
Linear Constraint Graph for Floorplan Optimization with
Soft Blocks∗

Jia Wang
Electrical and Computer Engineering

Illinois Institute of Technology
Chicago, IL 60616

Hai Zhou
Electrical Engineering and Computer Science

Northwestern University
Evanston, IL 60208

Abstract— In this paper, we propose the Linear Constraint Graph
(LCG) as an efficient general floorplan representation. For n blocks, an
LCG has at most 2n+3 vertices and at most 6n+2 edges. Operations
with direct geometric meanings are developed to perturb the LCGs.
We apply the LCGs to the floorplan optimization with soft blocks to
leverage its advantage in terms of the sizes of the graphs, which will
improve the efficiency of solving a complex mathematical program in
the inner loop of the optimization that decide the block shapes without
introducing overlaps to the non-slicing floorplans. Experimental results
confirm that the LCGs are effective and efficient.

I. INTRODUCTION

Floorplanning is an important stage in VLSI circuit design that
determines the locations and the shapes of the modules of the
circuit on a chip in order to optimize the system subjecting to
various objectives and constraints. Many floorplan representations
have been proposed for optimizations with simulated annealing
(SA). Among the methods that convert from a representation to
its physical floorplan, packing, i.e. to push modules to one of the
four corners of the chip, is widely used because of its simplicity and
its ability to generate area optimal floorplans when the shapes of
the modules are fixed. However, if there are soft blocks among the
modules whose shapes should be optimized, or the objective of the
floorplan optimization is beyond the area minimization, or there are
additional placement constraints, packing will not result in optimal
floorplans. It is favorable in those cases to explore the solution space
of all the non-overlapping floorplans under a given topology in a
mathematical programming formulation using a constraint graph to
avoid block overlap [1], [2], [3], [4], [5]. It is critical to solve the
optimization problem for each topology generated in SA efficiently.
From the aspect of the topologies, the corresponding constraint
graphs should have small sizes, i.e., to have as few vertices and
edges as possible.

Constraint graphs have been studied since the early years of
the floorplan research. Polar graphs, which describe the geometric
relations between rooms and the maximal line segments for rectan-
gular dissections, were introduced by Ohtsuki et al. [6] and were
reviewed by Otten [7]. Although there is no method to perturb
the polar graphs in SA, they can be explored by deriving them
from mosaic floorplan representations, e.g. Twin Binary Sequences
(TBS) [8]. For the general floorplan problem of the block place-
ment, Transitive Closure Graph (TCG) [9] and Adjacent Constraint
Graph (ACG) [10], [11] were proposed as the constraint graph based
floorplan representations. As TCG keeps all the transitive edges
in the graph, the number of the edges in a TCG is Θ(n2) for
n blocks. In ACG, the sizes of the constraint graphs are reduced
intentionally by forbidding over-specifications, transitive edges, and
the “crosses”, which are special geometric relations that may result
in Θ(n2) edges in a constraint graph. However, there is no proof
showing that the number of the edges in an ACG would be O(n).

∗The research was conducted at Northwestern University and supported
in part by NSF under CNS–0613967.

On the other hand, previous works [1], [2], [3], [4], [5] employed
simpler approaches that generate the constraint graphs using the
pair-wise geometric relations from either the sequence-pairs [12] or
the physical floorplans. The number of the edges in the constraint
graphs generated by these approaches might be Θ(n2) in the worse
case and is O(n log n) [13] in the average case if the transitive
edges are removed.

Our contribution in this paper is to present a class of constraint
graphs named Linear Constraint Graphs (LCG). LCG is the first
general floorplan representation based on the constraint graphs
where the numbers of the vertices and the edges are linear to
the number of the blocks, which improves upon the previous
super-linear size bounds in TCG and ACG. Intuitively, LCGs can
be viewed as a combination of the polar graphs and ACGs: the
“crosses” are avoided in one dimension as in ACG and are avoided
in the other dimension by introducing “bars”, which are similar
to the maximal line segments in the polar graphs. For n blocks,
an LCG contains at most 2n + 3 vertices and 6n + 2 edges.
We construct an LCG by constructing its horizontal constraint
graph first as a Horizontal Adjacency Graph (HAG). Generally
speaking, HAG captures the horizontal relations between the blocks
that are close to each other and is planar. The vertical constraint
graph is generated as the Vertical cOmpanion Graph (VOG) of the
horizontal one, which ensures that every pair of blocks that are not
separated horizontally are separated vertically. The operations we
designed to perturb the LCGs have direct geometric meaning – such
advantage is shared by the constraint graph based representations
TCG and ACG. We focus on the application of LCG to the floorplan
optimization problems with soft blocks. We emphasize that LCG is
preferable when the constraint graphs are essential for the floorplan
problem, and LCG is an efficient representation that can be applied
to solve general floorplan problems.

The rest of this paper is organized as follows. In Section II,
definitions are reviewed. In Section III, we show the motivation of
our work. In Section IV, we define LCGs and show its properties.
In Section V, we present the operations to perturb LCGs in SA
and introduce the framework for floorplan optimization with soft
blocks. Experimental results are reported in Section VI. Section VII
concludes the paper.

II. PRELIMINARIES

For ease of presentation, we use V (G) and E(G) to denote
the set of the vertices and the set of the edges of any graph G
respectively.

