ECE Cé61
Computer Architecture
Lecture 2 - performance

Prof. Alok N. Choudhary

choudhar@ece.northwestern.edu

ECE 361 2-1

Today’s Lecture

Performance Concepts
e Response Time
e Throughput

Performance Evaluation
e Benchmarks

Announcements

Processor Design Metrics

e Cycle Time
o Cycles per Instruction

Amdahl’s Law
e Speedup what is important

Critical Path

ECE 361

2-2

ECE 361

Performance Concepts

2-3

Performance Perspectives

Purchasing perspective
e Given a collection of machines, which has the
- Best performance ?
- Least cost ?
- Best performance / cost ?

Design perspective
o Faced with design options, which has the
- Best performance improvement ?
- Least cost ?
- Best performance / cost ?

Both require
 basis for comparison
e metric for evaluation

Our goal: understand cost & performance
implications of architectural choices

ECE 361 2-4

Two Notions of “Performance”

Throughput
(pmph)

Plane DC to Paris Speed Passengers

ALY 6.5 hours | 610 mph 470 286,700

Concorde 3 hours | 1350 mph 132 178,200

Which has higher performance?

Execution time (response time, latency, ...)
e Time to do a task

Throughput (bandwidth, ...)
e Tasks per unit of time

Response time and throughput often are in opposition
ECE 361

2-5

Definitions

Performance is typically in units-per-second
 bigger is better

If we are primarily concerned with response time

e performance = 1
execution_time

" Xis n times faster than Y' means

ExecutionTime, Performance.

ExecutionTime. Performance,

ECE 361

n

2-6

Example

 Time of Concorde vs. Boeing 7477?
» Concord is 1350 mph / 610 mph = 2.2 times faster
= 6.5 hours / 3 hours

* Throughput of Concorde vs. Boeing 747 ?
» Concord is 178,200 pmph / 286,700 pmph = 0.62 "times faster”
* Boeing is 286,700 pmph / 178,200 pmph = 1.60 "times faster”

Boeing is 1.6 times ("60%") faster in terms of throughput

* Concord is 2.2 times ("120%") faster in terms of flying time
We will focus primarily on execution time for a single job

Lots of instructions in a program => Instruction thruput important!

ECE 361 2-7

ECE 361

Benchmarks

2-8

Evaluation Tools

Benchmarks, traces and mixes MOVE
e Macrobenchmarks and suites ESAD
e Microbenchmarks iISRE
LD 5EA3
° Traces ST 31FF
LD 1EA2
Workloads

Simulation at many levels
e ISA, microarchitecture, RTL, gate circuit

« Trade fidelity for simulation rate (Levels of abstraction)

Other metrics
e Area, clock frequency, power, cost, ...

Analysis
e Queuing theory, back-of-the-envelope
e Rules of thumb, basic laws and principles

ECE 361

39%
20%
20%
10%
1%

2-9

Benchmarks

Microbenchmarks
« Measure one performance dimension Perf. Dimensions

- Cache bandwidth

- Memory bandwidth Macro

- Procedure call overhead

- FP performance
 Insight into the underlying performance factors
e Not a good predictor of application performance

Applications
Micro

Macrobenchmarks
« Application execution time
- Measures overall performance, but on just one application

- Need application suite

ECE 361 2-10

Why Do Benchmarks?

How we evaluate differences
» Different systems
o Changes to a single system

Provide a target

» Benchmarks should represent large class of important
programs

o Improving benchmark performance should help many
programs

For better or worse, benchmarks shape a field

Good ones accelerate progress
e good target for development

Bad benchmarks hurt progress
e help real programs v. sell machines/papers?
 Inventions that help real programs don’t help benchmark

ECE 361

2-11

Popular Benchmark Suites

Desktop
o SPEC CPU2000 - CPU intensive, integer & floating-point applications
o SPECviewperf, SPECapc - Graphics benchmarks
e SysMark, Winstone, Winbench

Embedded
o EEMBC - Collection of kernels from 6 application areas
e Dhrystone - Old synthetic benchmark

Servers
o SPECweb, SPECfs
e TPC-C - Transaction processing system
e TPC-H, TPC-R - Decision support system
e TPC-W - Transactional web benchmark

