
Gate Sizing by Lagrangian Relaxation Revisited
∗

Jia Wang, Debasish Das, and Hai Zhou
Electrical Engineering and Computer Science

Northwestern University
Evanston, IL 60208

Abstract— In this paper, we formulate the Generalized Convex Sizing
(GCS) problem that unifies and generalizes the sizing problems. We
revisit the approach to solve the sizing problem by Lagrangian relaxation,
point out several misunderstandings in the previous works, and extend
the approach to handle general convex delay functions in the GCS
problems. We identify a class of proper GCS problems whose objective
functions in the simplified dual problem are differentiable and show many
practical sizing problems, including the simultaneous sizing and clock
skew optimization problem, are proper. We design an algorithm based
on the method of feasible directions to solve proper GCS problems. The
algorithm will provide evidences for infeasible GCS problems according
to a condition derived by us. Experimental results confirm the efficiency
and the effectiveness of our algorithm when the Elmore delay model is
used.

I. INTRODUCTION

The transistor sizing, gate sizing, and wire sizing problems [1],
[2], [3], [4], [5], [6] are important problems in VLSI design because
they allow to explore the trade-offs between the performance and the
cost of the system. Since all these problems share the same structure
that the timing constraints are formulated as a system of difference
inequalities involving the delays of each individual components and
the arrival times,we call them collectively as the sizing problems.

Most research works on the sizing problem use a convex delay
model for individual components. It had been shown in the work
TILOS by Fishburn et al. [1] that a few problem formulations con-
cerning the total size and the clock period are convex programming
problems under such delay model. Convex programming problems
have the advantage that a local optimum is a global one and they have
been studied for decades (see [7], [8] for references). In TILOS, the
Elmore delay model [9] was used for transistor delays and a heuristic
that sizes the transistors iteratively according to the sensitivities of
the critical path delay to the transistor sizes was proposed to find
an optimum. The Elmore delays are special cases of posynomials,
which are a class of convex functions under the logarithm variable
transformation. Sapatnekar et al. [2] applied the algorithms that
solve general convex programming problems to solve the sizing
problem for the delays as the posynomials of the sizes. Kasamsetty et
al. [10] proposed to use the generalized posynomials, which are also
convex under the logarithm variable transformation, to approximate
the delays more accurately than the Elmore delay model and solved
the sizing problem with this model in the optimization framework
of the work [2]. However, the experimental results in the works [2]
and [10] showed that the general algorithms were not efficient for
the sizing problems with even less than 1000 sizable components.

The special structure in the sizing problem that the timing con-
straints are formulated as a system of difference inequalities had been
exploited by Chen et al. [4] to design an algorithm that solves the
gate and wire sizing problem by Lagrangian relaxation. The structure
allows to simplify the Lagrangian dual problem using the Karush-
Kuhn-Tucker (KKT) conditions for an optimal solution. The dual
problem was then solved by subgradient optimization. The gate and
wire delay model used in this work was the Elmore delay model and

∗This work was supported in part by NSF under CCR-0238484 and CNS-
0613967 and in part by a grant from Intel.

thus the Lagrangian subproblem was a convex optimization problem
with simple constraints, which can be solved efficiently. Although the
approach was efficient for sizing adders in the work [4], Tennakoon
et al. [6] showed that for general circuits, it is very hard to choose
proper initial solution and step sizes for subgradient optimization to
converge practically. Heuristics were developed in [6] to obtain a
good initial solution and to speed up the convergence of subgradient
optimization. However, it is not clear whether the heuristics can be
extended to handle more sophisticated and accurate convex delay
models, e.g. the ones in the work [10].

The ever-increasing complexity in modern VLSI systems demands
efficient and effective sizing algorithms to handle the sophisticated
convex delay models and the tremendous number of sizable compo-
nents. The difficulties in the previous works motivate us to design
new algorithms for the sizing problem. We revisit the Lagrangian
relaxation based approach [4]. This particular approach is of our
interests because the special structure of the sizing problem is
exploited. Our contributions in this work include:

1) We formulate the Generalized Convex Sizing (GCS) problem
that unifies and generalizes the sizing problem.

2) We revisit the approach to formulate the Lagrangian dual
problem by Lagrangian relaxation and to simplify the dual
problem by the KKT conditions. Several misunderstandings
are corrected and the approach is extended to handle general
convex delay models.

3) We identify a class of the GCS problems called the proper
GCS problems that most practical sizing problems belong to.
We propose a problem formulation technique to formulate the
simultaneous sizing and clock skew optimization problem as a
proper GCS problem.

4) We prove that the objective function in the simplified dual
problem of a proper GCS problem is differentiable and then
design the DualFD algorithm to solve the proper GCS problems
by the method of feasible directions.

5) We derive the necessary and sufficient condition for the GCS
problem to be feasible. It allows to check the feasibility in the
DualFD algorithm and to identify the troublesome part of the
circuit that makes it infeasible.

The rest of this paper is organized as follows. In Section II, we ex-
amine the convex gate delay model, propose the Generalized Convex
Sizing (GCS) problem, and then formulate the simultaneous sizing
and clock skew optimization problem as a proper GCS problem. In
Section III, Lagrangian relaxation based approaches that formulate
the dual problems are revisited. In Section IV, after the methods to
solve the dual problem by subgradient optimization are reviewed, we
present our DualFD algorithm that solves the proper GCS problems.
Experimental results are reported in Section V. Section VI concludes
the paper.

II. PROBLEM FORMULATION

A. Convex Gate Delay Modeling

Previous gate sizing works [4], [6] assumed a single delay function
for the timing arcs that correspond to the input-to-output delays in

Fig. 1. Sensitivities of the arc delays to the gate size are different.

a gate. However, this assumption is not accurate even with uniform
NMOS transistor sizes, PMOS transistor sizes, and input slews. As
an example, we simulate the SPICE netlist of a 3-input NAND
gate from Faraday 90nm [11] standard cell library. The input ports
are I1, I2, and I3 while the output port is O. The three timing
arcs are I1 → O, I2 → O, and I3 → O. Eight simulations are
performed with decreasing gate sizes, fixed input slews, and fixed
output capacitance. In each simulation, the input slews at all the
input ports are assumed to be the same. We also assume that the
sizes of the PMOS transistors are the same and so are those of the
NMOS transistors. This assumption was successfully applied in [6]
to establish the delay model. For the ith simulation, the size of the
PMOS transistors xp and that of the NMOS transistors xn satisfy
that xp = xp0 − (i− 1)δ and xn = xn0 − (i− 1)δ where xp0, xn0,
and δ are constants. The simulation results are shown in Figure 1.
It is clear that the sensitivities of the arc delays to the gate size are
different. Therefore, we prefer to assign different delay functions to
different timing arcs in a gate. Note that such modeling technique
was applied when a more accurate delay model considering input
slews was proposed in [12].

