
I/O Analysis and Optimization
for an AMR Cosmology

Simulation

Jianwei Li Wei-keng Liao
Alok Choudhary Valerie Taylor

ECE Department
Northwestern University

ENZO Background
Domain
Spatial

T
em

po
ra

l D
om

ai
n

RefinementTemperature

T
0

T
1

T
2

Density

T
3

• Simulate the formation of a
cluster of galaxies (gas and starts)
starting near the big bang until
the present day

• Used to test theories of how
galaxy forms by comparing the
results with what is really
observed in the sky today

• Highly irregular spatial
distribution of cosmic objects

• Algorithm: Adaptive Mesh
Refinement (AMR)

• Parallelism achieved by domain
decomposition of 3-D grids

• Dynamic load balance using MPI

Implementation
Purpose Visualize

Datasets

AMR Algorithm
• Multi-scale algorithm that achieves high spatial

resolution in localized regions
• Recursively produces a deep, dynamic hierarchy

of increasingly refined grid patches Refinement
Hierarchy

Level 0

Level 1

Level 2

Combined

hierarchical A
M

R
 data sets as bounding boxes

Execution Flow
• Read root grid and some initial

pre-refined sub grids
• Partition the grids data among

multiple processors
• Main loop of evolution over time:

– Solve hydro-equations to advance
the solution by dt on each grid

– Recursively evolve the grid
hierarchy on each level using
AMR control algorithm

– Check-pointing to write out grids
data (hierarchical simulation
results) at current time stamp

– Adaptively refine the grids and
rebuild the new finer hierarchy

– Redistribute grids data to perform
load balance

Start Simulation

Exit

Checkpoint Output?

Read Initial Grids
(Sequentially by Process 0)

Partition & Distribute
Grid Data

Evolve Hierarchy

Write
Grids

Yes

N
o

End of Simulation?
No

Y
es

Rebuild Hierarchy,
Load Balance

Parallelization

• A hierarchical data structure, containing grids metadata and gird hierarchy
information, is maintained on all processors

• Each of the hierarchy nodes points to a real grid that resides only on the
allocated processor

• A grid is owned by only one processor but one processor can have many
grids.

• Each processor perform computation on its own grids.

Grid on
Proc 1

Grid on
Proc 3

Grid on
Proc 5

Grid on
Proc 7

Grid on
Proc 0

Grid on
Proc 2

Grid on
Proc 4

Grid on
Proc 6

--Level 2--
Subgrids

--Level 1--
Subgrids

--Level 0--
Partitioned

Topgrid

--Level 3--
Subgrids

0 1 2 3 4 5 6 7

0

0

0 1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

• Top grid is
partitioned into
multiple grids among
all processors

• Sub grids are
distributed among all
processors

• Some sub grids can
even be partitioned
and redistributed in
load balance

ENZO Datasets

? Baryon Fields (Gas)
A number of 3-D float type arrays

Density Field
Energy Fields
Velocity [X, Y, Z] Fields
Temperature Field,
Dark Matter Field

...

There are three kinds of datasets that are involved in ENZO I/O operations:
Baryon Fields, Particle Datasets contained in a grid and Boundary data

? Particle Datasets (Stars)
A number of 1-D float type arrays
and 1 integer array

Particle ID
Particle Position [X,Y, Z]
Particle Velocity [X, Y, Z]
Particle Mass
Particle Attributes

…

? Boundary data (Boundary Types and Values on each boundary side of each
dimension for each Baryon Field)
a number of two-dimensional float type arrays.

Data Partition

3 4 7 60 2 5 10 2 2 5 5 5 3 3 0 0 2 7 2 ...

Partition of Baryon Field Datasets

(Block, Block, Block)

Partition of Particle Datasets

Boundary data are maintained on all processors and not partitioned

The 1-D particle data arrays are partitioned based on which
grid sub-domain the particle position falls within, so the

pattern is totally Irregular.