Parallel Computers
e SPLASH - Scientific applications & kernels

Most markets have specific
ECE 361 benchmarks for design and marketing,

SPEC CINT2000

600 250
O SPECbase CINT2000 8| 225
S i —- SPEC CINT2000 000
performance/cost
175
400 [
150
SPECbase
125
CINT2000 200
100
200 75
50
100 ===
25
0 0
Compagq Dell Dell HP Sun IBM Sun
Presario Precision Precision Workstation Sunblade RS6000 Sunblade
7000 530 420 c3600 1000/1750 44P/170 100
© 2003 Elsevier Science (USA). All rights reserved.
ECE 361

SPEC CINT2000
per $1000 in price

2-13

180 60
Y56 O Price-performance (TPM per $1000)
—- Performance (transactions per minute) 150
140 [Q- NG
120 Bommacd O no O o o e A G X o 2) S s) e e N S L O D Y e A e e A i s O Oy T) A ot T o h o O T O T S A A SN) - 40
: 100 - e\ :
Transactions per 130 Transactions per
minuteper31000 | B < B S B ... N minute; (thouands)
60 il e T B e B L 420
Ll Beem s 0 S 0 soRoGmE e 0 om0 B
410
20 hrciailil R e e e e B
0
Dell IBM Compaq NEC HP 9000/
PowerEdge xSeries Proliant NetServer LH Express L2000
6400 250 c/s ML570 6000 5800/180
6/700 2
© 2003 Elsevier Science (USA). All rights reserved.
ECE 361 2-14

Basis of Evaluation

Pros

* representative

Actual Target Workload

- portable

- widely used

* improvements
useful in reality

- easy to run, early
in design cycle

- identify peak
capability and
potential

E&o;&lenecks

Full Application Benchmarks

Small “Kernel”
Benchmarks

Microbenchmarks

Cons

- very specific

* non-portable

- difficult to run, or
measure

* hard to identify cause

- less representative

- easy to “fool”

* "peak” may be a long
way from application
performance

2-15

Programs to Evaluate Processor Performance

(Toy) Benchmarks
e 10-100 line
e €.g.,: sieve, puzzle, quicksort

Synthetic Benchmarks

« attempt to match average frequencies of real
workloads

e e.8., Whetstone, dhrystone

Kernels
e Time critical excerpts

ECE 361 2-16

Announcements

Website http://www.ece.northwestern.edu/~kcoloma/ece361

Next lecture
e Instruction Set Architecture

ECE 361 2-17

ECE 361

Processor Design Metrics

2-18

Metrics of Performance

Seconds per program

Application
Programming Useful Operations per second
Language
Compiler
(millions) of Instructions per second - MIPS
[1sal (millions) of (F.P.) operations per second - MFLOP/s

Datapath

Control —— Megabytes per second

Function Units
— Cycles per second (clock rate)

Transistors Wires Pins

ECE 361 2-19

Organizational Trade-offs

Application

Programming
Language

Compiler

Instruction Mix

Datapath

Control CPI
Function Units
Transistors Wires Pins Cycle Time

CPI is a useful design measure relating the
Instruction Set Architecture with the
Implementation of that architecture, and the

program measured
ECE 361 2-20

Processor Cycles

Clock $ $
RIRED e

Combination Logic

e |

| Cycle |

Most contemporary computers have fixed,
repeating clock cycles

ECE 361 2-21

CPU Performance

CPUtime Seconds _ Cycles Seconds
Program Program Cycle

_ Instructions Cycles Seconds

~ Pr ogram Instruction Cycle

IC CPI Clock Cycle
Program \
Compiler \ (\/)
Instruction Set \ \
Organization \ \
Technology \

ECE 361

2-22

Cycles Per Instruction (Throughput)

"Cycles per Instruction”

CPI = (CPU Time * Clock Rate) / Instruction Count
= Cycles / Instruction Count

CPU time = Cycle Time x 3 CPI, x I,
j=1

"Instruction Frequency”

n I
CPI = SCPI.x F. here F; = ’
,-21 IRaR: w /" Instruction Count

ECE 361

2-23

Principal Design Metrics: CPl and Cycle Time

1

Performance =

ExecutionTime

1

Performance =

CPI x CycleTime

1 Instructi

Performance _ _ Instructions

Cycles ><Secona’s ~ Seconds

Instruction Cycle

ECE 361 2-24

Example

Op
ALU
Load
Store
Branch

Typical Mix
"4

Freq Cycles CPI

50% 1 o)

