
Declustering two-dimensional datasets over MEMS-based Storage

Hailing Yu Divyakant Agrawal Amr El Abbadi
University of California at Santa Barbara

Computer Science Department
Santa Barbara, 93106

USA
{hailing,agrawal,amr}@cs.ucsb.edu

Abstract

Due to the large difference between seek time and transfer time in current disk technology, it is
advantageous to perform large I/O using a single sequential access rather than multiple small random I/O
accesses. However, prior optimal cost and data placement approaches for processing range queries over
two-dimensional datasets do not consider this property. In particular, these techniques do not consider
the issue of sequential data placement when multiple I/O blocks need to be retrieved from a single
device. In this paper, we reevaluate the optimal cost of range queries, and prove that, in general, it is
impossible to achieve the new optimal cost. This is because disks cannot facilitate two-dimensional
sequential access which is required by the new optimal cost. Fortunately, MEMS-based storage is being
developed to reduce I/O cost. We first show that the two-dimensional sequential access requirement can
not be satisfied by simply modeling MEMS-based storage as conventional disks. Then we propose a new
placement scheme that exploits the physical properties of MEMS-based storage to solve this problem.
Our theoretical analysis and experimental results show that the new scheme achieves almost optimal
results.

1 Introduction

Multi-dimensional datasets have received a lot of attention due to their wide applications, such as relational
databases, images, GIS, and spatial databases. Range queries are an important class of queries for multi-
dimensional data applications. In recent years, the size of the datasets have been rapidly growing, hence,
fast retrieval of relevant data is the key to improve query performance. A common method of browsing
geographic applications is to display a low resolution map of some area on a screen. A user may specify
a rectangular bounding box over the map, and request the retrieval of the higher resolution map of the
specified region. In general, the amount of data associated with different regions may be quite large, and
may involve a large number of I/O transfers. However, due to advances in processor and semi-conductor
technologies, the gap in access cost between main memory and disk is constantly increasing. Thus, I/O cost
will dominate the range query cost. To alleviate this problem, two-dimensional datasets are often uniformly
divided into tiles. The tiles are then declustered over multiple disks to improve query performance through
parallel I/O. In [14], it is shown that strictly optimal solutions for range queries exist in only a small number
of cases. Given a query that retrieves A tiles, the optimal cost isdA/Me, where M is the number of I/O
devices. A data assignment scheme is said to be strictly optimal if it satisfies the optimal cost. Because

1

it is impossible to find the optimal solution for the general case, several assignment schemes have been
proposed [8, 9, 15, 5, 6, 22, 10] to achieve near optimal solutions. However, all prior research, including the
optimal cost formulation itself, are based on the assumption that the retrieval of each tile takes constant time
and is retrieved independently (random I/O involving both seek and transfer time). This condition does not
hold when considering current disk technology. Recent trends in hard disk development favor reading large
chunks of consecutive disk blocks (sequential access). Thus, the solutions for allocating two-dimensional
data across multiple disk devices should also account for this factor. In this paper, we reevaluate the optimal
cost for current disk devices, and show that it is still impossible to achieve the new optimal cost for the
general case.

Even though the performance gap between main memory and disks is mitigated by a variety of tech-
niques, it is still bounded by the access time of hard disks. The mechanical positioning system in disks limits
the access time improvements to only about 7% per year. Therefore, this performance gap can only be over-
come by inventing new storage technology. Due to advances in nano-technology, Micro-ElectroMechanical
Systems (MEMS) based storage systems are appearing on the horizon as an alternative to disks [16, 1, 2].
MEMS are devices that have microscopic moving parts made by using techniques similar to those used in
semiconductor manufacturing. As a result, MEMS devices can be produced and manufactured at a very low
cost. Preliminary studies [18] have shown that stand-alone MEMS based storage devices reduce I/O stall
time by 4 to 74 times over disks and improve the overall application run times by 1.9X to 4.4X.

MEMS-based storage devices have very different characteristics from disk devices. When compared to
disk devices, head movement in MEMS-based storage devices can be achieved in both X and Y dimensions,
and multiple probe tips (over thousands) can be activated concurrently to access data. In [12], Griffin et al.
consider the problem of integrating MEMS-based storage into computers by modeling them as conventional
disks. In [13], we proposed a new data placement scheme for relational data on MEMS based storage
by taking its characteristics into account. The performance analysis showed that it is beneficial to use
the MEMS storage in a novel way (similar work has been proposed in [19]). Range queries over two-
dimensional data (map or images) are another data-intensive application, thus, in this paper, we explore data
placement schemes for two-dimensional data over MEMS-based storage to facilitate efficient processing of
range queries. In our new scheme, we tile two-dimensional datasets according to the physical properties
of I/O devices. In all previous work, the dataset is divided into tiles along each dimension uniformly.
Through the performance study, we show that tiling the dataset based on the properties of devices can
significantly improve the performance without any adverse impact on users, since users only care about
query performance, and they do not need to know how or where data is stored. The significant improvement
in performance further demonstrates the great potential that novel storage devices, like MEMS, have for
database applications.

The rest of the paper is organized as follows. Section 2 revisits the optimal cost of a range query of a
two-dimensional dataset. In Section 3, we first give a brief introduction of MEMS-based storage; then we
adapt the existing data placement schemes proposed for disks to MEMS-based storage. A novel scheme is
proposed in Section 4. Section 5 presents the experimental results. We conclude the paper in Section 6.

2 Background

In this section, we first address the problem of existing optimal cost evaluation for range queries over two-
dimensional data, then we derive the optimal cost for the current disk devices.