B. The Generalized Convex Sizing Problem

Although gate sizing is commonly applied to the combinational
part of a circuit, for a sequential circuit with flip-flops (FF) as
the storage units, the clock period and the clock skews can be
incorporated into the timing constraints as the following system of
difference inequalities.

ti + di,j ≤ tj , ∀(i, j) ∈ E, (1)

tpi = api, tpo = rpo, ∀pi ∈ PI, po ∈ PO,

tQk
= sk, tDk = sk + T, ∀k ∈ FF.

Here the topology of the combinational part of the circuit is repre-
sented by a directed acyclic graph (DAG) G = (V, E). The vertices
represent ports and the edges represent interconnects and timing arcs.
The variable tv is the arrival time at the vertex v. The function di,j

is the delay of the edge (i, j). It is either the delay of a wire or a
timing arc in a gate. The constants api and rpo are the arrival times
and the required arrival times of the primary input and output ports
respectively. The clock period is T . The constants sk are the clock
skews of the FFs while Dk and Qk are the data input and output
ports of the FFs respectively.

Eq. (1) can be expressed in a more consistent manner by extending
G as follows. Two vertices I and O are added to V . The edges (I, pi)
and (po, O) are added to E with dI,pi = api and dpo,O = T − rpo

for all pi ∈ PI and po ∈ PO. Then the edges (I, Qk) and (Dk, O)
are added to E with dI,Qk

= sk and dDk,O = −sk for each k ∈ FF.

Finally the edge (O, I) is added to E with dO,I = −T . We will refer
the extended graph as G for the ease of presentation when there is
no ambiguity. The extended graph G of an example circuit is shown
in Figure 2.

Fig. 2. Timing constraints of a sequential circuit.

In the extended graph G, Eq. (1) becomes ti + di,j ≤ tj ,
∀(i, j) ∈ E. This motivate us to formulate the Generalized Convex
Sizing (GCS) problem as follows.

Problem 1 (Generalized Convex Sizing): Let G = (V, E) be a
directed graph representing the structure of a system with the pa-
rameters x = (x1, x2, . . . , xn)> belonging to the set Ω

∆
= {x : lk ≤

xk ≤ uk,∀1 ≤ k ≤ n} where lk and uk, ∀1 ≤ k ≤ n, are constants.
The edge delays di,j , ∀(i, j) ∈ E, and the objective function C are
twice differentiable convex function for x ∈ Ω. Solve that

Minimize C(x)

s.t. ti + di,j(x)− tj ≤ 0,∀(i, j) ∈ E, (2)

x ∈ Ω. (3)
Let t be the vector of all the ti,∀i ∈ V . The decision variables

in the GCS problem are (x, t). The GCS problem is a convex
programming problem (see Chapter 4.2 [7]) since the objective
function C and the left-hand-side of Eq. (2) are all convex functions
and the set Ω is a convex set. Define (x, t) to be feasible if Eq. (2)
and (3) are satisfied, t to be feasible with respect to x if (x, t) is
feasible, and x to be feasible if there exists a feasible t with respect
to x. Denote the set of all the feasible x by X .

It is clear that the GCS problems are not restricted to the sizing
problem where the delay functions are the posynomials of gate sizes
and the convexity is established through geometric programming. One
trivial but important group of the convex delay functions that are not
posynomials of sizes is the linear combination of x with negative
coefficients.

We define the proper GCS problems as follows.
Definition 1: A GCS problem is proper iff the Hessian matrix of

its objective function for any x ∈ Ω is positive definite.
We are interested in the proper GCS problems because their

simplified dual functions are differentiable as proved later, which
is a much desirable property for designing optimization algorithms.
This definition only depends on the property of the objective function
but not that of the delay functions. Many practical sizing problems
are the proper GCS problems as shown in the following theorem and
corollary.

Theorem 1: Assume that the objective function C of a GCS
problem is a posynomial of the variables exk ,∀1 ≤ k ≤ n, i.e.
C(x) =

Pl
i=1 ci eb>i x where ci > 0, ∀1 ≤ i ≤ l. Then the GCS

problem is proper iff rank(B) = n, where B = (b1,b2, . . . ,bl) is
a matrix with n rows and l columns.

Corollary 1: For a GCS problem, if C(x) =
Pn

k=1 wk exk where
wk > 0, ∀1 ≤ k ≤ n, then the problem is proper.

C. Simultaneous Sizing and Clock Skew Optimization as a Proper
GCS Problem

The simultaneous sizing and clock skew optimization problem
was studied by Chuang et al. [3]. They proposed an algorithm to

solve the problem considering both the long path (setup) and the
short path (hold) conditions by formulating a linear programming
problem using the piece-wise-linear (PWL) approximations of the
convex delays. However, if we consider a path p from Qi to Dj for
the FF i and j with the non-linear convex delay dp, the short path
condition −si − dp + sj + hold-time ≤ 0 is not convex because
the left-hand-side is not convex. Thus such PWL approximation may
result in suboptimal solutions. We propose to consider the long path
conditions only to maintain the convexity of the problem and assume
that a post-processing, e.g. [13], will repair the violated short path
conditions.

Suppose that each clock skew sk to be optimized belongs to a pre-
defined range [s−k , s+

k] where s−k and s+
k are constants. Assume that

the objective function represents the positive weighted summation of
the sizes. It is straightforward that the simultaneous sizing and clock
skew optimization problem is a GCS problem where the clock skews
to be optimized are among the variables x and the pre-defined ranges
are part of the set Ω. However, the problem is not proper. We show
how to transform the problem into a proper one by eliminating the
clock skew variables. There are two advantages: first, the number of
the variables are reduced; second, since the result problem is a proper
GCS problem, the algorithm presented later is applicable.