A constraint graph describes the geometric relations between
the blocks in a floorplan. A horizontal directed edge e = (u, w)
represents that u is to the left of w while a vertical one represents
that u is below w. Four terminal vertices sh,th,sv ,and tv represent
the four boundaries of the floorplan. Any pair of blocks are either
separated horizontally or vertically in the constraint graph to avoid
overlap. Let B be the set of the rectangular blocks representing the

Fig. 1. (a) A floorplan and the constraint graph with Θ(n2) edges. (b) A
vertical cross as defined by the work of ACG. (c) (d) Two alternatives for the
vertical cross. (e) ACG reduces the number of the edges. (f) Alternatively,
a bar can be inserted to reduce the number of the edges.

modules in a circuit. We define the constraint graphs as follows
formally.

Definition 1 (Constraint Graph): The tuple G = (Ch, Cv) is a
constraint graph of the blocks B iff:

CG-1 There are vertices sh,th,sv ,tv such that B∪{sh, th} ⊆
V (Ch) and B ∪ {sv, tv} ⊆ V (Cv).

CG-2 Both Ch and Cv are directed acyclic graphs (DAG).
CG-3 ∀u ∈ B, there exists a directed path from sh (and sv)

to th (and tv) in Ch (and in Cv) containing u.
CG-4 For any pair of the blocks, there is a directed path from

one of them to the other either in Ch or in Cv .
Let V (G) = V (Ch) ∪ V (Cv) and E(G) = E(Ch) ∪ E(Cv). The
graph Ch and Cv are the horizontal and the vertical constraint graph
of G respectively.
Note that we allow dummy vertices besides the terminal vertices
and the blocks in the constraint graphs. These dummy vertices are
critical for LCG to achieve the linear size.

Recall that B is the set of the blocks. For every b ∈ B,
let the width and the height of the block b be w(b) and h(b)
respectively. For the dummy vertices besides the terminal vertices
and the blocks in V (G), we set w(b) = h(b) = 0. The floorplan
F with the coordinates of the blocks given as the labelings x and
y is represented by a constraint graph G = (Ch, Cv) iff we can
assign coordinates to the terminal vertices and the dummy vertices
such that

x(i) + w(i) ≤ x(j), ∀(i, j) ∈ E(Ch), (1)

y(i) + h(i) ≤ y(j), ∀(i, j) ∈ E(Cv).

A set of the constraint graphs is called complete for a set of blocks,
iff for every non-overlapping floorplan of the blocks, there is a
constraint graph representing it and belonging to the set.

III. MOTIVATION

An efficient general floorplan representation based on con-
straint graph is our noble goal, where Adjacent Constraint Graph
(ACG) [10], [11] is the first effort. ACG is a constraint graph under
three conditions: first, no over-specification, i.e. each pair of blocks
are separated either horizontally or vertically but not both; second,
no transitive edge, since the corresponding geometric relation is
implied; third, no “crosses”. A cross is a basic structure in the
constraint graph that may result in Θ(n2) edges for n blocks, even
under the first two conditions. An example is shown in Fig. 1 (a).
A vertical cross, which happens many times in (a), is shown in
Fig. 1 (b). It simply requires the top two blocks be above the
bottom two, making it seems that a horizontal bar is between them.
ACG removes such a cross by arguing that removing such a bar

Fig. 2. (a) Convert a block placement to a mosaic floorplan by inserting
the dummy room j. (b)(c) The polar graphs. (d)(e) The constraint graph.

cannot worsen the solution – the blocks will fall into one of the
two situations as shown in Fig. 1 (c) and (d). The advantage is the
reduced number of the edges as shown in Fig. 1 (e). However, it is
still open whether the number of the edges in an ACG is bounded
by O(n log n), even though we conjecture so.

Obviously, removing crosses is not the only way to reducing
the worse case edge number in a constraint graph. As already
mentioned, a cross represents a bar between two pairs of blocks. If
a bar of arbitrary length is allowed, we may also be able to reduce
edge numbers. For the example shown in Fig. 1 (a), if a horizontal
bar, represented by a dummy vertex, is introduced between the two
rows of blocks, as shown in Fig. 1 (f), the graph size becomes
linear.

Using bars in the floorplan representation is not new, which can
be found in polar graphs [6], [7]. The approach is illustrated in
Fig. 2. A block placement is first converted to a mosaic floorplan by
inserting a dummy room j as shown in Fig. 2 (a). The polar graphs
are then constructed in Fig. 2 (b) and (c) where the vertices represent
the maximal line segments, i.e. the bars, and the edges represent
the rooms. Finally, the horizontal and the vertical constraint graphs
shown in Fig. 2 (d) and (e) are derived from the polar graphs by
inserting a vertex representing each room on the corresponding
edge. However, the drawbacks of the polar graphs include the
restriction to the moasic floorplans where dummy rooms are needed
for the general floorplans, and the validation difficulty which makes
it hard to change a floorplan into another.

Linear Constraint Graph (LCG) achieves the goal by combining
ideas from ACG and the polar graph. It forbids horizontal crosses as
ACG while introducing horizontal bars as the polar graph. Without
dummy vertex, its horizontal graph is similar to ACG but is made
planar to break the curse of superlinear edge number. It is defined
formally as the Horizontal Adjacency Graph (HAG). Its vertical
graph is called the Vertical cOmpanion Graph (VOG), which is
used to separate blocks not separated in HAG where the horizontal
bars are introduced to reduce the edge number. The LCG of the
floorplan shown in Fig. 2 (a) is given in Fig. 3. This example will
be used throughout the paper to illustrate the ideas in LCG.

