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• Simulate the formation of a 
cluster of galaxies (gas and starts) 
starting near the big bang until 
the present day

• Used to test theories of how 
galaxy forms by comparing the 
results with what is really 
observed in the sky today

• Highly irregular spatial 
distribution of cosmic objects

• Algorithm: Adaptive Mesh 
Refinement (AMR)

• Parallelism achieved by domain 
decomposition of 3-D grids

• Dynamic load balance using MPI
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AMR Algorithm
• Multi-scale algorithm that achieves high spatial 

resolution in localized regions
• Recursively produces a deep, dynamic hierarchy 

of increasingly refined grid patches Refinement
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Execution Flow
• Read root grid and some initial 

pre-refined sub grids
• Partition the grids data among 

multiple processors
• Main loop of evolution over time:

– Solve hydro-equations to advance 
the solution by dt on each grid

– Recursively evolve the grid 
hierarchy on each level using 
AMR control algorithm

– Check-pointing to write out grids 
data (hierarchical simulation 
results) at current time stamp

– Adaptively refine the grids and 
rebuild the new finer hierarchy

– Redistribute grids data to perform 
load balance
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Parallelization

• A hierarchical data structure, containing grids metadata and  gird hierarchy 
information,  is maintained on all processors

• Each of the hierarchy nodes points to a real grid that resides only on the 
allocated processor

• A grid is owned by only one processor but one processor can have many 
grids.

• Each processor perform computation on its own grids.
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• Top grid is 
partitioned into 
multiple grids among 
all processors

• Sub grids are 
distributed among all 
processors

• Some sub grids can 
even be partitioned 
and redistributed in 
load balance



ENZO Datasets

? Baryon Fields (Gas)
A number of 3-D float type arrays

Density Field 
Energy Fields
Velocity [X, Y, Z] Fields
Temperature Field, 
Dark Matter Field 

...

There are three kinds of datasets that are involved in ENZO I/O operations:
Baryon Fields, Particle Datasets contained in a grid and Boundary data

? Particle Datasets (Stars)
A number of 1-D float type arrays 
and 1 integer array

Particle ID
Particle Position [X,Y, Z]
Particle Velocity [X, Y, Z]
Particle Mass
Particle Attributes

…

? Boundary data (Boundary Types and Values on each boundary side of each 
dimension for each Baryon Field)
a number of two-dimensional float type arrays.



Data Partition

3 4 7 60 2 5 10 2 2 5 5 5 3 3 0 0 2 7 2 ...

Partition of Baryon Field Datasets

(Block, Block, Block)

Partition of Particle Datasets

Boundary data are maintained on all processors and not partitioned

The 1-D particle data arrays are partitioned based on which 
grid sub-domain the particle position falls within, so the 

pattern is totally Irregular.



I/O Patterns
• Real data

– Read from initialized physical variables of starting grids
– Periodically write out physical solutions of all grids. During the 

simulation loop, all grids will be dump to files in a timely sequence 
(check pointing)

– The datasets are read/written in a fixed, pre-defined sequence order
– Even the access to the grid hierarchy follows a certain sequence

• Metadata
– Metadata of grid hierarchy is written out recursively
– Metadata of each dataset is written out together with grid real data

• Visualizing data
– In ENZO, there’s no separate visualizing data directly written out by 

the simulation
– Visualization is performed by another program taking the check 

pointing grid data (real and meta data) as input and doing projection



I/O Approach
• Original Approach:

– Real data is read/written as one grid per file by the allocated processor
– The read of initial grids is done by one processor and then partitioned 

among all processors
– For the partitioned top grid, the data is first combined from other processor, 

and then  written out by the root processor
– Grid hierarchy metadata is written out in text files by root processor
– Grid dataset metadata is written out to the same grid file

• Other choices: 
– Real data to be stored in one single file with parallel I/O access
– Generate visualizing data directly without re-read and processing of the 

check pointing grid files
?Advantages:

• Parallel I/O largely improves the I/O performance
• Storing all real data in one single file makes pre-fetching easier
• Visualization is real time. Re-reading a large number of distributed grid files and 

processing them is very time consuming.

?Disadvantages: Managing the metadata needs a lot more work, parallel I/O not so easy



Sequential HDF4 I/O
• This is the original I/O implementation

– Each grid (real data and meta data) is read/written sequentially by 
its allocated processor independently using HDF4 I/O library

– The grid hierarchy metadata is written to separate ASCII file using 
native I/O library

?Advantages:
– HDF4 provides self-describing data format with metadata stored 

together with the real data in the same file

?Disadvantages:
– Does not provide parallel I/O facilities –low performance
– Can not combine datasets into file, or have to spend extra time to 

explicitly combine datasets in memory and then write to file
– Storing the metadata with real data bring some overhead and 

makes access of real data inefficient.