There is a valid skew assignment for the FF k iff there exists tI,
tO, tQk

, tDk , and sk satisfying

(tI + sk ≤ tQk
) ∧ (tDk − sk ≤ tO) ∧ (s−k ≤ sk ≤ s+

k).

That is [tDk− tO, tQk
− tI]∩[s−k , s+

k] 6= ∅, which is equivalent to

(tDk − s+
k ≤ tO) ∧ (tI + s−k ≤ tQk

) ∧ (tDk − tQk
≤ tO − tI). (4)

Modify the graph G by adding an edge (Dk, Qk) with dDk,Qk
= −T ,

setting dDk,O = −s+
k , and setting dI,Qk

= s−k . Recall that tO−tI ≤ T .
According to Eq. (4), any feasible t with the unmodified G will be
feasible with the modified G. On the other hand, for any feasible t
with the modified graph G, tO can be increased to tI + T without
violating the constraints and changing the cost. Then Eq. (4) holds
and the sk exists. So we no longer has the clock skew variables.We
have,

Theorem 2: The simultaneous sizing and clock skew optimization
problem can be formulated as a proper GCS problem without
introducing variables representing the clock skews to be optimized.

In Figure 3, the modified graph of the same example circuit as
shown in Figure 2 is shown, which allows optimizing the clock skew
of the FF 1.

Fig. 3. Optimize the clock skew of the FF 1 without a clock skew variable.

III. SOLVING GCS VIA LAGRANGIAN DUAL PROBLEMS

We follow Chen et al. [4] to formulate the Lagrangian dual problem
of the GCS problem and to simplify the dual problem. Although the
formulations are similar, we revisit the assumptions and correct the
misunderstandings for better understanding of the approach.

A. The Lagrangian Dual Problem

Let fi,j be the Lagrangian multipliers associated with each inequal-
ity in Eq. (2). Let f be the vector for all the fi,j . Let L∗(x, t, f), L(f),

and N be the Lagrangian function, the Lagrangian dual function, and
the set of the non-negative multipliers respectively, i.e.,

L∗(x, t, f)
∆
= C(x) +

X
(i,j)∈E

fi,j(ti + di,j(x)− tj),

L(f)
∆
= inf{L∗(x, t, f) : x ∈ Ω, t ∈ R|V |},

N ∆
= {f : fi,j ≥ 0,∀(i, j) ∈ E}.

The Lagrangian dual problem D-GCS is formulated as follows.
Problem 2 (D-GCS):

Maximize L(f)

s.t. f ∈ N .

Recall that X is the set of all the feasible x. The weak duality
theorem (see Chapter 6.2 [8]) states that the duality gap is non-
negative, i.e.,

inf{C(x) : x ∈ X} ≥ sup{L(f) : f ∈ N}. (5)

The approach that solves the GCS problem by solving the D-GCS
problem requires a zero duality gap, i.e.,

inf{C(x) : x ∈ X} = sup{L(f) : f ∈ N}. (6)

If there is a strictly feasible solution for the GCS problem, i.e.
if there is a feasible solution such that the inequalities in Eq. (2)
all hold strictly, then we can apply the strong duality theorem
(see Chapter 6.2 [8]), which is also known as Slater’s constraint
qualification, to obtain the following theorem.

Theorem 3: If there is a strictly feasible solution to the GCS
problem, then the duality gap is zero and there exists a saddle point
(x, t, f) such that: first, f is the optimal solution of the D-GCS
problem; second, (x, t) is the optimal solution of the GCS problem;
third, C(x) = L∗(x, t, f) = L(f).

Theorem 3 guarantees that in the presence of a strictly feasible
solution, the GCS problem can be solved by solving the D-GCS
problem. For a sizing problem with the constraint on the clock period,
there is a strictly feasible solution if the clock period is not tight as
shown by the following corollary.

Corollary 2: If there is a feasible solution for the GCS problem
formulated from a sizing problem under the clock period T0, then if
the clock period is substituted by any T > T0, Theorem 3 applies.

There are two misunderstandings when Chen et al. [4] applied
the strong duality theorem. First, if transformations are necessary
to convert a problem into a convex programming problem, the
Lagrangian dual problem should be derived from the transformed
problem instead of the original problem. More specifically, since
Chen et al. [4] claimed the convexity through geometric program-
ming, the Lagrangian dual problem should be derived from the
geometric programming formulation. Here we show that it is not
necessary to establish the convexity through geometric programming
and thus the Lagrangian dual problem can be formulated as the work
[4]. Second, the strong duality theorem requires the existence of a
strictly feasible solution. For the GCS problems without a strictly
feasible solution, Theorem 3 will not apply and Eq. (6) should be
established through other theories. Rockafellar [14] defined a class
of convex functions as follows.

Definition 2 (Rockafellear [14]): A convex function g(x) satisfies
the regularity condition iff g(x) = b>x + c or g(x) = h(Ax) +
b>x + c for some finite strictly convex function h(y), matrix A,
vector b, and scalar c.

Applying the result of Rockafellar [14], we obtain the following
theorem and corollary.

Theorem 4: If the objective function C and the delay functions
di,j all satisfy the regularity condition, then the duality gap is zero.

Corollary 3: If each of the objective function and the delay
functions can be written as p(ex1 , . . . , exn) + b>x + c for some
posynomial p, vector b, and scalar c, then the duality gap is zero.

Although Theorem 4 guarantees a zero duality gap without re-
quiring a strictly feasible solution, it does not guarantee any saddle
point as in Theorem 3. For a GCS problem without a strictly
feasible solution, the D-GCS problem may have no finite solution,
i.e. L(f ′) 6= sup{L(f) : f ∈ N}, ∀f ′ ∈ N .

B. Simplifying the Lagrangian Dual Problem

The Lagrangian function L∗ can be rewritten as

L∗(x, t, f) = C(x) +
X

(i,j)∈E

fi,jdi,j(x)

+
X
k∈V

(
X

(k,j)∈E

fk,j −
X

(i,k)∈E

fi,k)tk,

Let F be the set of the multipliers satisfying the flow conservation
constraints, i.e.,

F ∆
= {f :

X
(i,k)∈E

fi,k =
X

(k,j)∈E

fk,j ,∀k ∈ V }.