2

2.1 Existing problem

A disk is organized as a sequence of identically-sized disk pages. In general, the I/O performance of queries
is expressed in terms of the number of pages accessed, assuming that the access cost is the same for each
page. Each access cost is composed of three elements:seek time, rotational delay, and transfer time. We
refer to the sum of seek time and rotational delay asaccess time. Based on this assumption, the optimal cost
of a query is derived as

dA/Me × (taccess + ttransfer). (1)

Where A is the number of tiles intersecting the query, M is the number of disk devices,taccess is the
average access time of one page,ttransfer is the average transfer time of one page (all the terms have the
same meaning throughout the paper). We will refer to equation (1) as theprior optimal cost. Because each
tile is retrieved by an independent random I/O, in order to improve the access cost of a query, existing data
placement schemes decluster the dataset into tiles and assign neighboring tiles to different devices, thus
allowing concurrent access of multiple pages.

device 1 device 2 query Q

1

2

3

4
Q

Figure 1: An image picture is placed on two disk devices

In recent years, disk external transfer rates have improved significantly from 4MB/s to over 500MB/s;
internal transfer rate is up to 160MB/s. However, access time has only improved by a factor of 2. For
a disk with 8KB page size, 160MB/s internal transfer rate, and 5ms access time, the ratio of access time
over transfer time is about 100. Thus, current disk technology is heavily skewed towards sequential access
instead of random access due to the high cost of access time. This principle can benefit range queries over
two-dimensional data, if we could place the related tiles of a query that are allocated on a single disk device
sequentially. For example, Figure 1 shows an image with sixteen disk pages (or tiles). Assume that we place
this image on two disk devices, according to [14], tiles will be placed as shown in Figure 1. If tile 1 and 3
are sequentially placed on disk device 1 and tile 2 and 4 are placed on device 2, the access cost of the query
Q (given by the dashed rectangle in Figure 1) is1×taccess+2×ttransfer, instead of2×(taccess+ttransfer).
Based on this observation, we reevaluate the optimal cost of range queries for hard disks.

2.2 Optimal Cost

Due to the fact that current hard disk is more efficient when accessing data sequentially rather than random
access, the advantage of sequential access must be considered while determining the I/O cost of a query, in

3

order to facilitate the fast retrieval of the related tiles in a range query. Ideally, if all tiles related to a query,
which are allocated to same device, are placed sequentially, then only one access time is incurred for the
query. Thus the optimal retrieval cost is given by the following formula (referred to asnew optimal cost).

taccess + dA/Me × ttransfer + (dA/Nte − 1)× ttrackswitch. (2)

whereNt is the average number of blocks in a track,ttrackswitch is the time of switching from a track to
one of its neighboring tracks. The first term in the formula is the cost of one access time, because all the
related tiles on one device are placed consecutively, and all initial accesses to different disks are performed
concurrently. The second term is the maximal transfer time of all devices, which is derived by considering
parallelism of multiple disk devices. The third term represents the track switching time if the number of
involved tilesdA/Me is too large to be stored on one track. However, it is impossible to achieve the optimal
cost for all queries, as shown by the following argument.

In general, the two-dimensional data is divided intoN1 × N2 tiles. The number of disk devices isM .
Consider a queryQ1 with A tiles. Without loss of generality, assumeA is much smaller thanNt (thus there
is no track switching time), andA is equal toM as shown in Figure 2 (a). Based on the new optimal cost
formula (2), each tile in this query is allocated to a different device. Thus, the access cost of this query is

taccess + dA/Me × ttransfer = taccess + ttransfer.

���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

A=M

N2

N1

A=M

N2

N1

E2

A=M

N2

N1

E1

(a) Query Q1 (b) Query Q2 (c) Query Q3

Figure 2: Queries in aN1 ×N2 data set

i j k

disk page

Figure 3: Allocate tiles to the sequential disk pages

This cost is optimal. Figure 2 (b) shows queryQ2 which extends queryQ1 in theX dimension. The number
of tiles in queryQ2 is A + E1, andE1 = M . In order to achieve the optimal cost, each device is allocated
two tiles, and these two tiles need to be placed sequentially. Alternatively, we extend queryQ1 in the Y
dimension to generate a new queryQ3, as shown in Figure 2 (c). QueryQ3 accessesA+E2 tiles, whereE2

also equalsM . Therefore, each device needs to place two tiles (one fromA and one fromE2) sequentially
to achieve the optimal cost. However, it is impossible to achieve the optimal cost for both queryQ2 andQ3.

4

Assume tilesi, j, k are on deviced, tile i intersectsQ1, tiles i, j intersectQ2, and tilesi, k intersectQ3. In
order to achieve sequential access for queryQ2, tiles i andj need to be placed next to each other. Thus, tile
k can not be placed next toi, as shown in Figure 3. Alternatively, ifk is placed next toi, thenj can not be
placed next toi. Thus, in general, it is impossible to achieve the optimal cost for all queries of a data set,
given the physical characteristics of disks.

3 Adapting Disk Allocation Scheme to MEMS Storage

MEMS storage devices are novel experimental systems that can be used as storage. Their two-dimensional
structure and inherent parallel retrieval capability hold the promise of resolving the problems disks face
during the retrieval of two-dimensional datasets. In this section, we first introduce MEMS-based storage
briefly, then we show how to adapt existing disk allocation schemes to MEMS-based storage.

3.1 MEMS-based Storage

MEMS are extremely small mechanical structures on the order of 10µm to 1000µm, which are formed by
the integration of mechanical elements, actuators, electronics, and sensors. These micro-structures are fab-
ricated on the surface of silicon wafers by using photolithographic processes similar to those employed in
manufacturing standard semiconductor devices. MEMS-based storage systems use MEMS for the position-
ing of read/write heads. Therefore, MEMS-based storage systems can be manufactured at a very low cost.
Several research centers are developing real MEMS-based storage devices, such as IBM millipede [16],
Hewlett-Packard Laboratories ARS [2], and Carnegie Mellon University CHIPS [1].

M
 bits

Tip array

Anchor

X actuator

Y actuator
Media sled

A probe tip
Sweep area of one probe tip

N bits One bit

(a)
(b)

Figure 4: The architecture of CMU CHIPS

Due to the difficulty of manufacturing efficient and reliable rotating parts in silicon, MEMS-based stor-
age devices do not make use of rotating platters. All of the designs use a large-scale MEMS array, thou-
sands of read/write heads (calledprobe tips), and a recording media surface. The probe tips are mounted on
micro-cantilevers embedded in a semiconductor wafer and arranged in a rectangular fashion. The recording
media is mounted on another rectangular silicon wafer (called themedia sled) that uses different tech-
niques [7, 16, 1] for recording data. The IBM Millipede uses special polymers for storing and retrieving
information [16]. The CMU CHIPS project adopts the same techniques as data recording on magnetic sur-
faces [1]. To access data under this model, the media sled is moved from its current position to a specific

5

position defined by(x, y) coordinates. After the ”seek” is performed, the media sled moves in the Y direc-
tion while the probe tips access the data. The data can be accessed sequentially in theY dimension. The
design is shown in Figure 4 (a).