IV. LINEAR CONSTRAINT GRAPH

A. Horizontal Adjacency Graph

The edges in a horizontal constraint graph can be ordered by the
vertical relations among the vertices. Define a DAG to be ordered

Fig. 3. The LCG of the floorplan in Fig. 2 (a).

if the outgoing edges and the incoming edges of every vertex are
ordered. For an ordered DAG G and any vertex u ∈ V (G), let R(u)
and L(u) be the sequences of the ordered outgoing edges and the
ordered incoming edges of u respectively. Let R+(u) and R−(u)
(respectively L+(u) and L−(u)) be the first and the last element
in R(u) (respectively L(u)). Let the other vertices besides u of
the edges R+(u), R−(u), L+(u), and L−(u) be r+(u), r−(u),
l+(u), and l−(u) respectively. For a constraint graph, the intuition
of using the ordered DAG is to incorporate the vertical order into
the horizontal constraint graph, i.e., those two sequences R(u) and
L(u) represent the right and the left neighbors of u sorted vertically
from bottom to top respectively.

The ordered DAGs are stored in a data structure as follows, which
can be treated as “half” of the ACG data structure [10]. Each vertex
u maintains two doubly linked lists for R(u) and L(u). Each edge
(u, w) stores two vertex pointers pointing to u and w, and four
edge pointers pointing to the previous edges and the next edges
in R(u) and L(w). Such data structure has the advantage that if
a vertex u is given, then R+(u), R−(u), L+(u), and L−(u) can
be accessed in constant time, R(u) and L(u) can be traversed in
linear time, and edges can be inserted to or removed from R(u)
and L(u) in constant time.

To achieve planarity in the horizontal constraint graph, we define
the above and the below path as follows, which are essentially the
boundaries of the faces.

Definition 2 (Above and Below Paths): For any
(u, w) ∈ E(G) and the symbol α ∈ {+,−}, the path P α(u, w)
= (u1, u2, . . . , uk+1) is the above path for α = + or the below
path for α=− iff:
PAB-1 ∀1 ≤ i ≤ k, (ui, ui+1) ∈ E(G).
PAB-2 ∃1 ≤ j ≤ k, uj = u and uj+1 = w.
PAB-3 ∀1<i≤k, ui+1 =rα(ui); ∀1≤ i<k, ui = lα(ui+1).
PAB-4 L(u1) = ∅ or u2 6= rα(u1);

R(uk+1) = ∅ or uk 6= lα(uk+1).
For e = (u, w), the above and the below path can be written
alternatively as P+(e) and P−(e) respectively.

The definition of the above and the below paths can be extended
to the vertices that there is at least one edge incident on according
to Lemma 1.

Lemma 1: For vertex u, if L(u) 6= ∅ and R(u) 6= ∅, then
P+(L+(u)) = P+(R+(u)) and P−(L−(u)) = P−(R−(u)).
For any such vertex u, if L(u) 6= ∅, then define P+(u) =
P+(L+(u)) and P−(u) = P−(L−(u)), otherwise define
P+(u) = P+(R+(u)) and P−(u) = P−(R−(u)).

We define the Horizontal Adjacency Graph (HAG) as follows.
The conditions HAG-1 and HAG-2 are from the requirement of
the constraint graph. The condition HAG-3 and HAG-4 ensure that
there is no transitive edge in a HAG and are essential for the HAGs
to be planar.

Fig. 4. (a) A HAG. (b) The above paths. (c) The below paths.

Definition 3 (HAG): An ordered DAG Ch is a horizontal adja-
cency graph of the blocks B iff:
HAG-1 There are vertices sh and th such that B ∪ {sh, th} =

V (Ch).
HAG-2 ∀u ∈ B, there exists a directed path from sh to th in

Ch containing u.
HAG-3 ∀e ∈ E(Ch), both P+(e) and P−(e) contain at least

two edges.
HAG-4 ∀u ∈ V (Ch), let R(u) = (e1, . . . , ed). Then ∀1 < k ≤

d, there exists u′ ∈ V (Ch) with L(u′) = (e′1, . . . , e
′
d′)

and 1 < j ≤ d′ such that P+(ek) = P+(e′j) and
P−(ek−1) = P−(e′j−1).

The example of a HAG and all the above and the below paths are
shown in Fig. 4. The faces and their boundaries can be identified to
understand the intuition behind the above and the below paths. The
path pairs referred in the condition HAG-4 are high-lighted with
the same color. The exceptions are the top above path and bottom
below path. We have the following lemma regarding them.

Lemma 2: P+(sh) = P+(th) and P−(sh) = P−(th).
Moreover, there is no transitive edge according to Lemma 3.

Lemma 3: In a HAG Ch, if (u, w) ∈ E(Ch), then there is no
path from u to w in Ch longer than one edge.

B. The Top-Insert Lemma

To further explore the properties of a HAG, e.g. the size and
the planarity, we present the Top-Insert Lemma that can be used to
reason upon HAGs through the mathematical induction.

It is straight-forward that if |B| = 1, then there is only one HAG
– assuming B = {b}, we can write the HAG as C1

h with V (C1
h) =

{sh, b, th} and E(C1
h) = {(sh, b), (b, th)}. Given a HAG and a

new block, we build a new HAG using the InsertTop subroutine
as shown in Fig. 5. Generally speaking, this subroutine constructs
a new HAG by inserting a new vertex to the top of an existing
one. On line 1, the new block b is inserted to the vertex set. If
E(Ch) contains the edge (a, c), it is removed on line 2 to satisfy
the condition HAG-3. Two new edges are inserted on line 3 and
line 4.

Subroutine InsertTop
Inputs

Ch: a HAG. b: a new block.
a, c: two vertices on P−(sh) in Ch.