If
P

(k,j)∈E fk,j 6=
P

(i,k)∈E fi,k for some k ∈ V , then ∀M ∈
R, tk can be chosen such that L∗(x, t, f) < M . In such cases,
L(f) = −∞. Therefore, the dual problem D-GCS can be simplified
by introducing the flow conservation constraints, which is stated as
the following FD-GCS problem.

Problem 3 (FD-GCS):
Maximize L(f)

s.t. f ∈ F ∩N .
The objective function L(f) can be further simplified given f ∈ F .

For f ∈ N , define
Pf (x)

∆
= C(x) +

X
(i,j)∈E

fi,jdi,j(x),

Q(f)
∆
= inf{Pf (x) : x ∈ Ω}.

We formulate the SD-GCS problem as follows.
Problem 4 (SD-GCS):

Maximize Q(f)

s.t. f ∈ F ∩N .
We call the SD-GCS problem proper if the GCS problem is proper.

We call the f dual feasible if f ∈ F ∩N . The FD-GCS problem and
the SD-GCS problem are different since their objective functions are
different, although both objective function take the same value for all
dual feasible f . Both problems are equivalent to the D-GCS problem
as stated in the following theorem.

Theorem 5: The D-GCS problem, the FD-GCS problem, and the
SD-GCS problem are equivalent.

Our reasoning in simplifying the Lagrangian dual problem is
different from the work [4]. They derived the flow conservation
constraints of the multipliers from the KKT conditions of the optimal
solutions. However, since the KKT conditions are sufficient but not
necessary for an optimal solution, it is possible that there is no
feasible solution satisfying such conditions for some sizing problems.
We circumvent the difficulty by excluding the f satisfying L(f) =
−∞.

C. A Trivial Example

One could be deceived to think that the situations mentioned in
the previous sections, i.e. there is no saddle point or there is no

feasible solution satisfying the KKT conditions, only happen for
some “corner” cases of the sizing problems. However, such situations
may happen for extremely trivial examples. Consider the following
problem that might be formulated from optimizing a single inverter
with the size a.

Minimize a

s.t. t1 + a ≤ t2, t2 +
1

a
≤ t3, t3 ≤ t1 + 2,

1

2
≤ a ≤ 2.

The problem is a GCS problem of the variable x = ln a. There is
only one feasible solution x = 0 which is also the optimal solution
while there is no strictly feasible solution. Part of the KKT conditions,
(ex + f1,2e

x − f2,3e
−x = 0) ∧ (f1,2 = f2,3), cannot be satisfied by

the only feasible solution x = 0.
On the other hand, for the dual feasible f , there should exist β ≥ 0

such that β = f1,2 = f2,3 = f3,1. Define
q(β)

∆
= inf{ex + β(ex + e−x − 2) : − ln 2 ≤ x ≤ ln 2},

xβ
∆
= argmin− ln 2≤x≤ln 2(e

x + β(ex + e−x − 2)).

For the SD-GCS problem, it is simplified as maximizing q(β) for
β ≥ 0. The q(β) and xβ can be computed as

(q(β), xβ) =

8<: (1+β
2

,− ln 2), if 0 ≤ β < 1
3“

2√
1+1/β+1

, ln
q

β
β+1

”
. if β ≥ 1

3

So Q(f) < 1 for any finite f and thus there is no saddle point. Note
that for any β ≥ 0, there is no xβ being feasible.

IV. SOLVING THE SIMPLIFIED DUAL PROBLEMS

A. Solving the Lagrangian Subproblem

Solving either the FD-GCS problem or the SD-GCS problem
requires solving the Lagrangian subproblem first, i.e. to compute
L(f) or equivalently Q(f) for a given dual feasible f , which is
in turn equivalent to minimize Pf (x) for x ∈ Ω. Let xf

∆
=

argminx∈ΩPf (x). Note that xf is not necessarily unique. Recall
that the objective function C(x) and the delay functions di,j(x) are
all twice differentiable convex functions. It is straightforward that
Pf (x) is a twice differentiable convex function for x ∈ Ω. Many
convex programming algorithms (e.g. Chapter 8 [8]) can be applied
to compute the optimal solution xf .

For the Elmore delay model, Chen et al. [4] proposed a greedy
algorithm that iteratively sizes each gate and wire segment to solve
the LRS/µ problem, which is a simplified version of the Lagrangian
subproblem. Generally speaking, this algorithm is a descent method
that uses coordinate axes as the search directions. Chen et al. proved
that if the algorithm starts with all the gates and wire segments at
their minimum sizes, then it converges to the optimal solution. Since
Pf (x) does not increase during the iterations and the algorithm stops
only if Pf (x) is the minimum on every coordinate direction, we prove
the following stronger result.

Theorem 6: For the Elmore delay model, the algorithm that min-
imizes Pf (x) for x ∈ Ω based on the descent method using the
coordinate axes as the search directions converges to an optimal
solution xf for any initial solution belonging to Ω.

When the simplified dual problems are solved iteratively by
improving the dual feasible f , intuitively f would be changed by
a small amount from an iteration to another and then the changes in
xf would be small. Therefore, the algorithm may converge faster if
it starts with the previous xf , while the convergence is guaranteed
by Theorem 6.

B. Solving FD-GCS by Subgradient Optimization

Since L(f) is not differentiable in general, the FD-GCS problem
was solved by subgradient optimization in [4], [6]. We introduce the
algorithm with some modifications as the SubGrad algorithm below.

Starting from any dual feasible f , the SubGrad algorithm solves the
Lagrangian subproblem to compute xf and then iteratively improves
f and xf until convergence. In each iteration, first the Lagrangian
multipliers f are updated as suggested in the work [4] using the
step size ρk and the subgradient ti + di,j(xf) − tj , ∀(i, j) ∈ E,
where k is the iteration number and ti,∀i ∈ V , are the arrival times.
We do not use the heuristic in the work [6] since the relationship
between it and the standard subgradient optimization method is not
clear. Since after such updating, f would not necessarily be dual
feasible, it is then projected to the closest one that is dual feasible. The
projection method is the one presented in the work [6] that distributes
incoming flows proportionally to the outgoing edges according to the
existing outgoing flows. Finally, the Lagrangian subproblem is solved
to compute xf for the current f .To claim convergence, Chen et al. [4]
suggested to terminate the iterations when C(xf)−L(f) is less than a
pre-defined small positive error bound. However, this is only correct
if xf is feasible since the duality gap is defined between a feasible
x and a dual feasible f as shown in Eq. (5) and (6). In the SubGrad
algorithm, when xf is not feasible, the convergence is claimed if the
changes in xf , f , and L(f) are marginal.