Table 1: Parameters of MEMS-based storage devices from CMU CHIPS

Number of regions 6400 (80× 80)
Number of tips 6400

Max number of active tips 1280
Tip sector size 8 bytes
Servo overhead 10 bits per tip sector

Bits per tip region (M ×N) 2000× 2000
Per-tip data rate 0.7Mbit/s

X axis settle time 0.125ms
Average turnaround time 0.06ms

The media sled is organized into rectangular regions at the lower level. Each of these rectangular regions
containsM ×N bits and is accessible by one tip, as shown in Figure 4 (b). Bits within a region are grouped
into vertical 90-bit columns calledtip sectors. Each tip sector contains 8 data bytes, which is the smallest
accessible unit of data in MEMS-based storage [7]. In this paper, we will use the CMU CHIPS model to
motivate two-dimensional data allocation techniques for MEMS-based storage. The parameters are given in
Table 1. Because of heat-dissipation constraints, in this model, not all tips can be activated simultaneously
even though it is feasible theoretically. In the CMU CHIPS model, the maximal number of tips that can
be activated concurrently is limited to 1280 (which provides the intra-device parallelism). Each rectangular
region stores2000× 2000 bits.

3.2 Adapting Disk Placement Approaches

Cylinder 0

L
og

ic
al

 b
lo

ck
 0

Track 2Track 1 Track 3Track 0

Figure 5: Disk Terminologies for MEMS-based storage

Even though MEMS-based storage has very different characteristics from disk devices, in order to sim-
plify the process of integrating it into computing systems, some prior approaches have been proposed to
map MEMS-based storage into disk-like devices. Figure 5 shows this mapping on a MEMS-based storage

6

device with 16 probe tips by using the CMU model [12]. Using disk terminology, acylinder is defined
as the set of all bits with identicalx offset within a region; i.e., a cylinder consists of all bits accessible
by all tips when the sled moves only in the Y direction. For example, Cylinder 0 is shown in Figure 5
and is highlighted by four ellipses. Due to power and heat considerations, only a subset can be activated
simultaneously. Thus cylinders are divided into tracks. Atrack consists of all bits within a cylinder that
can be accessed by a group of concurrently active tips. In Figure 5, four out of sixteen tips can be activated
concurrently, and each cylinder contains 4 tracks. Track 0 to Track 3 of Cylinder 0 are shown in Figure 5.
Each track is composed of multiple tip sectors, which contain less data than sectors of disks. Sectors can be
grouped into logical blocks. In [12], each logical block is 512 bytes and is striped across 64 tips. Therefore,
by using the MEMS-based storage devices in Table 1, there are up to 20 logical blocks that can be accessed
concurrently (1280 concurrent tips/64 tips = 20). Data is accessed based on its logical block number on
the MEMS-based storage.

11
12

13

14

11 12 13 14

15

15

1 2 1 2

1 2 1 2

2 1

2 1 2 1

2 1

1 1 2 2

3 3 4 4

5 5 6 6

7 7 8 8

Q

Q2

1

(a) 4X4 tiles

(b) data allocation on 2X2 MEMS device

(c) Logical mapping

Q0

Figure 6: An example of placing tiles on MEMS-based storage

After this mapping, a MEMS-based storage device can be treated as a regular disk. Thus, all prior ap-
proaches proposed for disk devices can be adapted to MEMS-based storage, such as Disk Modulo (DM) [8],
Generalized Fibonacci (GFIB) scheme [15], Golden Ratio Sequences (GRS) [6], Almost optimal access [5],
and other approaches based on replication [22, 10]. All of these approaches are based on the prior optimal
cost (1) and do not factor the sequential access property of current disks. Hence, when adapting them to
MEMS-based storage devices, this problem still remains unsolved. For example, a two-dimensional dataset
with 4 × 4 tiles is shown in Figure 6 (a). Two MEMS-based storage devices are used to store the data
(M = 2). The MEMS devices in this example have four probe tips each, and only two of them can be acti-
vated concurrently. Based on the prior optimal cost (1), the tiles should be distributed evenly and alternately
to the two devices, as shown in Figure 6 (a). The numberdi in each tile means that tile is allocated to MEMS
deviced, andi stands for the relative position of that tile on the device. In this example, we use two tip
sectors to contain the data of one tile (The size of one tile is determined by the maximum size of one data
retrieval. In this example, it is2× 8 = 16). As a result, an allocation is showed in Figure 6 (b) based on the
above mapping, Tiles11 to 15 can be placed sequentially. Their logical positions are given in Figure 6 (c).
This allocation is optimal according to the prior optimal cost (1). In fact, for queryQ0 in Figure 6 (a), this
allocation is also optimal according to the new optimal cost (2). However, for QueriesQ1 andQ2 shown in
Figure 6 (a), both of them can not achieve the new optimal solution.Q1 needs to retrieve the tiles11 and13.
Based on the relative layout given in Figure 6 (c), they are not placed sequentially. A similar analysis can be

7

achieved for queryQ2. In fact, using this mapping, MEMS-based storage devices lose some of their char-
acteristics. The intra-device parallelism is not considered at all in this mapping. In [13], we showed that by
taking these properties into account, MEMS-based storage can achieve extra performance gain in relational
data placement. In the next section, we propose a new scheme for placing two-dimensional data on MEMS-
based storage, which exploits the physical properties of MEMS-based storage to achieve sequential-like
performance for queries such asQ1 andQ2.

4 Parallel MEMS Storage Allocation

In this section, we propose a new data placement scheme based on the physical characteristics of MEMS
storage.