Output Updated Ch.
1 Insert b to V (Ch).
2 If r−(a) = c: remove (a, c) from E(Ch).
3 Insert (a, b) to E(Ch) such that R−(a) = (a, b).
4 Insert (b, c) to E(Ch) such that L−(c) = (b, c).

Fig. 5. The InsertTop Subroutine

The correctness and the time complexity of the subroutine are
stated in the following lemma.

Lemma 4: Assume Ch is a HAG of the blocks B, b /∈ B, a and
c are on the below path P−(sh) in Ch, and c is after a on P−(sh).
Then InsertTop updates Ch into a HAG of the blocks B ∪ {b} in
constant time.

For the ease of presentation, define T to be the function that rep-
resents the output of the InsertTop subroutine, i.e., let T (Ch, b, a, c)
be the updated HAG obtained by InsertTop(Ch, b, a, c). The follow-
ing Top-Insert Lemma shows that every HAG can be built from C1

h

using the InsertTop subroutine with proper parameters.
Lemma 5 (The Top-Insert Lemma): Let Ch be a HAG of the

blocks B where |B| > 1. Then there exist vertices a, b, and c such
that, first, a, b, and c are three consecutive vertices on P−(sh) in
Ch; second, Ch = T (C′

h, b, a, c) for some HAG C′
h of the blocks

B − {b}.
Proof: We claim there is a vertex b on P−(sh) such that b has

exactly one incoming edge and one outgoing edge. Let P−(sh) =
(u0, . . . , uk+1) where k ≥ 1, u0 = sh, and uk+1 = th. We prove
the claim by contradiction, i.e., to assume that, ∀1 ≤ j ≤ k, uj

has at least two incoming edges or at least two outgoing edges.
Based on the assumption, we first prove that, ∀1 ≤ j ≤ k, uj

has exact one incoming edge and at least two outgoing edges by
induction on j. For j = 1, the vertex u1 has no incoming edge
other than (u0, u1) – otherwise P+(u0, u1) has only one edge,
which violates HAG-3. Thus u1 should have at least two outgoing
edges. Suppose uj−1 has at least two outgoing edges for j > 1.
Similar to the argument for the case j = 1, we have that uj has
only one incoming edge. Thus uj should have at least two outgoing
edges. Therefore, we proved that, ∀1 ≤ j ≤ k, uj has exact one
incoming edge and at least two outgoing edges. On the other hand,
because of the symmetry, we can also prove that, ∀1 ≤ j ≤ k, uj

has exact one outgoing edge and at least two incoming edges. A
contradiction is reached. Thus the claim holds and such vertex b
exists.

Let (a, b) and (b, c) be the incoming and the outgoing edges
respectively. Then a, b, and c are three consecutive vertices on
P−(sh) in Ch. We construct C′

h by first removing the vertex b and
the edges (a, b) and (b, c) from Ch. If there is no path from a to
c in C′

h, then we modify C′
h by inserting an edge (a, c) such that

r−(a) = c and l−(c) = a. It is straight-forward to verify that, first,
C′

h is a HAG of the blocks B − {b}; second, a and c are both
on P−(sh) in C′

h and a is before c; third, Ch = T (G′
h, b, a, c).

Therefore, we proved the lemma.
According to the Top-Insert Lemma, we have,
Corollary 1: Suppose Ch is a HAG of the blocks B, then
|V (Ch)| = |B|+ 2 and |E(Ch)| ≤ 2|B|.

Lemma 6: Every HAG is planar.

C. Vertical Companion Graph

Once we have a HAG as the horizontal constraint graph, a vertical
constraint graph can be constructed accordingly to separate blocks
not separated horizontally, with dummy vertices for horizontal bars.
We define the Vertical cOmpanion Graph (VOG) recursively as
follows, which will be the vertical constraint graph. First of all,
for the HAG C1

h of one block b, let the vertical companion graph
be C1

v satisfying that V (C1
v) = {sh, th, b, sv, tv} and E(C1

v) =
{(sv, sh), (sv, b), (sv, th), (sh, tv), (b, tv), (th, tv)}. For the HAG
Ch of the blocks B where |B| > 1, suppose Ch = T (C′

h, b, a, c)
for some HAG C′

h of the blocks B − {b} according to the Top-
Insert Lemma. Assume the VOG of C′

h to be C′
v . We construct the

VOG of Ch using the CoInsertTop subroutine as shown in Fig. 6.
The intuition is to insert new edges such that for every block that
is not separated horizontally with b, there is a path in Cv from the
vertex to b. Note that in the subroutine, we assume for every u ∈
V (C′

h), there are two unique vertices u+ and u− in V (C′
v) such

that both (u+, u) and (u, u−) belong to E(C′
v). The validity of this

assumption will be established when we proved the correctness of
the subroutine in Lemma 7. On line 1, the vertex b is inserted to
the VOG. If (a, c) is an edge in Ch, we insert one new edge to Cv

on line 3 and insert another new edge on line 5 or 7 depending on
whether r+(a) = c or l+(c) = a. Otherwise, a dummy vertex f is
inserted on line 9 before two edges are inserted on line 10. The end
points of the outgoing edges from some of the vertices on P−(sh)
are replaced in the loop on line 12. There is a path in Cv from a+

to f (through r−(a)) if a = l+(r−(a)). Otherwise we insert the
edge (a+, f) on line 14. Similarly, the edge (c+, f) is inserted on
line 15 iff there is no path in Cv from c+ to f .