Although the convergence is claimed for both works [4], [6], it
is not clear how to prove such convergence since the convergence
of subgradient optimization depends on the choice of the step sizes
and the projection method (see Chapter 8.9 [8]). Moreover, the
proportional projection method only applies to the GCS problems
in which removing one edge from G, e.g. the O to I edge, results
in a DAG.Since the SubGrad algorithm is used as a comparison to
our algorithm and is not the focus of this paper, we leave further
improvements to future researches.

C. Properties of Proper SD-GCS Problems

Assume both f and f ′ belong to N . Let d be the vector of all the
di,j . Then

Q(f ′) = inf{Pf ′(x) : x ∈ Ω} ≤ Pf ′(xf)

= Pf (xf) + d(xf)
>(f ′ − f)

= Q(f) + d(xf)
>(f ′ − f)

Therefore, the following theorem holds.
Theorem 7: Q(f) is a concave function for f ∈ N .
Recall that the SD-GCS problem is proper if the GCS problem is

proper. We prove the following lemma which is essential for Q(f)
to be differentiable.

Lemma 1: In a proper GCS problem, for any f ∈ N , there is a
single xf ∈ Ω satisfying that Q(f) = Pf (xf).

Proof: We prove the lemma by contradiction.
For any twice differentiable function h of x, let Hh be the Hessian

matrix of h. Assume Q(f) = Pf (x
′) = Pf (x

′′) for some x′ 6= x′′,
x′ ∈ Ω, x′′ ∈ Ω, and f ∈ N . Let yγ = (1 − γ)x′ + γx′′. Then
yγ ∈ Ω, ∀0 ≤ γ ≤ 1. Recall that the function Pf (x) is convex and
twice differentiable. We have,

Q(f) = (1− γ)Pf (x
′) + γPf (x

′′) ≥ Pf (y
γ),∀0 ≤ γ ≤ 1.

Since Q(f) ≤ Pf (y
γ), we must have Pf (y

γ) = Q(f), ∀0 ≤ γ ≤ 1.

Let z0 = y
1
2 and z = x′′−x′. Then z0 ∈ Ω and z 6= 0. Therefore,

z>∇Pf (z
0) = lim

λ→0

Pf (z
0 + λz)− Pf (z

0)

λ

= lim
λ→0

Pf (y
1
2+λ)− Pf (y

1
2)

λ
= 0,

z>HPf (z
0)z = lim

λ→0
2
Pf (z

0+λz)−Pf (z
0)−λz>∇Pf (z

0)

λ2
(7)

= lim
λ→0

2
Pf (y

1
2+λ)− Pf (y

1
2)− 0

λ2
= 0.

On the other hand, it is straightforward that because of the
convexity, Hdi,j (x), ∀(i, j) ∈ E, are positive semidefinite for any
x ∈ Ω. So z>Hdi,j (z

0)z ≥ 0. Since HC(x) is positive definite for
any x ∈ Ω, we have z>HC(z0)z > 0. Therefore,

z>HPf (z
0)z = z>HC(z0)z +

X
(i,j)∈E

fi,j(z
>Hdi,j (z

0)z) > 0.

This contradicts Eq. (7). Thus the lemma holds.
Base on Lemma 1 and Theorem 6.3.3 [8] we have,
Theorem 8: For a proper SD-GCS problem, the function Q(f) is

differentiable for f ∈ N and the gradient is d(xf) where xf is the
only vector in Ω that minimizes Pf (x) for x ∈ Ω.

D. Detecting Infeasible GCS Problems

The GCS problem can be infeasible, e.g. the timing constraints of
a circuit cannot be meet no matter how the gates are sized. Since the
objective function C(x) is continuous and the set Ω is compact, the
image C(Ω) is compact. Therefore, we can assume there is a U ∈ R
such that C(x) ≤ U , ∀x ∈ Ω. Suppose (x′, t′) is a feasible solution,
then for any f ∈ F ∩N , we have

Pf (x
′) = C(x′) +

X
(i,j)∈E

fi,j(t
′
i + di,j(x

′)− t′j) ≤ U.

On the other hand, if ∀f ∈ F ∩ N , there is a x′ ∈ Ω such that
Pf (x

′) ≤ U , then Q(f) = inf{Pf (x) : x ∈ Ω} ≤ U . Thus Q(f) is
bounded for f ∈ F ∩N . We have,

Theorem 9: Suppose C(x) is upper-bounded by U ∈ R for x ∈
Ω. If the duality gap is zero, then the GCS problem is feasible iff
Q(f) ≤ U , ∀f ∈ F ∩N .

Theorem 9 provides a method to check whether the GCS problem
is feasible when optimizing Q(f). For a sizing problem where
Q(f) > U for some dual feasible f , by investigating the non-
zero multipliers, one can identify the troublesome part of the circuit
that makes it infeasible. Other optimization techniques could be
performed to that part to make the circuit feasible and we leave this
as a future research topic.

E. Solving Proper SD-GCS Problems via Method of Feasible Direc-
tions

Recall that the objective function Q(f) of a proper SD-GCS
problem has the gradient d(xf) according to Theorem 8. We apply
the method of feasible directions (see Chapter 10 [8]) to solve the
proper SD-GCS problem.

For any dual feasible f , the vector ∆f is an improving feasible
direction iff there exists λ > 0 such that Q(f) < Q(f + λ∆f) and
f +λ∆f ∈ N ∩F . An improving feasible direction can be found by
solving the following direction finding (DF) problem.

Problem 5 (DF):
Maximize ∆f>d(xf)

s.t. f + ∆f ∈ F ∩N ,

−u ≤ ∆fi,j ≤ u,∀(i, j) ∈ E.

Here the improving feasible direction ∆f are the decision variables,
f should be dual feasible, and u is a positive constant.

The intuition is to maximize the improvement in a dual feasible
neighborhood assuming the function Q is linear. The DF problem is
a min-cost network flow problem. Since f is dual feasible, ∆f = 0 is
always a feasible solution of the DF problem. The following theorem
relates the optimal solution to an improving feasible direction.

