughput (bandwidth, …)
• Tasks per unit of time

Response time and throughput often are in opposition

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

2-6ECE 361

DefinitionsDefinitions

Performance is typically in units-per-second
• bigger is better

If we are primarily concerned with response time
• performance = 1

execution_time

" X is n times faster than Y" means

n
ePerformanc

ePerformanc

imeExecutionT

imeExecutionT

y

x

x

y

==

2-7ECE 361

ExampleExample

• Time of Concorde vs. Boeing 747?
• Concord is 1350 mph / 610 mph = 2.2 times faster
 = 6.5 hours / 3 hours

• Throughput of Concorde vs. Boeing 747 ?
• Concord is 178,200 pmph / 286,700 pmph = 0.62 “times faster”
• Boeing is 286,700 pmph / 178,200 pmph = 1.60 “times faster”

• Boeing is 1.6 times (“60%”) faster in terms of throughput
• Concord is 2.2 times (“120%”) faster in terms of flying time
We will focus primarily on execution time for a single job
Lots of instructions in a program => Instruction thruput important!

2-8ECE 361

Benchmarks

2-9ECE 361

Evaluation ToolsEvaluation Tools

Benchmarks, traces and mixes
• Macrobenchmarks and suites
• Microbenchmarks
• Traces

Workloads

Simulation at many levels
• ISA, microarchitecture, RTL, gate circuit
• Trade fidelity for simulation rate (Levels of abstraction)

Other metrics
• Area, clock frequency, power, cost, …

Analysis
• Queuing theory, back-of-the-envelope
• Rules of thumb, basic laws and principles

2-10ECE 361

BenchmarksBenchmarks

Microbenchmarks
• Measure one performance dimension

- Cache bandwidth
- Memory bandwidth
- Procedure call overhead
- FP performance

• Insight into the underlying performance factors
• Not a good predictor of application performance

Macrobenchmarks
• Application execution time

- Measures overall performance, but on just one application
- Need application suite

2-11ECE 361

Why Do Benchmarks?Why Do Benchmarks?

How we evaluate differences
• Different systems
• Changes to a single system

Provide a target
• Benchmarks should represent large class of important

programs
• Improving benchmark performance should help many

programs

For better or worse, benchmarks shape a field

Good ones accelerate progress
• good target for development

Bad benchmarks hurt progress
• help real programs v. sell machines/papers?
• Inventions that help real programs don’t help benchmark

2-12ECE 361

Popular Benchmark SuitesPopular Benchmark Suites
Desktop

• SPEC CPU2000 - CPU intensive, integer & floating-point applications
• SPECviewperf, SPECapc - Graphics benchmarks
• SysMark, Winstone, Winbench

Embedded
• EEMBC - Collection of kernels from 6 application areas
• Dhrystone - Old synthetic benchmark

Servers
• SPECweb, SPECfs
• TPC-C - Transaction processing system
• TPC-H, TPC-R - Decision support system
• TPC-W - Transactional web benchmark

Parallel Computers
• SPLASH - Scientific applications & kernels

Most markets have specific
benchmarks for design and marketing.

2-13ECE 361

SPEC CINT2000SPEC CINT2000

2-14ECE 361

tpCtpC

2-15ECE 361

Basis of EvaluationBasis of Evaluation

Actual Target Workload

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Pros Cons

• representative
• very specific
• non-portable
• difficult to run, or
 measure
• hard to identify cause• portable

• widely used
• improvements
useful in reality

• easy to run, early
in design cycle

• identify peak
capability and
potential
bottlenecks

• less representative

• easy to “fool”

• “peak” may be a long
way from application
performance

2-16ECE 361

Programs to Evaluate Processor PerformancePrograms to Evaluate Processor Performance

(Toy) Benchmarks
• 10-100 line
• e.g.,: sieve, puzzle, quicksort

Synthetic Benchmarks
• attempt to match average frequencies of real

workloads
• e.g., Whetstone, dhrystone

Kernels
• Time critical excerpts

2-17ECE 361

AnnouncementsAnnouncements

Website http://www.ece.northwestern.edu/~kcoloma/ece361

Next lecture
• Instruction Set Architecture

2-18ECE 361

Processor Design Metrics

2-19ECE 361

Metrics of PerformanceMetrics of Performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second – MIPS
(millions) of (F.P.) operations per second – MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Seconds per program

Useful Operations per second

2-20ECE 361

Organizational Trade-offsOrganizational Trade-offs

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI

CPI is a useful design measure relating the
Instruction Set Architecture with the
Implementation of that architecture, and the
program measured

2-21ECE 361

Processor CyclesProcessor Cycles

Clock

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

Cycle

Most contemporary computers have fixed,
repeating clock cycles

2-22ECE 361

CPU PerformanceCPU Performance

2-23ECE 361

Cycles Per Instruction (Throughput)Cycles Per Instruction (Throughput)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

“Cycles per Instruction”

j

n

j
j I CPI TimeCycle time CPU !"!=

=1

Count nInstructio

I
 F where F CPI CPI

j

j

n

j
jj =! "=

=1

2-24ECE 361

Principal Design Metrics: CPI and Cycle TimePrincipal Design Metrics: CPI and Cycle Time

Seconds

nsInstructio

Cycle

Seconds

nInstructio

Cycles
ePerformanc

CycleTimeCPI
ePerformanc

imeExecutionT
ePerformanc

=

!