Subroutine CoInsertTop
Inputs

Ch,Cv:a HAG and the VOG of it.
b :a new block.
a, c :two consecutive vertices on P−(sh) in Ch.

Output Updated Cv .
1 Insert b to V (Cv).
2 If r−(a) = c:
3 Insert (b, tv) to E(Cv).
4 If r+(a) = c:
5 Insert (a+, b) to E(Cv).
6 Else:// must have l+(c) = a
7 Insert (c+, b) to E(Cv).
8 Else:
9 Insert a new vertex f to V (Cv).

10 Insert (f, b) and (b, tv) to E(Cv).
11 Let P ′ be the sub-path of P−(sh) from a to c.
12 For each vertex u on P ′ except a and c:
13 Replace (u, tv) with (u, f) in E(Cv).
14 If a 6= l+(r−(a)): insert (a+, f) to E(Cv).
15 If c 6= r+(l−(c)): insert (c+, f) to E(Cv).

Fig. 6. The CoInsertTop Subroutine

The CoInsertTop subroutine is consistent because of the follow-
ing lemma.

Lemma 7: Suppose Cv is the VOG of a HAG Ch. Then, first,
V (Ch) ⊂ V (Cv) and Cv is a DAG. Second, ∀u ∈ V (Ch), there is
exactly one incoming edge (u+, u) and one outgoing edge (u, u−)
in Cv , and both u+ and u− do not belong to V (Ch). Third, for
every vertex u on P−(sh), u− = tv , and for every vertex u on
P+(sh), u+ = sv . Fourth, if (a, c) is an edge in P−(sh) in Ch,
then at least one of r+(a) = c and l+(c) = a holds. If both of
them hold, then a+ = c+.

An example of the VOG of the HAG shown in Fig. 4 (a) is shown
in Fig. 7. We have the following corollary concerning the size of a
VOG according to the CoInsertTop subroutine.

Corollary 2: Suppose Cv is a VOG of the HAG of the blocks
B, then |V (Cv)| ≤ 2|B|+ 3 and |E(Cv)| ≤ 4|B|+ 2.

D. Linear Constraint Graph

Based on the definition of HAG and VOG, the Linear Constraint
Graph (LCG) is formally defined as follows.

Fig. 7. The VOG of the HAG shown in gray edges.

Definition 4 (LCG): For the blocks B, the linear constraint graph
G is a tuple (Ch, Cv), where Ch is a HAG of B and Cv is a VOG
of Ch. Let V (G) = V (Ch)∪V (Cv) and E(G) = E(Ch)∪E(Cv).

Lemma 8: An LCG is a constraint graph.
Proof: We prove that CG-4 holds for any LCG G = (Ch, Cv)

for the blocks B by induction on |B|. If |B| = 1, obviously CG-4
holds since there is only one vertex in B.

Suppose CG-4 holds for |B| = n−1. For |B| = n, according to
the Top-Insert lemma, assume Ch = F (G′

h, b, a, c). Let G′
v be the

VOG of G′
h and let Cv be obtained by the CoInsertTop subroutine.

Let P ′ = (u0, . . . , uk) be the sub-path of P−(sh) in G′
h from a

to c, i.e. u0 = a and uk = c. Let w ∈ B − {b}. According to
Lemma 3, ∀0 ≤ j < k, there is no path from uj to uj+1 in G′

h.
According to Lemma 7, ∀0 ≤ j ≤ k, u−j = tv . Thus, ∀0 ≤ j ≤ k,
there is no path from uj to w in G′

v . Therefore, if we consider the
paths between w and uj , ∀0 ≤ j ≤ k, in G′

h and G′
v , there are 4

possible cases as follows. First, there is a path from w to a in G′
h

or w = a. Then there is a path from w to b in Ch. Second, there
is a path from c to w in G′

h or w = c. Then there is a path from
b to w in Ch. Third, w = uj for some j satisfying 0 < j < k.
Then there is a path from w to b through b+ in Cv . Fourth, there
is a path from w to uj in G′

v for some j satisfying 0 ≤ j ≤ k.
Recall (u+

j , uj) is the only incoming edge of uj in G′
v . Then the

path must contain u+
j . Thus there is a path from w to b through u+

j

in Cv . So we proved CG-4 holds for w ∈ B−{b} and u = b. It is
straight-forward to verify that CG-4 holds for w, u ∈ B − {b} in
Ch and Cv according to the induction hypnoses. Therefore, CG-4
holds when |B| = n.

It is straight-forward that CG-1, CG-2, and CG-3 hold for an
LCG. Since we have shown that CG-4 holds for an LCG, we proved
that an LCG is a constraint graph.

If a non-overlapping floorplan is given, the FPToLCG algorithm
shown in Fig. 8 constructs the LCG representing the floorplan. The
algorithm builds the LCG by inserting the blocks according to the
ascending order of their y-coordinates. From the LCG constructed
on line 3 and 4, the subroutine CoInsertTop and InsertTop are called
to insert new blocks on line 9 and 11. The labelings x and y are
extended on line 3, 4, and 10. The below path P−(sh) in Ch is
maintained as P throughout the algorithm on line 5 and 12. It is
implemented as an AVL tree or a Red-Black tree [14] that stores
the vertices on the path according to their x labelings.

The correctness and the complexity of the FPToLCG algorithm
are stated in the following lemma.

Lemma 9: Assume F is a non-overlapping floorplan of the
blocks B. The FPToLCG algorithm will terminate and generate
an LCG G = (Ch, Cv) that represents F . The time complexity is
O(|B| log |B|) and and space complexity is O(|B|).