Theorem 10: Suppose ∆f is the optimal solution of the DF
problem. If ∆f>d(xf) = 0, then f is the optimal solution of the
SD-GCS problem and there exists a vector t such that (xf , t) is the
optimal solution of the GCS problem; otherwise ∆f is an improving
feasible direction.

ALGORITHM DualFD
Inputs The GCS problem and N .
Outputs Optimal f and xf .
1 f ← 0. Compute xf .
2 For i = 1 to N :
3 Solve the DF problem for ∆f .
4 Claim optimality if d(xf)

>∆f is small enough.
5 Compute λmax.
6 Perform a line search on Q(f + λ∆f) with

0 ≤ λ ≤ λmax for an increase in Q.
7 Update f . Compute xf .
8 Claim optimality if the changes in f , xf , and Q(f)

are marginal.

Fig. 4. The DualFD Algorithm.

We design the DualFD algorithm as shown in Figure 4 to solve
the proper SD-GCS problem. It starts with the dual feasible f =
0 and iteratively improves Q(f) by finding an improving feasible
direction and performing a line search. On line 1 and 7, the vector
xf is computed by solving the Lagrangian subproblem. On line 5,
the λmax is computed as the maximum λ such that f +λ∆f remains
dual feasible. It is straightforward that f + λ∆f ∈ F . Therefore,
λmax = min∆fi,j<0−fi,j/∆fi,j , or λmax = +∞ if ∆fi,j ≥ 0,
∀(i, j) ∈ E. On line 6, a number of the Lagrangian subproblems
should be solved to compute xf+λ∆f and then Q(f + λ∆f). Since
determining the exact λ that maximizes Q(f + λ∆f) would be time
consuming, we perform an inexact line search by Armijo’s Rule (see
Chapter 8.3 [8]) with two parameters ε and α, whose typical values
are ε = 0.2 and α = 2. The feasibility of the GCS problem is checked
every time when the objective function Q is computed according to
Theorem 9. The algorithm terminates when a pre-defined rounds N of
iterations are performed, or the optimal solution is found according
to Theorem 10 on line 4, or the changes in f , xf , and Q(f) are
marginal on line 8.

Note that it is guaranteed in the DualFD algorithm that Q(f)
will increase strictly each iteration, which is not guaranteed by the
SubGrad algorithm.

V. EXPERIMENTS
A. Experimental Setup

We use the sequential circuits from the ISCAS89 benchmarks as
our test cases. The Elmore delay model is used for gate delays. An
utility program reads the circuits and generates the GCS problems to
be solved. The gate sizing problems that minimize the total gate sizes
under a given clock period constraint without clock skew optimization
are experimented. The arrival times at the primary input ports and
the clock skews of the FFs are 0. The required arrival times at the
primary output ports are equal to the clock period. Transistor sizing,
wire sizing, and wire capacitances are not currently integrated into the
utility program and they can be added straightforwardly if necessary.

TABLE I
STATISTICS OF THE BENCHMARKS.

name # vertices # edges # vars
s27 40 51 13
s208 291 374 104
s298 396 540 133
s344 470 607 175
s349 475 615 176
s382 511 685 179
s386 527 756 165
s420 585 748 212
s444 580 777 202
s510 668 902 217
s526 685 963 214
s641 993 1195 398
s713 1059 1298 412
s820 1076 1655 294
s832 1086 1680 292
s838 1161 1484 422
s953 1214 1670 424
s1196 1590 2259 547
s1238 1601 2343 526
s1423 1988 2573 731
s1488 2062 2868 659
s1494 2062 2880 653
s5378 7386 9046 2958
s9234 14028 16681 5808
s13207 20456 24473 8589
s15850 24564 29158 10306
s35932 47827 63569 17793
s38417 57509 69099 23815
s38584 54901 70133 20679

As suggested in Section II-A, we associate different delay functions
di,j with each timing arc from an input port i to an output port j of
a given gate. For each timing arc (i, j), a weight wi,j is introduced.
The driving resistance associated with each timing arc (i, j) in each
gate is Rnomwi,j/x and the load capacitance is Cnomwi,jx, where
Rnom and Cnom are the characteristic parameters of the gate and x is
the size of the gate. We emphasize our paper focuses on algorithmic
developments for the sizing problem. Such experimental setup would
suffices our purpose of algorithm evaluation.

The statistics of the GCS problems generated by the utility program
from the ISCAS89 benchmarks are shown in Table I. We report the
size of the graph G in the columns “# vertices” and “# edges”. The
numbers of the sizable gates are shown in the column “# vars”. For
each circuit, the clock period constraint T0 is computed as half of
the minimum clock period that the circuit can operate assuming that
each gate takes its average size. Note that we do not know whether
there is a feasible solution for each GCS problem at this point.

B. Experimental Results

We implement the DualFD and the SubGrad algorithms in C++
where the DF problem is solved by the min-cost network flow solver
CS2 version 4.3 [15]. The code is compiled by GCC version 3.4 and
runs on a Linux workstation with two 927MHz Pentium III processors
and 512M memory. We prefer to implement the SubGrad algorithm
without the pre-processing heuristics in the work [6] because we want
to compare the algorithms that solve the simplified dual problems
while the pre-processing heuristics apply to both the DualFD and the
SubGrad algorithms.

TABLE II
RESULTS COMPARISON BETWEEN THE DUALFD AND THE SUBGRAD ALGORITHMS.