I/O Patterns
• Real data

– Read from initialized physical variables of starting grids
– Periodically write out physical solutions of all grids. During the

simulation loop, all grids will be dump to files in a timely sequence
(check pointing)

– The datasets are read/written in a fixed, pre-defined sequence order
– Even the access to the grid hierarchy follows a certain sequence

• Metadata
– Metadata of grid hierarchy is written out recursively
– Metadata of each dataset is written out together with grid real data

• Visualizing data
– In ENZO, there’s no separate visualizing data directly written out by

the simulation
– Visualization is performed by another program taking the check

pointing grid data (real and meta data) as input and doing projection

I/O Approach
• Original Approach:

– Real data is read/written as one grid per file by the allocated processor
– The read of initial grids is done by one processor and then partitioned

among all processors
– For the partitioned top grid, the data is first combined from other processor,

and then written out by the root processor
– Grid hierarchy metadata is written out in text files by root processor
– Grid dataset metadata is written out to the same grid file

• Other choices:
– Real data to be stored in one single file with parallel I/O access
– Generate visualizing data directly without re-read and processing of the

check pointing grid files
?Advantages:

• Parallel I/O largely improves the I/O performance
• Storing all real data in one single file makes pre-fetching easier
• Visualization is real time. Re-reading a large number of distributed grid files and

processing them is very time consuming.

?Disadvantages: Managing the metadata needs a lot more work, parallel I/O not so easy

Sequential HDF4 I/O
• This is the original I/O implementation

– Each grid (real data and meta data) is read/written sequentially by
its allocated processor independently using HDF4 I/O library

– The grid hierarchy metadata is written to separate ASCII file using
native I/O library

?Advantages:
– HDF4 provides self-describing data format with metadata stored

together with the real data in the same file

?Disadvantages:
– Does not provide parallel I/O facilities –low performance
– Can not combine datasets into file, or have to spend extra time to

explicitly combine datasets in memory and then write to file
– Storing the metadata with real data bring some overhead and

makes access of real data inefficient.

Native I/O

• Advantage
– Flexible, apply any parallel I/O techniques at application level
– Performance can be potentially very good

• Disadvantages:
– Implementation will be trivial, user have to handle a lot of tasks
– Hard for programmer to manage the metadata
– Lots of work for performance
– Platform dependent

Parallel I/O using MPI-IO
?Advantages

– Parallel I/O access
– Collective I/O
– Easy to implement

application level two-
phase I/O

– Expecting high
performance

– Easy to combine grids
into a single file

– Also easy to directly
write visualizing data

?Disadvantages
– Only beneficial for raw data. Metadata is usually small and reading or

writing metadata using MPI-IO can make performance only worse.
– Need more implementation to manage metadata separately

Collective read of a Baryon Dataset with two-phase I/O

Application level two-phase I/O for a particle dataset

?One Possible solution: Using XML to manage the hierarchical metadata

Parallel I/O using HDF5
?Advantages

– Self-describing data format, easy to manage metadata
– Parallel I/O access on top of MPI-IO
– Groups and Datasets organized in a hierarchical/tree structure, easy to

combine grids into a single file

?Disadvantages
– Implementation overhead. Packing and unpacking hyperslabs are

currently handled recursively, taking a relatively long time.
– Some features are not yet completed. Creating and closing datasets are

collective which produces additional synchronization in parallel I/O
access. Adding/changing attributes can only be done on processor 0,
which also limits the parallel performance on writing real data.

– Mixing the metadata with real data makes the real data not aligned on
appropriate boundaries, which results in a high variance in access time
between processes

Performance Evaluation on Origin2000

0

0.5

1

1.5

2

2.5

2 4 8 16
procs

E
xe

cu
tio

n
T

im
e

(s
ec

)

HDF-4 Read HDF-4 Write
MPI Read MPI Write

AMR 64

0

2

4

6

8

10

12

2 4 8 16 32

procs

E
xe

cu
tio

n
T

im
e

(s
ec

)

HDF-4 Read HDF-4 Write
MPI Read MPI Write

AMR 128

AMR64 AMR128 AMR256

Read 2.78 MB 22.15 MB 177.21 MB

Write 13.12 MB 66.42 MB 525.27 MB

The amount of data read/written by ENZO Cosmology
Simulation with different problem sizes

