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ABSTRACT
Similarity among mobile entities is an important type of
query for many application domains. This tutorial provides
a comprehensive overview of the different challenges related
to assessing the similarity of spatio-temporal objects, along
with the corresponding results/techniques.

Categories and Subject Descriptors
I.m [Computing Methodologies]: Miscellaneous

General Terms
Algorithms

1. INTRODUCTION
Efficient and effective methods for detecting similarity

among entities whose spatial attributes change over time
are important for a broad range of application domains.
But few examples include: – Evolution of geographic and
seismic processes and events [58, 59]; Categorization of the
movement features of objects from everyday-life (e.g., pedes-
trians vs. cars) [22]; Particle motions at (sub) molecular
level [46,62,67]; Time-series describing trends of changes of
a particular phenomenon (e.g., financial data) [69].

Technological advances in satellite imaging [76] and
Global Positioning Systems (GPS) technologies [12, 54, 57],
along with the miniaturization of sensing devices self-
organizing in networks [39, 41, 79, 88], enabled generating
large volumes of (location,time) information pertaining to
mobile entities. Different application domains may have dif-
ferent means of storing the spatio-temporal data which, in
turn, affects the properties of the algorithms for process-
ing the queries of interest. As an example, Figure 1 presents
three scenarios from different domains: a motion of a human

∗Research Supported by the MODAP and SensorGrid4Env
EC Projects
†Research supported by the NSF-CNS-0910952.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...10.00

�

�

�

�

�

�

� � � � � � 	 
 � �

�  � � � �

�

�

�

Figure 1: Similarity of Motions in Different Appli-
cation Domains

playing golf, where the trajectories were captured by two dif-
ferent cameras [70,87]; trajectories obtained by sampling the
dynamics of molecular structures [35]; grouping of trajecto-
ries from a given Moving Objects Database (MOD) [34] that
constitute a flock [33]. Despite their heterogeneity, all three
examples have some common threads: (1) how to asses the
degree of similarity of two trajectories, and (2) how to iden-
tify which (groups of) trajectories are more similar among
themselves than the rest of the (groups of) trajectories in
the dataset. One of the crucial aspects, reflecting the se-
mantics of the problem-domain and affecting both the effi-
ciency and effectiveness of the corresponding algorithms [21]
is the selection of the distance function. The properties of
the distance function have a strong impact on the indexing
methodologies and the respective algorithms used for clas-
sification, clustering and approximation [27, 36, 42, 45, 84].
The main objectives of this tutorial are:
1. Provide a comprehensive overview of different research is-
sues and solutions addressing various aspects of the problem
of assessing the similarity of spatio-temporal data. Address
in detail the impact of application contexts on the distance
functions and techniques used for similarity detection.
2. Overview the techniques for similarity detection in spatial
and temporal datasets – before focusing on spatio-temporal
data – thereby providing a ”historic” context and balanc-
ing the breadth and the depth of the presentation, thereby
catering to a broader-interests audience.
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3. Present several open challenges related to spatio-temporal
similarity in different application domains and with the dif-
ferent (heterogeneous) data features and semantics.