DualFD SubGrad
name area dual T/T0 N L t(s) area dual T/T0 L t(s)
s27 90.8 90.9 1.000 15 47 0.01 68.3 -86.2 1.226 5001 0.89
s208+ 854.2 1073.7 1.012 200 1067 1.97 2210.9 -34062.0 1.461 5001 9.03
s298+ 242.5 242.5 1.000 35 185 0.22 316.2 -1512.9 1.159 5001 4.93
s344+ 445.2 445.8 1.001 69 382 0.93 517.5 -3657.0 1.447 5001 7.64
s349+ 446.8 447.5 1.001 53 289 0.71 518.5 -3642.2 1.447 5001 7.78
s382+ 315.7 315.7 1.000 29 178 0.24 317.6 -396.9 1.107 5001 4.79
s386+ 1222.1 1357.5 1.021 200 679 7.35 6940.1 -152K 1.445 5001 23.28
s420∗ 1471.0 24461.9 2.589 1 9 0.03 4904.4 -97197.0 2.500 5001 22.22
s444+ 360.7 360.6 1.000 167 926 1.69 364.2 -593.5 1.190 5001 5.88
s510+ 479.9 479.8 1.000 134 515 2.13 2374.9 -24810.9 1.303 5001 27.71
s526 383.5 383.6 1.000 43 208 0.51 375.2 51.4 1.490 5001 7.09
s641+ 887.7 888.9 1.004 29 122 0.79 1069.5 -17839.8 1.313 5001 18.59
s713+ 1400.1 1409.3 1.002 48 259 2.39 1458.3 -38666.9 1.421 5001 26.73
s820 1088.4 1093.5 1.002 200 737 8.18 496.9 495.9 2.000 318 0.81
s832 1060.5 1073.9 1.005 200 713 8.28 493.5 493.4 2.000 43 0.11
s838∗ 2916.0 80458.3 4.769 1 9 0.07 10188.8 -257K 4.769 5001 51.51
s953+ 775.7 775.5 1.001 200 848 5.92 3449.3 -79502.6 1.238 5001 55.15
s1196+ 1088.8 1088.2 1.001 200 841 10.90 1642.5 -14107.7 1.242 5001 54.88
s1238 1079.7 1079.9 1.001 131 540 7.80 973.8 -1823.4 1.498 5001 27.19
s1423+ 1668.2 1670.0 1.002 18 81 1.53 3345.8 -251K 1.299 5001 120.76
s1488 2055.1 2106.7 1.011 200 710 28.22 1149.7 557.3 1.991 5001 31.28
s1494 2160.9 2317.8 1.020 200 717 28.33 1139.9 529.3 1.992 5001 32.02
s5378+ 5855.7 6083.3 1.051 200 652 91.49 9396.1 -52345.1 1.441 5001 308.39
s9234 12935.3 15507.7 1.080 200 835 236.49 11516.7 -46086.7 1.491 5001 384.86
s13207+ 14608.3 14608.3 1.002 101 456 111.91 15641.7 -121K 1.242 5001 432.81
s15850+ 17765.6 17765.9 1.003 157 602 229.25 20627.7 -287K 1.499 3946 600.10
s35932 33522.1 44343.6 1.814 65 193 304.61 80649.6 -1038K 1.394 668 600.34
s38417+ 42175.9 44551.4 1.194 67 274 301.48 49125.6 -363K 1.483 1260 600.35
s38584+ 34973.0 34973.0 1.002 45 225 149.87 35015.7 -23232.2 1.380 3144 600.19

∗ The DualFD algorithm determines that the benchmark is infeasible.
+ The result of the DualFD algorithm dominates that of the SubGrad algorithm.

The experimental results are compared in Table II. For the DualFD
algorithm, we run each benchmark with at most 200 rounds of
iterations and at most 300 seconds. The results are reported under
the columns “DualFD”. The total gate sizes, i.e. the values of the
objective function, are shown in the column “area”. The values of
the function Q(f) are shown in the column “dual”. We compute
the minimum clock period T that each circuit can operate and the
ratios to the clock period constraint T0 are shown in the column
“T/T0”. The total number of iterations, the number of the Lagrangian
subproblems being solved, and the total running time in seconds are
shown in the columns “N”, “L”, and “t” respectively. Note that for
the benchmarks “s420” and “s838” marked by ∗ in the table, the
DualFD algorithm determines that there is no feasible solution in
the first round since Q(f) is larger than U , which is computed as
the total gate size assuming that each gate takes its maximum size.
The convergence sequence of the benchmark “s38584” is plotted in
Figure 5.

For the SubGrad algorithm, we use a step size of the form c/k
where c is a constant and k is the current iteration number. For
each benchmark, we set c = 10−i for i = 0, 1, . . . , 6 and run the
algorithm 7 times for each c with at most 5000 rounds of iterations
and at most 600 seconds. Two set of the initial dual feasible f are
tried: one is f = 0 and the other is the one obtained by running the
DualFD algorithm by 1 round. The results of the latter setting are
inferior to those of the former and thus are not reported here. For

Fig. 5. Convergence sequence of s38584 for DualFD.
each of the 7 results, we compute the minimum clock period T that
the circuit can operate. If there is a result with T/T0 < 1.5, then
we report the result with T/T0 < 1.5 and the maximal value of the
function L(f) under the columns “SubGrad”; otherwise, we report
the result with the minimal T. The values of the function L(f) are
shown in the column “dual”. All the other columns have the similar
meanings as those of the DualFD algorithm. We do not report the total
number of iterations since it is equal to the number of the Lagrangian
subproblems being solved minus 1 for the SubGrad algorithm.

It can be seen from the table that the DualFD algorithm consistently
generates results with better quality, requires a smaller number of the
Lagrangian subproblems to be solved, and spends less running time
compared to the SubGrad algorithm. More specifically, the results can
be compared based on the “area” and the “t” columns. In addition,

although the “dual” columns represent different functions, they can
be compared directly since both functions take the same value for the
dual feasible f and they are the objective functions to be maximized
in both algorithms. The “T/T0” columns can be compared since they
measure the infeasibility of the results, i.e. the distance of the x in
the result to a feasible one. Define that a result dominates another
if it has a smaller value in the columns “area”, “T/T0”, and “t” and
a larger value in the column “dual”. There are 18 benchmarks, as
marked by + in the table, out of the 27 benchmarks (the other two
have no feasible solution as shown by the DualFD algorithm) where
the results of the DualFD algorithm dominate those of the SubGrad
algorithm and the results of the SubGrad algorithm never dominate
those of the DualFD algorithm.

We collect feasible solutions when running the DualFD and the
SubGrad algorithms and report the best ones, i.e. the ones with the
minimal total gate size, in Table III. Only the best feasible solution
of the benchmark “s27”, as marked by ∗ in the table, is found by the
SubGrad algorithm. All the other best feasible solutions are found by
the DualFD algorithm. The total gate sizes are shown in the column
“areafea”. We compute the minimum clock period Tfea that a circuit
can operate and the ratios to the clock period constraint are shown in
the column “Tfea/T0”. The benchmarks with - in the columns are the
ones without a feasible solution being found. When there is a feasible
solution, we can obtain an upper-bound on the gap between the results
generated by the DualFD algorithm and the optimal solutions. A zero
gap proves that the result is an optimal solution. We compute the gaps
relatively as (areafea − dual)/areafea where “dual” is the value in the
column “dual” in Table II for the DualFD algorithm and report the
values in the column “gap”. There are 14 benchmarks where the
results generated by the DualFD algorithm are close (less then 3%)
to the optimal solutions.