4.1 Motivation and Challenges

In Section 2, we argued that it is impossible to achieve the new optimal cost for disk devices. In order to
achieve the optimal cost, tiles have to be placed in bothX andY dimensions sequentially, which cannot be
realized by one-dimensional storage devices (disk-like devices). Thus, in our new scheme, we need to place
the dataset in such a way that tiles can be sequentially accessed in both dimensions (we refer to this as the
two-dimensional sequential access requirement). Even though MEMS-based storage is arranged in a two-
dimensional manner, data can only be accessed in theY dimension sequentially (which gives sequential
access in theY dimension). According to the design of MEMS-based storage, any movement in theX
dimension will result in a new seek. Therefore, we have to solve the two-dimensional sequential access
requirement by using other properties of MEMS-based storage.

11

12

1413

11 12

13

15

14

15

17
16

81

17

16

81

1 2

1 2 1 2

2 1

2 1 2 1

2 1

1 1 2 2

3 3 4 4

5 5 6 6

7 7 8 8

Q2

1 Q0

(a) 4X4 tiles

Q

(b) data allocation on 2X2 MEMS device

(c) Logical mapping

1 2

Figure 7: An example by taking the intra-device parallelism into account

Due to power and heat constraints, only a subset of the probe tips can be activated concurrently. Even
though tip sectors with the same coordinates cannot all be accessed simultaneously, they can be accessed
“almost” sequentially. For example, we show a new data layout for the example in Figure 6. Instead of
placing tiles11 and12 along theY dimension sequentially, we place them over a group of tip sectors with
the same coordinates. In order to answer queryQ0, which is shown in Figure 7 (a), we first activate the tip
sectors for tile11 (only two out of four tips can be activated concurrently), then turn the media sled around

8

and activate the tip sectors for tile12 without moving in theX dimension. In another sense, queryQ0 is
accessed sequentially (no extra seek cost). Based on this principle, we place the tiles shown in Figure 7
(a) over the MEMS storage devices as shown in Figure 7 (b). Its corresponding logical layout is given in
Figure 7 (c). Thus, queryQ1 can also achieve an optimal answer (taccess + 2 ∗ ttransfer). However, the
access cost of queryQ2 is 2 ∗ taccess + 2 ∗ ttransfer (the track switching time is zero), which is still not
optimal (tiles11 and15 are not sequentially allocated, hence it results in an extra access penalty).

In order to solve this problem and take advantage of sequential access, we could allocate the tiles se-
quentially along theY dimension over a single device. The4 × 4 dataset shown in Figure 6 and 7 can be
allocated in a way shown in Figure 8. This allocation can achieve optimal performance for bothQ0 andQ1.
Furthermore, since the tiles11, 13, 15 are placed sequentially, the access cost of queryQ2 will be reduced
to taccess + 3 ∗ ttransfer. Even though the new cost is reduced compared to the layout in Figure 7, the data
intersecting with queryQ2 is not distributed over theM given devices uniformly (the optimal cost should
betaccess + 2 ∗ ttransfer). Based on this discussion, we observe that sequential access and parallelism over
multiple devices are conflicting goals. To address this contradiction, in our placement scheme, we first tile
the dataset based on the physical properties (rather than tiling the dataset without considering the properties
of devices), then we allocate the data in each tile on theM devices evenly to guarantee that each device
participates almost equally in transfer time. Note that from a user’s point of view, the underlying tiling is
not of interest and has no effect on the user’s interaction with the dataset; efficiency and fast retrieval is the
user’s goal.

1 2 1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 1 2 2

3 3 4 4

5 5 6 6

7 7 8 8

Figure 8: Placing the tiles sequentially over a single device

4.2 Tiling the data

In general, two-dimensional data is divided into tiles along each dimension uniformly, and the size of each
tile corresponds to one disk page. In our scheme, we divide the data into tiles based on the physical properties
of the underlying storage devices, in particular, the number of given devices,M , and their parameters. In
Table 1, 1280 of 6400 probe tips can be activated concurrently. Because the smallest accessible unit is a tip
sector with 8 bytes,1280 × 8 bytes can be accessed concurrently. There areM devices, thus the total size
of data which can be accessed simultaneously isM × 1280× 8 bytes. This determines the size of a tile. In
other words, a tile corresponds to the maximum number of bytes that can be accessed concurrently. After

9

U1

R2

C1

U U U4 U52 3

U6 U7 U8 U U109

R3

R1

C2 C3 C4 C5

Rk

C j

Ui : tile number

: row number

: column number

One tile

Figure 9: Dividing the two-dimensional data into tiles

determining the size of a tile, the next step is to decide on the number of tiles along each dimension. In our
scheme, in order to take advantage of potential concurrent access of tip sectors with the same coordinates,
data is divided into6400/1280 tiles along theX dimension (i.e., 5 columns), as shown in Figure 10. All the
tip sectors allocated to the 5 tiles of a single row on one device have the same coordinates, thus if the total
number of tip sectors on one device in a query, which only intersects with the 5 tiles of a single row, does
not exceed the maximal number of concurrent tips, they could be retrieved by one transfer. Hence given
a dataset of dimensionsW × L = Sbytes, we divideW into 5 columns. Each tile will have dimensions
W
5 × M×1280×8

W/5 . The limitation on the width of the dataset can be addressed by increasing the number of
devices, slicing the tile as described in Section 4.3. After determining the number of tiles in the X dimension,
the number of tiles along the Y dimension can be computed by the following formula:

dS/the data size in each rowe = dS/(M × 6400× 8)e.
Where S stands for the total size of the dataset.