In summary, we have the following theorem as the major result
of this paper according to Lemma 8 and 9, and Corollary 1 and 2.

Algorithm FPToLCG
Inputs A non-overlapping floorplan F .
Output The LCG G = (Ch, Cv).
1 Sort the blocks B into (b1, b2, . . . , b|B|) according to

the y-coordinates y(b),∀b ∈ B.
2 M←maxb∈B{|x(b)|, |y(b)|, |x(b)+w(b)|, |y(b)+h(b)|}.
3 V (Ch) ← {sh, b1, th}, E(Ch) ← {(sh, b1), (b1, th)}.

(x(sh), x(th), w(sh), w(th))← (−M, M, 0, 0).
4 V (Cv)← V (Ch) ∪ {sv, tv},

E(Cv)←
S

u∈V (Ch){(sv, u), (u, tv)}.
(y(sh), y(th), y(sv), y(tv))← (0, 0,−M, M).

5 The path P ← (sh, b1, th).
6 For i = 2 to |B|:
7 a← argmax{u:u∈P,x(u)+w(u)≤x(bi)}x(u).
8 c← argmin{u:u∈P,x(bi)+w(bi)≤x(u)}x(u).
9 Cv ←CoInsertTop(Ch, Cv, bi, a, c).

10 If r−(a) 6= c: y(b+
i)← y(bi).

11 Ch ←InsertTop(Ch, bi, a, c).
12 Remove all the vertices between a and c in P .

Insert bi to P between a and c.

Fig. 8. The FPToLCG Algorithm

Theorem 1: Let the set of all the LCGs of a set of blocks B be
LB . Then LB is complete for B and ∀G ∈ LB , |V (G)| ≤ 2|B|+3
and |E(G)| ≤ 6|B|+ 2.

V. LCG FLOORPLAN OPTIMIZATION

We perform floorplan optimization using LCGs by SA. Two most
important issues are addressed in the following two sub-sections:
one is to design operations that perturb the representation and the
other is to evaluate the representation through a cost function.

A. Perturbations of LCG

Recall that an LCG consists of a HAG and a VOG. We design
three operations that perturb the LCGs. The first one is with the
name exchange and exchanges two blocks in both the HAG and
the VOG. The next two operations are designed to first perturb the
HAGs and then update the VOGs accordingly since the VOG can
be derived from a HAG. In the operation with the name insertH, an
edge is inserted between two vertices in the HAG which changes
the vertical relation between them into a horizontal one. In the
operation with the name removeH, an edge in the HAG is removed
such that the horizontal relation between the end points of the edge
is changed to a vertical one. We only present the changes in the
HAGs for these two operations while omit the changes in the VOGs
for simplicity.

Suppose the LCG is G = (Ch, Cv). The insertH operation is
illustrated in Fig. 9. Recall that for u ∈ V (Ch), (u+, u) and (u, u−)
are the only edges incident on u in Cv . Two vertices a ∈ B and
b ∈ B are selected such that a+ = b−. Such vertices exist when
Ch is not a single path from sh to th. We can insert either (b, a)
or (a, b) to Ch. Because of the symmetry, assume that the edge
(b, a) should be inserted without loss of generality. Let c = l+(a)
and d = r−(b). The following lemma holds for P+(a) and P−(b)
before inserting (b, a).

Lemma 10: If for a, b ∈ V (Ch) we have a+ = b−, then the end
points of P+(a) and P−(b) are the same.
If c is the first vertex of P+(a) and P−(b), there is a path from c to
b in Ch. Thus the edge (c, a) should be removed such that HAG-3
would not be violated after inserting (b, a). Similarly, if d is the last
vertex of P+(a) and P−(b), the edge (b, d) should be removed.

Fig. 9. Insert a horizontal edge (b, a): (a) when c and d are not the end
points of P+(a); (b) when c and d are the end points of P+(a), (c, a)
and (b, d) should be removed.

Fig. 10. Remove the horizontal edge (b, a): (a) when a and b have at least
2 incoming and outgoing edges respectively, (c, a) and (b, d) are optional;
(b) when a and b have only 1 incoming and outgoing edges respectively,
(c, a) and (b, d) must be inserted.

Finally, the edge (b, a) is inserted to Ch such that r−(b) = a and
l+(a) = b.

The removeH operation is illustrated in Fig. 10. An edge (b, a) ∈
E(Ch) with a ∈ B and b ∈ B is selected such that either r−(b) =
a and l+(a) = b, or r+(b) = a and l−(a) = b. Such edge exists
when there is an edge in Ch whose end points both belong to B.
Because of the symmetry, assume that r−(b) = a and l+(a) = b
without loss of generality. If a has more than one incoming edges
in Ch, an optional new edge (c, a) can be inserted to Ch where c
is a vertex on P−(b) between the first vertex and b. Otherwise, if a
has only one incoming edge, i.e. (b, a), a new edge (c, a) must be
inserted where c is either the first vertex of P−(b) or a vertex on
P−(b) between the first vertex and b. Similarly, if b has more than
one outgoing edges, an optional new edge (b, d) can be inserted
where d is a vertex on P+(a) between a and the last vertex; if
b has only one outgoing edge, a new edge (b, d) must be inserted
where d is either the last vertex of P+(a) or a vertex on P+(a)
between a and the last vertex. Finally, the edge (b, a) is removed
from Ch.

The correctness and the time complexity of the insertH and the
removeH operations are stated in the following lemma.

Lemma 11: Both the insertH and the removeH operations
change an LCG into another one. The time complexity is O(n)
for n blocks.