Native I/O

• Advantage
– Flexible, apply any parallel I/O techniques at application level
– Performance can be potentially very good

• Disadvantages:
– Implementation will be trivial, user have to handle a lot of tasks
– Hard for programmer to manage the metadata
– Lots of work for performance
– Platform dependent



Parallel I/O using MPI-IO
?Advantages

– Parallel I/O access
– Collective I/O
– Easy to implement 

application level two-
phase I/O

– Expecting high 
performance

– Easy to combine grids 
into a single file

– Also easy to directly 
write visualizing data

?Disadvantages
– Only beneficial for raw data. Metadata is usually small and reading or 

writing metadata using MPI-IO can make performance only worse.
– Need more implementation to manage metadata separately

Collective read of a Baryon Dataset with two-phase I/O 

Application level two-phase I/O for a particle dataset

?One Possible solution:  Using XML to manage the hierarchical metadata



Parallel I/O using HDF5
?Advantages

– Self-describing data format, easy to manage metadata
– Parallel I/O access on top of MPI-IO
– Groups and Datasets organized in a hierarchical/tree structure, easy to 

combine grids into a single file

?Disadvantages
– Implementation overhead. Packing and unpacking hyperslabs are 

currently handled recursively, taking a relatively long time.
– Some features are not yet completed. Creating and closing datasets are 

collective which produces additional synchronization in parallel I/O 
access. Adding/changing attributes can only be done on processor 0, 
which also limits the parallel performance on writing real data.

– Mixing the metadata with real data makes the real data not aligned on 
appropriate boundaries, which results in a high variance in access time 
between processes



Performance Evaluation on Origin2000
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AMR64 AMR128 AMR256

Read 2.78 MB 22.15 MB 177.21 MB

Write 13.12 MB 66.42 MB 525.27 MB

The amount of data read/written by ENZO Cosmology 
Simulation with different problem sizes

I/O Performance of the ENZO application on SGI Origin2000 with XFS 

Result: significant I/O 
performance improvement 
of MPI-IO over HDF4 I/O 



Performance Evaluation on IBM SP 
(Using GPFS)
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The performance of our parallel I/O using MPI-IO is worse than that of the 
original HDF4 I/O. This happens because the data access pattern in this 
application does not fit in well with the disk file striping and distribution pattern 
in the parallel file system. Each process may access small chunks of data while 
the physical distribution of the file on the disks is based on very large striping 
size, the chunks of data requested by one process may span on multiple I/O 
nodes, or multiple processes may try to access the data on a single I/O node. 

I/O 
Performance 
of the ENZO 
application 
on IBM SP-2 
with GPFS 



Performance Evaluation on Linux Cluster 
(Using PVFS)
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I/O 
Performance 
of the ENZO 
application 
on Linux 
cluster with 
PVFS (8 
compute 
nodes and 8 
I/O nodes) 

Like GPFS, the PVFS for MPI-IO uses fixed striping scheme specified by the striping 
parameters at setup time and the physical data partition pattern is also fixed, hence not 
tailored for specific parallel I/O applications. More importantly, the striping and partition 
patterns are uniform across multiple I/O nodes, which is good for efficient utilization of 
disk space but not flexible hence not good enough for performance. For various types of 
access patterns, especially those in which each process accesses a large number of stridden, 
small data chunks, there may be significant skew between application access patterns and 
physical file partition/distribution patterns. So the communication (between compute 
nodes and I/O nodes) overhead of using parallel I/O may be very large. 



Performance Evaluation on Linux Cluster 
(Using Local Disk)
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I/O 
Performance 
of the ENZO 
application on 
Linux cluster 
with each 
compute node 
accessing its 
local disk 
using PVFS 
interface

The I/O operation of each compute node is performed on its local disk. The only 
overhead of MPI-IO is the user-level inter-communication among compute nodes. 
As expected, the MPI-IO has much better overall performance than the HDF4 
sequential I/O and it scales pretty well with increasing number of processors. 
However, unlike the real PVFS which generates integrated files, the file system 
used in this experiment does not keep any metadata of the partitioned file and 
there’s no way to extract the distributed output files for other applications to use. 



Performance Evaluation: HDF5
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Comparison of I/O write 
performance for HDF5 I/O vs
MPI-IO (on SGI Origin2000)

The performance of HDF5 
I/O is much worse than we 
expected. Although it uses 
MPI-IO for its parallel I/O 
access and has optimizations 
based on access patterns and 
other metadata, the overhead 
of HDF5 is very significant, 
as we mentioned in previous 
discussion