4.3 Slicing a Tile

D D D D D

D D D D D

11 12 13 14 15

21 22 23 24 25

ij

 j is the column number.
 D : i stands for the device number;

Q
1

Figure 10: An example of placing each tile over M devices

After having divided the data into tiles, we introduce how to distribute the data in each tile overM
MEMS-based storage devices. In order to avoid the problem of sacrificing transfer time to achieve sequential
access, we distribute the data in each tile over all M devices uniformly. However, the placement has to
guarantee that the transfer time of a query on each device is the same. For example, consider a single row

10

of a dataset with 5 tiles, and two MEMS storage devices. For the sake of argument, let us assume the
top 1280 eight-byte units of each tile are allocated to device 1 and the bottom 1280 eight-byte units are
allocated to device 2, as shown in Figure 10. For a queryQ1 given by the dotted rectangle in Figure 10, it
is impossible to achieve optimal transfer time. Even though the data ofD11, D12, D13, D14, D15 are placed
on tip sectors with the same coordinates which have the potential to be accessed concurrently, if the number
of tip sectors accessed byQ1 is larger than the maximal number of concurrent tips, lets say two times larger,
then answeringQ1 will take two transfer time. However, in this case, only device 1 is used. If device 2 could
retrieve half of the requested data, only one transfer time is necessary (which is the optimal cost). Thus the
data in each tile should be distributed over theM devices evenly at the level of tip sectors.

Q
1

: data denoted in " " goes to device 1
 data denoted in " " goes to device 2

Figure 11: An example of slicing one tile over two devices

In each tile, the data is organized into 8-byte units which correspond to the size of each tip sector. The
data allocation at this level needs to distribute the 8-byte units over theM devices evenly. Lets take the
dataset shown in Figure 10 as an example. In each tile, the data are organized into 8-byte units, which are
highlighted by little squares and circles in Figure 11. If we allocate all 8-byte units highlighted by squares
to device 1, and all 8-byte units shown by circles to device 2, as shown in Figure 11, then the involved data
is distributed over the two devices evenly. As a result, queryQ1 can be answered optimally. Slicing each
tile over multiple devices is similar to declustering a two-dimensional dataset over multiple disk devices, if
we treat a tile as a new two-dimensional dataset and each 8-byte unit as a new tile of the dataset. Thus, all
the data placement schemes proposed for two-dimensional dataset could be easily adopted. For example, in
[5], the authors use a coloring scheme. It is proved that any range query over this dataset is guaranteed to
access no more thandNu/Me + γ 8-byte units whereγ = O(logM) andNu is the total number of 8-byte
units in a tile. We adopt this scheme for allocating data in one tile on multiple MEMS devices.

4.4 Algorithms

In this section, we describe the procedures for placing the data on MEMS storage devices, and given a query,
how to retrieve the relevant data.

Based on the parameters given in Table 1, the number of tip sectors of a single device which are allocated
to one tile is the maximal number of concurrent tips (1280). There are 6400 tips in total, as a result, all the tip
sectors with the same coordinates can form 5 (6400/1280) tiles of maximal concurrent tip sectors. All the tip
sectors in these five tiles have the potential to be accessed simultaneously. Furthermore, anyM × 1280× 8
bytes in a row have the potential to be accessed concurrently. The layout among different tiles and across
different rows is considered in a similar way to the one used in [13]. The generic data allocation procedure

11

row 1

row 1

row 1

row 1

row 2

row 2

row 2

row 2

row 5

row 4

row 3

row n

partition 1 partition 2

Q column 1 column 2 column3

Data assigned to device 3

(c) Placing the data on MEMS storage

row2

row2

row1

row2

row1

row2

row1

row1

Data assigned to device 2

Data assigned to device 1

(b) Data assignment

 8−byte unit

(a) a dataset is divided into 5Xn tiles

one tile

Figure 12: Placing the tiles of a dataset overM MEMS devices

is given in Algorithm 1. We use an example to explain this algorithm. In Figure 12 (a), given three MEMS
storage devices (M = 3), a dataset is divided into a5 × n tile grid. In each tile, the little circles, squares,
and triangular stand for 8-byte units, that will be allocated to different devices, as shown in Figure 12 (b).
The 8-byte units on row1 are mapped to row1 on each device in Figure 12 (b). Figure 12 (c) shows how to
allocate the data assigned to each device on the physical storage device. Assume we start placing the data
at the coordinates(x, y), then the data of row1 is placed on the tip sectors with coordinates(x, y), which
are highlighted by circles in Figure 12 (c). Based on the data provided in Table 1, in order to decrease the
seek time, we first consider the allocation of the tip sectors which have the samex coordinate as row1, and y
coordinate differs by one from row1. As a result, row2 is placed on the tip sectors with coordinates(x, y+1),
which are highlighted by filled circles in Figure 12 (c). This process continues until they coordinate reaches
the boundary, when the tip sectors are allocated in the next column (coordinatex differs by one from the
last row).

In general, the dataset is placed at two levels: the lower level places each tile over theM devices, while
the upper level places the rows within a single device. Based on this layout, we now describe how to answer
a query (data retrieval). Given a queryQ, assumeQ intersects rows i, i+1,...,i+k in continuous order. The
data retrieval procedure is given in Algorithm 2. In this algorithm, there are two cases to consider:

• Case 1: For any single device1, the number of tip sectors in any row, which intersects the query, is not
larger than the maximal number of concurrent tips.

The media sled is moved to the coordinates(xi, yi) of the row i, then the tips which are in charge of the

1The data in each tile can only be distributed over theM devices almost evenly.

12

Algorithm 1 Data Placement
1: The maximum number of concurrent tips:Nconcurrent;
2: The total number of tips:Ntotal;
3: The number of tiles in a row:Nrow = dNtotal/Nconcurrente;
4: The number of given devices:M ;
5: The size of each tip sector:Stipsector;
6: The size of one tile:Stile = Nconcurrent ×M × Stipsector;
7: The size of each row of tiles:Srow = Ntotal ×M × Stipsector;
8: The size of the dataset:Sdataset;
9: The number of tiles in a column:Ncolumn = Sdataset/Srow;

10: Organizing the data in each tile intoStipsector-byte units;
11: Using any disk allocation scheme to distribute the data in each tile overM devices
12: for each devicedo
13: Move the media sled to the initial position with coordinates(x, y);
14: moveDirection = down;
15: i = 0;
16: while i ≤ Nrow do
17: Allocate tip sectors with coordinates(x, y) to data tiles at rowi;
18: if moveDirection = down then
19: y = y + 1;
20: if y is out of range of movement of the media sledthen
21: y = y − 1, x = x + 1;
22: Move the media sled to the position(x, y), and turn it around;
23: moveDirection = up
24: end if
25: else
26: y = y − 1;
27: if y is out of range of movement of the media sledthen
28: y = y + 1, x = x + 1;
29: Move the media sled to the position(x, y), and turn it around;
30: moveDirection = down
31: end if
32: end if
33: i = i + 1;
34: end while
35: end for