An insertH operation can be reverted by a removeH operation.
Moreover, a dummy vertex in the VOG of any LCG can be removed
by the insertH operation as shown in Fig. 9 (b) without introducing
new dummy vertices. Thus we would obtain an LCG with no
dummy vertex in the VOG from any LCG of n blocks by applying
the insertH operation at most n − 1 times. The HAGs in such
LCGs consist of a single path from sh to th and the conversions
among them can be done by only the exchange operation. Thus
we can obtain any LCG from such LCGs via reverting the insertH
operations by the removeH operations. Therefore, we have the
following theorem.

Theorem 2: Applying the three operations exchange, insertH,
and removeH can convert any LCG to any other LCG. For n blocks,

TABLE I
RESULTS FOR AREA OPTIMIZATION W/ SOFT BLOCKS.

SP+TR LCG+TR
name n ds(%) t(s) |E| ds(%) t(s) |E|
apte 9 0.04 34 40 0.04 21 34
xerox 10 0.08 43 47 0.08 41 38
hp 11 0.09 41 54 0.13 26 41
ami33 33 0.28 383 347 0.24 179 125
ami49 49 0.24 694 679 0.27 319 182

TABLE II
RESULTS FOR WIRE LENGTH OPTIMIZATION W/ SOFT BLOCKS.

SP+TR LCG+TR
name ds(%) wl(mm) t(s) ds(%) wl(mm) t(s)
apte 0.09 125.29 35 0.08 125.28 26
xerox 0.21 145.16 46 0.15 152.69 36
hp 0.26 43.42 37 0.22 42.60 27
ami33 0.50 57.89 349 0.49 52.46 236
ami49 1.17 290.89 615 0.64 272.23 442

it takes at most 3n operations for such conversions.

B. Floorplan Optimization with Soft Blocks

When there are soft blocks, the block shapes should be deter-
mined first to evaluate a floorplan. We follow the approach of Lin
et al. [3] to formulate a mathematical programming problem using
the constraint graph as the constraints and to solve the problem by
Lagrangian relaxation in order to obtain optimal block sizes. This
approach was previously proposed by Young et al. [1] and was
improved in the work [3]. We only introduce the relevant part in
this section while the details and the reviews of the previous works
should be found in the works [1], [3].

Recall that B is the set of the blocks. Suppose that each block b ∈
B has an area A(b). Let the decision variables be the block widths
w(b) within the predefined ranges. The Pperi problem is formulated
to optimize the perimeter of the floorplan bounding box under a
given LCG. The constraints are in the form of the inequalities in
Eq. (1) while the block heights h(b) are expressed as A(b)

w(b)
.

It was shown in [3] that Pperi is a convex programming for-
mulation under the variable transformation logw(b) = log w(b),
and thus can be solved by Lagrangian relaxation that associates
each constraint a Lagrangian multiplier to formulate the Lagrangian
dual problem where the decision variables are the multipliers. The
Lagrangian dual problem can be simplified into the LDperi problem
by constraining the multipliers as a network flow in the constraint
graph, given the special structure that the constraints are a system
of difference inequalities. As the objective function of the LDperi

problem is not differentiable in general, Lin et al. [3] proposed a
trust-region method to solve the LDperi problem. In each iteration
of this method, a min-cost network-flow problem on the constraint
graph is formulated based on the current set of multipliers and a step
size, and is solved to generate a new set of multipliers. Depending
on the improvement of the objective function of the LDperi problem
in comparison to the expected improvement based on the first order
approximation, either the new set of multipliers would be rejected
and the step size would be decreased, or the new set of multipliers
would be accepted and the step size would be increased or remain
the same.

VI. EXPERIMENTAL RESULTS

We obtain the code of the floorplanner in the work [3], which
was based on the code of the floorplanner in the work [1] and
used CS2 version 4.3 [15] as the min-cost network flow solver.
We replace the sequence-pair representation in the code with our
LCG representation which is implemented in C++. Both the code

TABLE III
RESULTS FOR WIRE LENGTH OPTIMIZATION W/ HARD BLOCKS.
Parquet ACG LCG

name n ds(%) wl t(s) ds(%) wl t(s) |E| ds(%) wl t(s) |E|
n100 100 7.95 323594 30 8.33 308181 30 627 8.60 300469 27 347
n200 200 10.99 581176 150 10.26 540006 137 1456 9.03 537882 133 696
n300 300 12.05 709182 288 13.00 643538 357 2248 11.44 638710 274 1052

of the work [3] and our code are compiled by GCC version 3.4
and executed on a Linux workstation with two 927MHz Pentium
III processors and 512MB memory. The same setting of simulated
annealing is used in both code.

We follow Lin et al. [3] to setup the experiments. There are
5 benchmarks derived from the MCNC benchmark suite. The
aspect ratio of each block is between 0.5 and 2. Area optimization
is performed with the cost function being the perimeter of the
floorplan bounding box. Wire length optimization is performed with
the cost function being the summation of the perimeter and the
average half-perimeter wire length (HPWL) of all the nets.

For each of the benchmarks and each optimization, we run each
program for 5 times and compare the best results. The results
from area optimization and wire length optimization are reported
in Table I and II respectively. For each benchmark, the name and
the number of the blocks are shown in the columns “name” and
“n” respectively. The results from our approach are shown in the
columns “LCG+TR”. The results from the approach by Lin et al. [3]
are shown in the columns “SP+TR”. For both the area and the wire
length optimizations, the deadspace in percentage and the running
time in seconds are reported in the columns “ds(%)” and “t(s)”
respectively. We observe that more than 95% of the runtime is
spent to solve the LDperi problem by the trust-region method in
both approaches. The average numbers of the edges of the constraint
graphs generated in SA are reported in the columns “|E|” for the
area optimization. These numbers are similar for the wire length
optimization and thus are omitted. The total HPWL in millimeter are
reported in the columns “wl(mm)” for the wire length optimization.