20% 5 1.0

10% 3 3

20% 2 4
2.2

How much faster would the machine be if a better data cache reduced the

average load time to 2 cycles?

e Load = 20% x 2 cycles = .4
e Total CP1 2.2 > 1.6
» Relative performanceis 2.2 / 1.6 = 1.38

How does this compare with reducing the branch instruction to 1 cycle?
e Branch = 20% x 1 cycle = .2

e Total CP12.2 > 2.0
e Relative performanceis 2.2 /2.0=1.1

ECE 361

2-25

Summary: Evaluating Instruction Sets and Implementation

Design-time metrics:
e Can it be implemented, in how long, at what cost?
e Can it be programmed? Ease of compilation?

Static Metrics:
 How many bytes does the program occupy in memory?

Dynamic Metrics:
« How many instructions are executed?
 How many bytes does the processor fetch to execute the program?
 How many clocks are required per instruction?

« How "lean” a clock is practical? CPT

Best Metric:
Time to execute the program!

NOTE: Depends on instructions set, processor

organization, and compilation techniques. Inst. Count Cycle Time

ECE 361 2-26

Amdahl's “Law”: Make the Common Case Fast

Speedup due to enhancement E:

ExTime w/o E Performance w/ E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,
Performance improvement
ExTime(with E) = ((1-F) + F/S) X ExTime(without) 'S limited by how much the
improved feature is used >
Invest resources where

ExecTime,,, time is spent.

ExecTime Fraction,, .
new + (1 - Fraction,, ..)

Sp eedup enhanced
ECE 361 2-27

Sp eedup overall —

Marketing Metrics

MIPS = |nstruction Count / Time * 10"6
= Clock Rate / CPI * 1076

e machines with different instruction sets ?

e programs with different instruction mixes ?
» dynamic frequency of instructions

« uncorrelated with performance

MFLOP/s= FP Operations / Time * 106
e machine dependent
» often not where time is spent

ECE 361

2-28

Summary

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Time is the measure of computer performance!

Good products created when have:

e Good benchmarks

e Good ways to summarize performance
If not good benchmarks and summary, then choice between improving
product for real programs vs. improving product to get more sales - sales
almost always wins

Remember Amdahl’s Law: Speedup is limited by unimproved part of program

ECE 361 2-29

Critical Path

ECE 361 2-30

Range of Design Styles

Custom Design

Standard Cell

Gate Array/FPGA/CPLD

Gates Gates
S, Custom
o
fo ALU Routing Channel
% Standard
S ALU Gates
5
4+ .
é’v Custom Standard Registers Routing Channel
Register File
Gates
-«
Performance
Design Complexity (Design Time)
Compact Longer wires
ECE 361

2-31

Implementation as Combinational Logic + Latch

Clock |

"Moore Machine"

"Mealey Machine”

ECE 361 2-32

Clocking Methodology

Clock $ ¢
D > o> [

Combination Logic

SNt S

All storage elements are clocked by the same clock edge (but there may be
clock skews)

The combination logic block’s:
e Inputs are updated at each clock tick
o All outputs MUST be stable before the next clock tick

ECE 361 2-33

Critical Path & Cycle Time
Clock ¢ v

—>_$_—>®‘ '»_% —>

Critical path: the slowest path between any two storage devices

Cycle time is a function of the critical path

ECE 361 2-34

Tricks to Reduce Cycle Time

Reduce the number of gate levels

DD

= Pay attention to loading
* One gate driving many gates is a bad idea

- Avoid using a small gate to drive a long wire

= Use multiple stages to drive large load

- Revise desi —) .
evise design) >O

ECE 361

Clarge

2-35

Summary

Performance Concepts
e Response Time
e Throughput

Performance Evaluation
e Benchmarks

Processor Design Metrics
e Cycle Time
e Cycles per Instruction

Amdahl’s Law
e Speedup what is important

Critical Path

ECE 361

2-36