13

Algorithm 2 Data Retrieval
1: Given a queryQ;
2: Q intersects the dataset by rowsi, i + 1, ..., i + k in continuous order;
3: The maximum number of concurrent tips:Nconcurrent;
4: for each devicedo
5: The number of involved tips in a row:Ninvolved;
6: Move the media sled to the coordinates of tip sectors for rowi: (xstart, ystart);
7: x = xstart, y = ystart;
8: moveDirection = down;
9: retrievedrows = 0;

10: if Ninvolved ≤ Nconcurrent then
11: while retrievedrows ≤ k do
12: Activate all involved tips, and retrieve the data;
13: if moveDirection = down then
14: y = y + 1;
15: if y is out of range of movement of the media sledthen
16: y = y − 1, x = x + 1;
17: Move the media sled to the position(x, y), and turn it around;
18: moveDirection = up
19: end if
20: else
21: y = y − 1;
22: if y is out of range of movement of the media sledthen
23: y = y + 1, x = x + 1;
24: Move the media sled to the position(x, y), and turn it around;
25: moveDirection = down
26: end if
27: end if
28: retrievedrow+ = 1;
29: end while
30: else
31: The number of concurrent groups:Ngroup = dNinvolved/Nconcurrente;
32: For each of these groups
33: Turn around the media sled
34: if moveDirection = down then
35: moveDirection = up;
36: else
37: moveDirection = down;
38: end if
39: Use the same procedure as the one whenNinvolved ≤ Nconcurrent;
40: end if
41: end for

14

intersected tip sectors are activated, and the corresponding data with these coordinates are retrieved.
Then the media sled moves to the coordinates of the next row,i + 1, to access the data. Based on
Algorithm 1, we know that any two neighboring rows differ either in their x coordinates by one, or y
coordinates by one, which means, data is either sequentially retrieved in theY dimension or at most
involves one track switching time (move from one column to its neighboring column). On the other
hand, there is no unnecessary data (which is not included in the range ofQ) retrieved.

• Case 2: For some devices, the number of tip sectors in any row involved inQ is larger than the
maximal number of concurrent tips.

In this case, the relevant data in each row can not be retrieved simultaneously. For any single device,
the intersected tip sectors of each of row i, i+1,...,i+k are organized into concurrent groups2 (The
number of tip sectors in the final group may be less than the maximal number of concurrent tips). For
example, Figure 12 (a) gives a queryQ by a dotted rectangle. The partitions 1 and 2 regroup the query
range into three new columns, as shown in Figure 12 (a), these three new columns with the original
rows, divide the query range into new tiles (the new tiles in column 3 contain less data than the other
two new tiles). Based on the tile allocation scheme, the 8-byte units in the new tiles are distributed
over theM devices evenly. Thus, we can adopt the same retrieval procedure as in Case 1 to access the
data in each new column. After finishing access of one new column, instead of moving the media sled
back to the coordinates of row1 every time (it will introduce a new seek), the media sled is just turned
around and changes its moving direction, then the tips in another concurrent tip group are activated to
access the data (tip sectors can be accessed in both directions of theY dimension).

Based on the whole procedure of our data placement scheme, from tiling the dataset to query answering,
we can see that the new scheme considers the parallelism of a single MEMS-based storage device, thus, the
maximal number of concurrent tips are used to retrieve the relevant data. The sequential access property is
considered in the row-wise manner. This solves the problem, which exists on disks, that the necessary data
are sequentially accessed without retrieving unrelated data to a query.

5 Experimental Results

In this section, we first compare the new optimal cost (2) with the prior optimal one (1) through experiments
on disks, and show that the prior data placement schemes can not achieve the new optimal cost in general.
Then we evaluate our new data placement scheme for MEMS-based storage devices.

5.1 Evaluating the Optimal Cost on Disks

In this section, we experimentally explore the relationship between the prior and new optimal costs (Equation
(1) and (2)). We also investigate ways in which I/O scheduling may try to take advantage of sequential I/O
on disks to improve the performance of algorithms designed based on the prior optimal cost. We do not
evaluate any specific existing data placement schemes, because all of them are based on the prior optimal
cost, they can not outperform the prior optimal cost. We therefore assume the data placement schemes can
achieve the prior optimal cost. However, these schemes based on the prior optimal cost do not discuss how

2The tip sectors in each row have the same coordinates, thus they have the potential to be accessed simultaneously.

15

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16

A
ve

ra
g

e
 r

e
tr

ie
va

l t
im

e
 (

in
 m

se
c)

The number of disk devices

Prior Optimal
New Optimal

Prior Optimal With Sequential
Prior Optimal With Bulk Loading

(a)

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

A
ve

ra
g

e
 r

e
tr

ie
va

l t
im

e
 (

in
 m

se
c)

The number of disk devices

New Optimal
Prior Optimal With Sequential

Prior Optimal With Bulk Loading

(b)

Figure 13: Performance evaluation of a dataset withN1 = N2 = 16 tiles

data is placed on the individual disks. We therefore consider two cases, one when data is placed randomly
on each disk and the other where data is allocated sequentially on the disks. Finally, we also investigate the
performance when the disk access mechanism retrieves large chunks of data even though the chunks may
contain unnecessary data in the middle. This is based on the fact that seek time is much more expensive
than transfer time. Thus, the transfer time is sacrificed to improve seek time [20, 21, 17]. We refer to this
approach asbulk loading. Hence we consider three cases.

• Random access: Tiles assigned to the same disk are placed randomly. In this case, the access of
different tiles is an independent random access.

• Sequential access: Tiles allocated to a single device are placed row by row. Thus, the two-dimensional
tiles are mapped onto one-dimensional I/O devices (refer to Figure 6 as an example). The tiles inter-
secting with queries are not retrieved sequentially if they are not placed consecutively. In this case, no
unnecessary tiles are accessed (or transfered).