2. TUTORIAL OUTLINE
We now outline the main themes addressed in the tutorial:

• Motivation – Applications Settings: We motivate the
importance of the problem of efficiently detecting the simi-
larity of mobile entities by presenting its relevance in several
application domains [22,39,46,58,59,62,67,70,79,87,88].
• Similarity of Spatial/Geometric Entities: We review
some results from the Computational Geometry commu-
nity related to detecting the similarity of 2D (and higher-
dimensional) shapes [2, 3, 5]along with evaluation modulo
certain transformations – i.e., rotation, translation or scaling
[18, 85]along with sub-optimal matching – with algorithms
executing much faster than the optimal matching [32,37].
• Similarity and Distance Functions: Apparently, the
traditional Hausdorff distance [3] is too ”static” for a wide
range of applications, and we review the problem of effi-
ciently evaluating the Fréchet distance [1, 4, 7, 24, 61], along
with the issues of uncertainty of spatio-temporal data [75],
and the earth-movers distance [68,71].
• Time-Series Data: The problem of efficient evaluation
of similarity is central to the management of time series
data, and the two important aspects are the representation
methods, and the similarity measures [21]. Representation
methods aim at reducing the dimensionality, without signif-
icantly distorting the dat characteristics [27,43,52], whereas
the similarity measures balance the efficiency and the accu-
racy of classification [9,16,28,44,60].
• Similarity of Moving Objects Trajectories: Unlike
the time-series data, the motion of the objects in many ap-
plication domains occurs in two (and higher) dimensions,
and a large body of works from MOD and GIS communi-
ties [6, 26, 73, 78, 80, 82, 83]. have have focused on similarity
in such settings. We first formalize the problem of similar-
ity among trajectories [26,28,78] based on their representa-
tion [25], including segmenting them for applying different
distance-based techniques [6]. We also address the specifics
of detecting the similarity among objects whose motion is
spatially constrained to an existing road-network [13, 72],
along with the robustness issues [81,82]. Lastly, we present
techniques for assessing similarity of trajectories under cer-
tain transformations (rotations and translations) [80,83] and
sub-optimal solutions [38,73].
• Trajectories’ Data Mining: We overview some research
results related to clustering and classification of trajecto-
ries [23,50,51,56,64] and different spatio-temporal distance
operators for mining purposes [66]. We also address is-
sues arising with sub-trajectories [11, 49], along with out-
liers/anomalies detection [29, 90], as well as bundling flocks
and convoys of trajectories [33,40]. The last portion of this
part of the tutorial addresses issues related to warehousing
of spatio-temporal data [10,55,77].
• Domain Constraints: This part of the tutorial fo-
cuses on specific constraints arising in particular applica-
tion domains, and their impact on calculating the similar-
ity of the motions: Wireless Sensor Networks (WSN) where
tracking is done by trilateration and the important aspect
of the problem is balancing the efficiency of transmission
with (im)precision and freshness of the data in the sink
[31,48,65,74,86,89,91], along with clustering and warehous-

ing [15,63].
• Challenges: The tutorial concludes with an overview of
some open problems and application domains: deformable
shapes [17], the OLAP-related role of similarity [8], the in-
corporation of a map-data [14], traffic management [20, 30,
47,53] and cloud-settings [19].

We re-iterate that the goal of this 180 minutes tutorial is
to present a framework in which the rich history of the prob-
lem of similarity of motion can be cast, discuss its role in
various applications, and outline example solutions to cer-
tain specific problems – thereby balancing its breadth vs.
depth trade-off(s). A related three-hours tutorial (”On the
Similarity of Motions”) by the same authors was presented
at the MDM 2010 conference. The current tutorial has three
main differences:
1. We have updated that version to include more recent
results.
2. We have added two sections – in addition to updating
the sections from the prior version.
3. We have addressed a larger group of application domains.
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Warehouse Design From Conventional to Spatial and
Temporal Applications (Data-Centric Systems and
Applications. Springer, 2008.

[56] Nikos Mamoulis, Huiping Cao, George Kollios, Marios
Hadjieleftheriou, Yufei Tao, and David W. Cheung. Mining,
indexing, and querying historical spatiotemporal data. In
International Conference on Knowledge Discovery and
Data Mining, pages 236–245, 2004.

[57] Anthony J. Mannuci and Chi-On Ao. Toward new scientific
observations from gps occulations: Advances in retrieval
methods. In Remote Sensing Applications of the GPS,
2004.

[58] G. Marketos, Y. Theodoridis, and I.S. Kalogeras.
Seismological data warehousing and mining: A survey.
IJDWM, 4(1), 2008.

[59] John McIntosh and May Yuan. Assessing similarity of
geographic processes and events. Transactions in GIS, 9(2),
2005.

[60] Theophano Mitsa. Temporal Data Mining. Chapman &
Hall, 2010.

[61] Axel Mosig and Michael Clausen. Approximately matching
polygonal curves with respect to the fre’chet distance.
Comput. Geom., 30(2), 2005.
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