The detailed running time information of the DualFD algorithm
are also reported in Table III. The time spent by solving the DF
problems and the Lagrangian subproblems in seconds are shown
in the columns “tDF” and “tLRS” respectively. Other parts of the
DualFD algorithm spend only a small portion of the total running
time and are thus excluded from being reported. The time spent
in solving the DF problems gradually dominates the time spent in
solving the Lagrangian subproblems for the Elmore delay model
as the circuit sizes increase. If a more sophisticated but accurate
delay model is used in the future, the time spent in solving the
Lagrangian subproblems would increase but the time spent in solving
the Direction Finding problems would remain most likely unchanged
since the complexity of the DF problem only depends on the size of
the graph G. Thus, considering the difference in the number of the
Lagrangian subproblems that should be solved in both the DualFD
and the SubGrad algorithms, we expect that the running time ratio of
the DualFD algorithm to the SubGrad algorithm will become more
significant if a more sophisticated delay model is used.

VI. CONCLUSIONS

In this work, we revisited the approach to solving the gate sizing
problem via Lagrangian relaxation. We formulated a generalized
sizing problem GCS, identified a class of proper GCS problems, and
presented a method to handle simultaneous sizing and clock skew
optimization as a proper GCS problem. We established conditions
for the objective function of the simplified dual problem to be
differentiable and for the GCS problem to be feasible. We designed
an algorithm based on the method of feasible directions to solve the
proper GCS problem. The efficiency and effectiveness of our new
approach was confirmed by the experimental results.

TABLE III
ADDITIONAL RESULTS FOR DUALFD.

name areafea Tfea/T0 gap tDF(s) tLRS(s)
s27 137.6∗ 0.997∗ 0.340 0.0 0.0
s208 - - - 0.6 1.4
s298 242.5 1.000 0.000 0.1 0.1
s344 448.4 1.000 0.006 0.4 0.6
s349 454.0 0.999 0.014 0.3 0.4
s382 315.7 1.000 0.000 0.1 0.1
s386 - - - 1.6 5.7
s420 - - - 0.0 0.0
s444 360.7 1.000 0.000 0.9 0.7
s510 480.9 1.000 0.002 1.1 1.0
s526 383.7 1.000 0.000 0.3 0.2
s641 959.1 0.983 0.073 0.4 0.4
s713 1449.2 0.995 0.027 0.7 1.6
s820 - - - 3.1 4.9
s832 - - - 3.1 5.1
s838 - - - 0.0 0.1
s953 776.5 1.000 0.001 3.2 2.5
s1196 1105.0 1.000 0.015 5.4 5.3
s1238 1094.8 0.999 0.014 3.4 4.3
s1423 1685.5 0.998 0.009 0.5 1.0
s1488 - - - 8.6 19.4
s1494 - - - 7.0 21.2
s5378 - - - 69.7 21.1
s9234 - - - 160.6 74.5
s13207 14614.9 1.000 0.000 89.4 21.5
s15850 - - - 190.4 36.9
s35932 - - - 250.1 52.8
s38417 - - - 237.8 61.7
s38584 34975.1 0.999 0.000 119.7 28.7

∗ Found when applying the SubGrad algorithm.

REFERENCES

[1] J. Fishburn and A. Dunlop, “TILOS: A posynomial programming approach to
transistor sizing,” in ICCAD, 1985, pp. 326–328.

[2] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S. M. Kang, “An exact solution to
the transistor sizing problem for CMOS circuits using convex optimization,” IEEE
TCAD, vol. 12, pp. 1621–1634, Nov. 1993.

[3] W. Chuang, S. S. Sapatnekar, and I. N. Hajj, “Timing and area optimization for
standard-cell VLSI circuit design,” IEEE TCAD, vol. 14, no. 3, pp. 308–320, Mar.
1995.

[4] C.-P. Chen, C. C. N. Chu, and D. F. Wong, “Fast and exact simultaneous gate and
wire sizing by Lagrangian relaxation,” IEEE TCAD, vol. 18, no. 7, pp. 1014–1025,
July 1999.

[5] V. Sundararajan, S. S. Sapatnekar, and K. K. Parhi, “Fast and exact transistor sizing
based on iterative relaxation,” IEEE TCAD, vol. 21, no. 5, pp. 568–581, May 2002.

[6] H. Tennakoon and C. Sechen, “Gate sizing using Lagrangian relaxation combined
with a fast gradient-based pre-processing step,” in ICCAD, 2002, pp. 395–402.

[7] S. Boyd and L. Vandenberghe, Convex Optimization.Cambridge University Press,
2004.

[8] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming,
3rd ed.Wiley-Interscience, 2006.

[9] W. C. Elmore, “The transient response of damped linear networks with particular
regard to wide-band amplifiers,” Journal of Applied Physics, vol. 19, no. 1, pp.
55–63, Jan. 1948.

[10] K. Kasamsetty, M. Ketkar, and S. S. Sapatnekar, “A new class of convex functions
for delay modeling and their application to the transistor sizing problem,” IEEE
TCAD, vol. 19, no. 7, pp. 779–788, July 2000.

[11] Faraday Technology Corporation, “UMC 90-nano Libraries,” http:
//freelibrary.faraday-tech.com/, Nov. 2005.

[12] H. Tennakoon and C. Sechen, “Efficient and accurate gate sizing with piecewise
convex delay models,” in DAC, 2005, pp. 807–812.

[13] C. Lin and H. Zhou, “Clock skew scheduling with delay padding for prescribed
skew domains,” in ASP-DAC, 2007.

[14] R. T. Rockafellar, “Ordinary convex programs without a duality gap,” Journal of
Optimization Theory and Applications, vol. 7, no. 3, pp. 143–148, Mar. 1971.

[15] Andrew Goldberg’s network optimization library, http://www.avglab.com/
andrew/soft.html.