• Bulk loading: The data layout is the same as the one in sequential access. However, we use bulk
loading, thus some unnecessary tiles may be retrieved.

Table 2: Parameters of a disk drive

Transfer time 0.05ms
Access time 5ms

The average number of blocks on a track 300
Track switching time 2.5ms

The comparison is based on the average cost of all possible queries [15]. We first average the cost of all
queries with the same size(i.e., the same number of tiles), then we take the average of all possible queries
with different sizes. In our experiments, for the sake of simplicity, we place the first tile from the beginning
of a track. We use the parameters listed in Table 2 [4, 3].

16

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 re
tri

ev
al

 ti
m

e
(in

 m
se

c)

The number of disk devices

New Optimal
Prior Optimal With Sequential

Prior Optimal With Bulk Loading

Figure 14: Performance evaluation of a dataset withN1 = N2 = 32 tiles

The first experiment is conducted on a dataset with16× 16 tiles, which can be contained on one track,
thus, there is no track switching time. The result is shown in Figure 13. Figure 13 (a) shows the curves of
the average retrieval time over different numbers of disk devices. The prior optimal cost is much larger than
the other three curves, thus we do not consider it in our later experiments. The corresponding curves without
the prior optimal shown in Figure 13 (a) are given in Figure 13 (b) to highlight the I/O gap that exists. Bulk
loading access pattern outperforms sequential access. Figure 14 shows the results of a dataset with32× 32
tiles. The tendency of the three curves is similar to Figure 13 (b). However, the difference between the new
optimal cost and the other two is larger than in Figure 13 (b), which is due to the track switching time. The
prior optimal cost (1) does not consider the relative positions of involved tiles. In other words, sequential
access and bulk loading involves more track switching time than the optimal cost. As the number of devices
is increased, sequential access outperforms bulk loading, because sequential access has less track switching
time than bulk loading.

5.2 Evaluating the New Placement Scheme on MEMS

In this section, we evaluate our new placement scheme for MEMS-based storage devices. We use the
coloring scheme proposed in [5] to distribute the data in each tile. We compare our new scheme with
the new optimal cost. We also evaluate the prior optimal layout for MEMS-based storage with sequential
access and bulk loading. In these cases, we use the CHIPS disk-based modeling of MEMS storage described
in Section 3.2. The seek time and transfer time we use for the MEMS-based storage devices are1.46ms
and0.129ms respectively [11]. The turn-around time is0.06ms which is much smaller than seek time and
transfer time. The number of tip sectors in theY dimension of a region is22 [13]. Because we use a different
standard to tile two-dimensional dataset, in our comparison, we transfer the ranges of queries in the original
data tiles to our new layout. Thus, we compare the same set of range queries for different schemes.

Figure 15 shows the performance when the number of tiles in a query is varied over20 × 20 dataset
and 4 MEMS storage devices. The average retrieval cost is obtained by taking the average access cost
of all possible ranges with the same number of tiles. Our new placement scheme always outperforms the
sequential access, and outperforms bulk loading in most queries. The little difference between our new
scheme and the optimal cost is due to the turn-around time. Because the dataset is composed of20 × 20
tiles, each tile contains8K bytes. According to our tiling scheme, the dataset is reorganized into5×20 tiles,

17

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 re
tri

ev
al

 ti
m

e
(in

 m
se

c)

The number of tiles in a query

Optimal Cost
New Placement Scheme

Prior Optimal With Sequential
Prior Optimal With Bulk Loading

Figure 15: Performance evaluation of a dataset with originalN1 = N2 = 20 tiles over four MEMS-based
storage devices

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 re
tri

ev
al

 ti
m

e
(in

 m
se

c)

The number of MEMS-based storage devices

Optimal Cost
New Placement Scheme

Prior Optimal With Sequential
Prior Optimal With Bulk Loading

Figure 16: Performance evaluation of a dataset with originalN1 = N2 = 80 tiles

each of the tile in the new scheme containsM × 1280× 8 = 4× 1280× 8 bytes. For the sake of simplicity,
we place the rows at the beginning of regions, i.e., row1 has coordinates(0, 0). In each region, there are 22
tip sectors in theY dimension, thus, there is no track switching time involved. In the new scheme, the media
sled needs to move forwards and backwards to retrieve the tiles in different columns. When the number of
tiles in a query is very large (almost the entire dataset), bulk loading slightly outperforms the new scheme.
When a large number of tiles are involved in a query, then the number of unnecessary tiles retrieved in bulk
loading is very small. However, in the new scheme, there is the extra cost of turn-around time. When the
number of tiles is small, sequential access has better performance than bulk loading, because bulk loading
retrieves too many unrelated tiles, as shown in Figure 15.

In order to further evaluate the average performance of these four methods, we compared their average
retrieval cost for all sizes of queries by varying the number of MEMS-based storage devices and using a
dataset with80× 80 tiles. Our new scheme performs better than both sequential access and bulk loading, as
shown in Figure 16. The difference between our scheme and the optimal cost is due to the turn-around time
and the column-switching time. In our scheme, the column-switching time is larger than for the optimal
cost, since column-switching time in optimal cost is not affected by the relative positions of the accessed

18

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 r
et

rie
va

l t
im

e
(in

 m
se

c)

The number of MEMS-based storage devices

1280 concurrent tips
640 concurrent tips
320 concurrent tips

Figure 17: Performance evaluation of a dataset with originalN1 = N2 = 80 tiles

tiles.
Due to power and heat dissipation constraints, only a subset of the tip sectors can be activated concur-

rently. In our experiment, we used CMU MEMS-based storage: 1280 of total 6400 tips can be activated
simultaneously. In order to study the effect of this constraint on our new scheme, we vary the number
of concurrent tips (1280, 640, 320), the results are shown in Figure 17. With the increase in the number
of MEMS storage devices, all these curves have similar trends. The time difference among them is due
to the transfer time and the turn around time. For example, a 1280-concurrent-tips device has twice the
bandwidth of a 640-concurrent-tips device, i.e., a 1280-concurrent-tips device can transfer data faster than
a 640-concurrent-tips devices. Based on our scheme, the dataset is organized into 10 columns for 640-
concurrent-tips devices compared to 5 columns for 1280-concurrent-tips devices, thus 640-concurrent-tips
devices will turn the media sled more often than 1280-concurrent-tips devices. Hence, 640-concurrent-tips
devices incur more turn-around time than 1280-concurrent-tips devices.