=

!
=

=

1

1

1

2-25ECE 361

ExampleExample

How much faster would the machine be if a better data cache reduced the
average load time to 2 cycles?

• Load  20% x 2 cycles = .4
• Total CPI 2.2  1.6
• Relative performance is 2.2 / 1.6 = 1.38

How does this compare with reducing the branch instruction to 1 cycle?
• Branch  20% x 1 cycle = .2
• Total CPI 2.2  2.0
• Relative performance is 2.2 / 2.0 = 1.1

Typical Mix

Op Freq Cycles CPI
ALU 50% 1 .5
Load 20% 5 1.0
Store 10% 3 .3
Branch 20% 2 .4
 2.2

2-26ECE 361

Summary: Evaluating Instruction Sets and ImplementationSummary: Evaluating Instruction Sets and Implementation

Design-time metrics:
• Can it be implemented, in how long, at what cost?
• Can it be programmed? Ease of compilation?

Static Metrics:
• How many bytes does the program occupy in memory?

Dynamic Metrics:
• How many instructions are executed?
• How many bytes does the processor fetch to execute the program?
• How many clocks are required per instruction?
• How "lean" a clock is practical?

Best Metric:
Time to execute the program!

NOTE: Depends on instructions set, processor
organization, and compilation techniques.

CPI

Inst. Count Cycle Time

2-27ECE 361

Amdahl's Amdahl's ““LawLaw””: Make the Common Case Fast: Make the Common Case Fast

Speedup due to enhancement E:

 ExTime w/o E Performance w/ E

Speedup(E) = -------------------- = ---------------------

 ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,

ExTime(with E) = ((1-F) + F/S) X ExTime(without E)

Speedup(with E) = ExTime(without E) ÷
((1-F) + F/S) X ExTime(without E)

Performance improvement
is limited by how much the
improved feature is used 
Invest resources where
time is spent.

2-28ECE 361

Marketing MetricsMarketing Metrics

MIPS = Instruction Count / Time * 10^6
= Clock Rate / CPI * 10^6

• machines with different instruction sets ?
• programs with different instruction mixes ?
• dynamic frequency of instructions
• uncorrelated with performance

MFLOP/s= FP Operations / Time * 10^6
• machine dependent
• often not where time is spent

2-29ECE 361

SummarySummary

Time is the measure of computer performance!

Good products created when have:
• Good benchmarks
• Good ways to summarize performance

If not good benchmarks and summary, then choice between improving
product for real programs vs. improving product to get more sales  sales
almost always wins

Remember Amdahl’s Law: Speedup is limited by unimproved part of program

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

2-30ECE 361

Critical Path

2-31ECE 361

Range of Design StylesRange of Design Styles

Gates

Routing Channel

Gates

Routing Channel

Gates

Standard
ALU

Standard Registers

Gates

Cu
st

om
 C

on
tr

ol
 L

og
ic

Custom
Register File

Custom Design Standard Cell Gate Array/FPGA/CPLD

Custom
ALU

Performance
Design Complexity (Design Time)

Longer wiresCompact

2-32ECE 361

“M
ea

le
y

M
ac

hi
ne

”
“M

oo
re

 M
ac

hi
ne

”

Implementation as Combinational Logic + LatchImplementation as Combinational Logic + Latch

La
tc

h

Co
m

bi
na

ti
on

al
Lo

gi
c

Clock

2-33ECE 361

Clocking MethodologyClocking Methodology

All storage elements are clocked by the same clock edge (but there may be
clock skews)

The combination logic block’s:
• Inputs are updated at each clock tick
• All outputs MUST be stable before the next clock tick

Clock

.

.

.

.

.

.

.

.

.

.

.

.
Combination Logic

2-34ECE 361

Critical Path & Cycle TimeCritical Path & Cycle Time

Critical path: the slowest path between any two storage devices

Cycle time is a function of the critical path

Clock

.

.

.

.

.

.

.

.

.

.

.

.

2-35ECE 361

Tricks to Reduce Cycle TimeTricks to Reduce Cycle Time

Reduce the number of gate levels

 Pay attention to loading

• One gate driving many gates is a bad idea

• Avoid using a small gate to drive a long wire

 Use multiple stages to drive large load

 Revise design

A
B

C
D

A
B

C
D

INV4x

INV4x

Clarge

2-36ECE 361

SummarySummary
Performance Concepts

• Response Time
• Throughput

Performance Evaluation
• Benchmarks

Processor Design Metrics
• Cycle Time
• Cycles per Instruction

Amdahl’s Law
• Speedup what is important

Critical Path