I/O Performance of the ENZO application on SGI Origin2000 with XFS

Result: significant I/O
performance improvement
of MPI-IO over HDF4 I/O

Performance Evaluation on IBM SP
(Using GPFS)

0

20

40

60

80

Read Write Read Write Read Write Read Write

E
xe

cu
tio

n
T

im
e

(s
ec

)

HDF-4 I/O

MPI I/O

procs =32 # procs = 64
Problem Size: AMR64

procs =32 # procs = 64
Problem Size: AMR128

The performance of our parallel I/O using MPI-IO is worse than that of the
original HDF4 I/O. This happens because the data access pattern in this
application does not fit in well with the disk file striping and distribution pattern
in the parallel file system. Each process may access small chunks of data while
the physical distribution of the file on the disks is based on very large striping
size, the chunks of data requested by one process may span on multiple I/O
nodes, or multiple processes may try to access the data on a single I/O node.

I/O
Performance
of the ENZO
application
on IBM SP-2
with GPFS

Performance Evaluation on Linux Cluster
(Using PVFS)

0

200

400

600

800

1000

1200

1400

AMR128 Write AMR256 Write

E
xe

cu
tio

n
T

im
e

(s
ec

) HDF-4 I/O

MPI I/O

0

10

20

30

40

50

60

AMR128 Read AMR256 Read

E
xe

cu
tio

n
T

im
e

(s
ec

)

HDF-4 I/O

MPI I/O

I/O
Performance
of the ENZO
application
on Linux
cluster with
PVFS (8
compute
nodes and 8
I/O nodes)

Like GPFS, the PVFS for MPI-IO uses fixed striping scheme specified by the striping
parameters at setup time and the physical data partition pattern is also fixed, hence not
tailored for specific parallel I/O applications. More importantly, the striping and partition
patterns are uniform across multiple I/O nodes, which is good for efficient utilization of
disk space but not flexible hence not good enough for performance. For various types of
access patterns, especially those in which each process accesses a large number of stridden,
small data chunks, there may be significant skew between application access patterns and
physical file partition/distribution patterns. So the communication (between compute
nodes and I/O nodes) overhead of using parallel I/O may be very large.

Performance Evaluation on Linux Cluster
(Using Local Disk)

0

2

4

6

8

10

12

4 8 16 32
procs

E
xe

cu
tio

n
T

im
e

(s
ec

)

HDF-4 Read HDF-4 Write
MPI Read MPI Write

AMR 128

0

10

20

30

40

50

60

70

80

90

4 8 16 32
procs

E
xe

cu
tio

n
T

im
e

(s
ec

)

HDF-4 Read
HDF-4 Write
MPI Read
MPI Write

AMR 256

I/O
Performance
of the ENZO
application on
Linux cluster
with each
compute node
accessing its
local disk
using PVFS
interface

The I/O operation of each compute node is performed on its local disk. The only
overhead of MPI-IO is the user-level inter-communication among compute nodes.
As expected, the MPI-IO has much better overall performance than the HDF4
sequential I/O and it scales pretty well with increasing number of processors.
However, unlike the real PVFS which generates integrated files, the file system
used in this experiment does not keep any metadata of the partitioned file and
there’s no way to extract the distributed output files for other applications to use.

Performance Evaluation: HDF5

0
2
4
6
8

10
12
14
16

2 4 8 16
procs

E
xe

cu
tio

n
T

im
e

(s
ec

)

MPI Write
HDF5 Write

AMR 64

0
10
20
30
40
50
60

2 4 8 16 32
procs

E
xe

cu
tio

n
T

im
e

(s
ec

)

MPI Write

HDF5 Write

AMR 128

Comparison of I/O write
performance for HDF5 I/O vs
MPI-IO (on SGI Origin2000)

The performance of HDF5
I/O is much worse than we
expected. Although it uses
MPI-IO for its parallel I/O
access and has optimizations
based on access patterns and
other metadata, the overhead
of HDF5 is very significant,
as we mentioned in previous
discussion