6 Conclusion

The cost of range queries over two-dimensional datasets is dominated by disk I/O. Declustering and parallel
I/O techniques are used to improve the query performance. Since the optimal cost can not be realized
in general, several approaches have been proposed to achieve near optimal cost. However, the physical
properties of current disks are not considered. In this paper, we reevaluate the optimal query cost for current
disks, which favor sequential accesses over random accesses. We also demonstrate that it is impossible to
achieve the new optimal cost on disks in general, since the new optimal cost of range queries requires two-
dimensional sequential access. This is not feasible in the context of disks, since disks are single-dimensional
devices. In this paper, we propose to use MEMS-based storage to overcome this inherent problem in disks.
We develop a new data placement scheme for MEMS-based storage that takes advantage of its physical
properties, where the two-dimensional sequential access requirement is satisfied. The new scheme allows
for reorganization of query ranges into new tiles which contain more relevant data, thus we can maximize the
number of concurrent active tips to access the relevant data. In the new scheme, we also relax the traditional
tiling approach (which has never been specified explicitly) by tiling datasets based on the physical properties

19

of MEMS-based storage. Our theoretical analysis and experimental results show that our new scheme can
achieve almost optimal performance.

References

[1] CMU CHIP project. 2003. http://www.lcs.ece.cmu.edu/research/MEMS.

[2] Hewlett-packard laboratories atomic resolution storage, 2003. http://www.hpl.hp.com/research/storage.html.

[3] Reference guide - hard disk drives. 2003. http://www.storagereview.com/guide2000/ref/hdd/.

[4] Seagate disk drives. 2003. http://www.seagate.com/cda/products/discsales/index.

[5] M.J. Atallah and S. Prabhakar. (almost) optimal parallel block access for range queries.Nineteenth ACM Symposium on
Principles of Database Systems, PODS, May 2000.

[6] R. Bhatia, Sinha R.K., and C.M. Chen. Declustring using golden ratio sequences.In Proc. of International Conference on
Data Engineering, pages 271–280, February 2000.

[7] L. Richard Carley, Gregory R. Ganger, and David F. Nagle. MEMS-based integrated-circuit mass-storage systems.Commu-
nication of the ACM, 43(11), November 2000. http://www.lcs.ece.cmu.edu/research/MEMS/.

[8] H.C. Du and J.S. Sobolewski. Disk allocation for cartesian product files on multiple-disk systems.ACM Transactions of
Database Systems, 7(1):82–101, March 1982.

[9] C. Faloutsos and P. Bhagwat. Declustring using fractals.In Proc. of the 2nd Int. Conf. on Parallel and Distributed Information
Systems, pages 18–25, January 1993.

[10] K. Frikken, M. J. Atallah, Sunil Prabhakar, and R. Safavi-Naini. Optimal parallel i/o for range queries through replication.In
Proceedings of the 13th International Conference on Database and Expert Systems Applications, pages 669–678, September
2002.

[11] J. Griffin, S. Schlosser, G. Ganger, and D. Nagle. Modeling and performance of MEMS-Based storage devices.Proceedings
of ACM SIGMETRICS, pages 56–65, June 2000. http://www.lcs.ece.cmu.edu/research/MEMS/.

[12] J. Griffin, S. Schlosser, G. Ganger, and D. Nagle. Operating systems management of MEMS-based storage devices.Sympo-
sium on Operating Systems Design and Implementation(OSDI), October 2000. http://www.lcs.ece.cmu.edu/research/MEMS/.

[13] H.Yu, D.Agrawal, and A.El Abbadi. Tabular placement of relational data on MEMS-based storage devices.In proceedings
of the 29th Conference on Very Large Databases(VLDB), September 2003. To Appear.

[14] K.A.S.Abdel-Ghaffar and A. El Abbadi. Optimal allocation of two-dimensional data.In International Conference on
Database Theory, pages 408–418, January 1997.

[15] S. Prabhakar, K.A.S.Abdel-Ghaffar, D. Agrawal, and A. El Abbadi. Cyclic allocation of two-dimensional data.In Interna-
tional Conference on Data Engineering, pages 94–101, February 1998.

[16] P.Vettider, M.Despont, U.Durig, W.Haberle, M.I. Lutwyche, H.E.Rothuizen, R.Stuz, R.Widmer, and G.K.Binnig. The
”millipede”-more than one thousand tips for future afm storage.IBM Journal of Research and Development, pages 44(3):323–
340, May 2000.

[17] M. Riedewald, D. Agrawal, A. El Abbadi, and F. Korn. Accessing scientific data: Simpler is better.In Proc. of the 8th
International Symposium on Spatial and Temporal Databases, pages 214–232, July 2003.

[18] Steven W. Schlosser, John Linwood Griffin, David F. Nagle, and Gregory R. Ganger. Designing computer systems with
MEMS-based storage.ASPLOS, November 2000. http://www.lcs.ece.cmu.edu/research/MEMS/.

[19] S.W. Schlosser, J. Schindler, A. Ailamaki, and G.R. Ganger. Exposing and exploiting internal parallelism in MEMS-based
storage.Technical Report CMU-CS-03-125, School of Computer Science, Carnegie Mellon University, March 2003.

[20] B. Seeger. An analysis of schedules for performing multi-page requests.Information Systems, 21(5):387–407, 1996.

[21] B. Seeger, P.-A. Larson, and R. McFayden. Reading a set of disk pages.In Proc. Int. Conf. on Very Large Databases (VLDB),
pages 592–603, 1993.

[22] A.S. Tosun and H. Ferhatosmanoglu. Optimal parallel i/o using replication.Proceedings of International Conference on
Parallel Processing Workshops (ICPPW ’02), pages 506–513, August 2002.

20