It can be seen from the tables that although the results of the
approach by Lin et al. [3] are already almost optimal, our approach
can improve the qualities for 1 benchmark for the area optimization
and 4 benchmarks for the wire length optimization in much less time
while the qualities for other cases are similar. It is clear that there
are always less edges in the constraint graphs in our approach and
the gap between the number of edges in our approach and that in
the approach by Lin et al. [3] increases as the size of the benchmark
increases. Note in the works [1], [3], when the constraint graphs
were constructed from the sequence-pairs, the transitive edges were
removed. This implies that in a similar approach to maintain TCGs
without transitive edges, the average numbers of the edges would
be similar to those of the approach by Lin et al. [3], which are more
than those of our approach.

It is also interesting to investigate the performance of LCG as
a general floorplan representation for hard blocks. We obtain two
SA based floorplanners for comparison: the ACG floorplanner [10],
[11] and the Parquet floorplanner [16] (version 4.0). We implement
our LCG floorplanner by integrating our LCG implementation with
the SA optimization framework in the ACG floorplanner. All the
floorplanners are compiled and executed under the same system
setting as mentioned before. The cost function of SA is the weighted
summation of the area and the HPWL with a weight ratio of
1 : 1. We adopt the same annealing schedule for the ACG and
the LCG floorplanners. The Parquet floorplanner is running in
the free-outline mode with the sequence-pair representation and
a pre-defined running time limit which is similar to the running

time of our LCG floorplanner. We perform experiments with three
benchmarks from the GSRC benchmark suite: n100, n200, and
n300. For each of the benchmarks, we run each floorplanner for
5 times and compare the best results in Table III. The results
from the Parquet floorplanner, the ACG floorplanner, and our LCG
floorplanner are shown in the columns “Parquet”, “ACG”, and
“LCG” respectively. Each individual column has the same meaning
as mentioned before. It can be seen that our LCG floorplanner
can generate floorplans with better quality in less time for almost
all the cases compared to the Parquet and the ACG floorplanners.
Moreover, there are always less edges in the LCGs than in the
ACGs.

VII. CONCLUSIONS

In this paper, we proposed the Linear Constraint Graphs (LCG)
as a general floorplan representation based on the constraint graphs.
For n blocks, we showed that each LCG has at most 2n + 3
vertices and at most 6n + 2 edges. We proved that LCGs can
represent any non-overlapping floorplans. We designed operations
that have direct geometric meaning to perturb LCGs in simulated
annealing and proved such perturbations are sufficient to explore
all the LCGs stochastically. The advantages of LCGs is confirmed
by the experimental results.

REFERENCES

[1] F. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong, “Handling soft
modules in general non-slicing floorplan using Lagrangian relaxation,”
IEEE TCAD, vol. 20, no. 5, pp. 687–692, May 2001.

[2] E. F. Y. Young, C. C. N. Chu, and M. L. Ho, “Placement constraints
in floorplan design,” IEEE TVLSI, vol. 12, no. 7, pp. 735–745, July
2004.

[3] C. Lin, H. Zhou, and C. Chu, “A revisit to floorplan optimization by
Lagrangian relaxation,” in ICCAD, 2006, pp. 164–171.

[4] X. Tang, R. Tian, and M. D. F. Wong, “Minimizing wire length in
floorplanning,” IEEE TCAD, vol. 25, no. 9, pp. 1744–1753, Sept. 2006.

[5] H.-C. Lee, Y.-W. Chang, and H. H. Yang, “MB∗-Tree: A multilevel
floorplanner for large-scale building-module design,” IEEE TCAD,
vol. 26, no. 8, pp. 1430–1444, Aug. 2007.

[6] T. Ohtsuki, N. Sugiyama, and H. Kawanishi, “An optimization tech-
nique for integrated circuit layout design,” in Proc. ICCST, Kyoto,
Japan, 1970, pp. 67–68.

[7] R. H. Otten, “What is floorplan?” in ISPD, 2000, pp. 201–206.
[8] F. Y. Young, C. C. N. Chu, and Z. C. Shen, “Twin Binary Sequences: A

non-redundant representation for general non-slicing floorplan,” IEEE
TCAD, vol. 22, no. 4, pp. 457–469, Apr. 2003.

[9] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph-based
representation for non-slicing floorplans,” in DAC, 2001, pp. 764–769.

[10] H. Zhou and J. Wang, “ACG-adjacent constraint graph for general
floorplans,” in ICCD, 2004, pp. 572–575.

[11] J. Wang and H. Zhou, “Interconnect estimation without packing via
ACG floorplans,” in ASP-DAC, 2005, pp. 1152 – 1155.

[12] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence-pair,” IEEE
TCAD, vol. 15, no. 12, pp. 1518–1524, Dec. 1996.

[13] C. Lin, “Incremental mixed-signal layout generation concepts,” Ph.D.
dissertation, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2002.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. MIT Press, 2001.

[15] CS2 version 4.3, “Andrew Goldberg’s network optimization library,”
http://www.avglab.com/andrew/soft.html.

[16] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling
hierarchical design,” IEEE TVLSI, vol. 11, no. 6, pp. 1120–1135, Dec.
2003.

