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15.1 Introduction

Time-series data is one of the most common forms of data encountered in a wide variety of
scenarios such as the stock markets, sensor data, fault monitoring, machine state monitoring, envi-
ronmental applications or medical data. The problem of clustering finds numerous applications in
the time series domain, such as the determination of groups of entities with similar trends. Time-
series clustering are numerous applications in diverse problem domains:

• Financial Markets: In financial markets, the values of the stocks represent time-series which
continually vary with time. The clustering of such time series can provide numerous insights
into the trends in the underlying data.

• Medical Data: Different kinds of medical data such as EEG readings are in the form of time-
series. The clustering of such time-series can provide an understanding of the common shapes
in the data. These common shapes can be related to different kinds of diseases.

• Earth Science Applications: Numerous applications in earth science, such as temperature or
pressure correspond to series, which can be mined in order to determine the frequent trends
in the data. These can provide an idea of the common climactic trends in the data.

• Machine State Monitoring: Numerous forms of machines create sensor data, which provides
a continuous idea of the states of these objects. These can be used in order to provide an idea
of the underlying trends.

• Spatio-temporal Data: Trajectory data can be considered a form of multi-variate time-series
data, in which the X-coordinate and Y -coordinates of objects correspond to continuously vary-
ing series. The trends in these series can be used in order to determine the important trajectory
clusters in the data.

Time-series data falls in the class of contextual data representations. Many kinds of data such as
time-series data, discrete sequences, and spatial data fall in this class. Contextual data contains two
kinds of attributes:

• Contextual Attribute: For the case of time-series data, this corresponds to the time-dimension.
These provide the reference points at which the behavioral values are measured. The time-
stamps could correspond to actual time values at which the data points are measured, or they
could correspond to indices at which these values are measured.

• Behavioral Attribute: This could correspond to any kind of behavior which is measured at
the reference point. Some examples include stock ticker values, sensor measurements such as
temperature, or other medical time series.

The determination of clusters of time series is extremely challenging because of the difficulty in
defining similarity across different time series which may be scaled and translated differently both
on the temporal and behavioral dimensions. Therefore, the concept of similarity is a very important
one for time-series data clustering. Therefore, this chapter will devote a section to the problem of
time series similarity measures. Note that once a similarity measure has been defined for time-series
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data, it can be treated as an abstract object on which a variety of similarity-based methods such as
spectral methods or partitioning methods can be used.

Time-series data allows diverse formulations for the clustering process, depending upon whether
the series are clustered on the basis of their online correlations, or whether they are clustered on the
basis of their shapes. The former methods are usually performed with an online approach based
on a small past window of history, whereas the latter sets of methods are typically performed with
an offline approach on the entire series. Therefore, this chapter will also carefully study the di-
verse formulations which arise in the context of time-series data clustering, map them to different
application-specific scenarios, and also discuss the techniques for the different formulations.

Clustering of time series data, as clustering for all types of data, has the goal of producing clus-
ters with high intra-cluster similarity and low inter-cluster similarity. Specifically, objects belonging
to the same cluster must exhibit high similarity to each other, while objects belonging to differ-
ent clusters must exhibit low similarity, thus high distance to each other. However, some specific
properties that are part of the nature of the time-series data – such as the high dimensionality, the
presence of noise and the high feature correlation [52, 24] – pose unique challenges for designing
effective and efficient clustering algorithms. In time series clustering it is crucial to decide what
kind of similarity is important for the clustering application. Accordingly, an appropriate clustering
algorithm and an appropriate distance measure should be chosen. For example, Euclidean distance
reflects similarity in time, while dynamic time warping (DTW) reflects similarity in shape. Other ap-
proaches, like model-based clustering methods such as Hidden Markov Models (HMM) or ARMA
processes [55] are followed when similarity in change matters.

A significant difference between time-series data clustering and clustering of objects in Eu-
clidean space is that the time series to be clustered may not be of equal length. When this is not the
case, so all time series are of equal length, standard clustering techniques can be applied by rep-
resenting each time series as a vector and using a traditional Lp-norm distance [17]. With such an
approach, only similarity in time can be exploited, while similarity in shape and similarity in change
are disregarded. In this study we split the clustering process in two basic steps. The first one is the
choice of the similarity measure that will be employed, while the second one concerns the grouping
algorithm that will be followed. In the section discussing the first step, we classify the proposed
approaches into two categories: one for one-dimensional time series and one for multidimensional
time series. In the section discussing the clustering algorithms, we present them following the tradi-
tional classification scheme that defines three main classes of clustering algorithms: (a) k-means and
its variants, (b) hierarchical approaches and (c) density-based clustering. In addition to these three
main classes, in subsection 15.5.4 we discuss methods for trajectory clustering, as we consider this
field to be of individual interest.

15.2 The Diverse Formulations for Time-series Clustering

Time-series clustering lends itself to diverse formulations, which are highly application-specific
in nature. For example, do we wish to determine sets of time-series with similar online trends, or do
we wish to determine time-series with similar shapes? The objective function criteria in these cases
are clearly very different. Furthermore, the application-specific goals in these cases are also quite
different, and the corresponding similarity functions used in the analytical process are also therefore
quite different.

Broadly speaking, two main formulations exist for time-series data clustering:

• Correlation-based Online Clustering: In this case, a bunch of time-series are clustered in
real-time on the basis of the correlations among the different time series. Such applications
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are common in scenarios such as financial markets, where it is desirable to determine groups
of stocks which move together over time. Such methods can also be used in order to find
time-series which have similar trends, or at least correlated trends over time. In these cases, a
short window of history is used for the clustering process, and the similarity functions across
the different series are based on inter-attribute correlations. These methods are also intimately
related to the problems of time-series forecasting and regression. In fact, a few such cluster-
ing methods such as Selective Muscles [57] use clustering methods for stream selection and
efficient forecasting. Other methods in the literature use such techniques for sensor selec-
tion [1, 2]. An important aspect of such methods is that they often need to be performed in
real time, as the streams are evolving over time. In many cases, it is also desirable to detect
the significant changes in the clustering behavior. This provides insights into how the stream
correlation trends have changed significantly.

• Shape-based Offline Clustering: In these cases, time-series of similar shapes are determined
from the data. The main challenge here is to define an appropriate shape-based similarity
function. This can be extremely challenging because it requires the definition of similarity
functions which can capture the similarities in the shapes of the time-series. Depending upon
the domain, the time-series may be translated, scaled and time-warped. Therefore, numer-
ous similarity functions such as the euclidian function or dynamic time warping are used for
time-series clustering. Clearly, the appropriateness of a similarity function depends upon the
underlying data domain. Furthermore, some of the similarity functions are computationally
quite expensive, since they require the use of dynamic programming methods for computa-
tion. Depending upon the application, the exact values on the time-stamps may sometimes
not be important, as long as the shapes of the time-series are similar. For example, consider
the case, where the EEG readings of different patients are used to create a database of mul-
tiple time-series. In such cases, the exact value of the time-stamp at which the EEG reading
was measured is not quite as important. This is very different from online correlation-based
clustering, where all the series are evaluated over approximately the same time-stamps. Some
versions of shape-based clustering are also used for online-clustering, such as the methods
which perform subsequence clustering.

Clearly, the precise choice of model and similarity function depends upon the specific problem
domain. Therefore, this chapter will examine the different formulations in the context of different
application domains.

The problem becomes more complex, as one moves to the multi-variate scenario. The simplest
multivariate scenario is that of trajectory clustering, which can be considered a form of bivariate or
trivariate time-series data, depending upon whether 2- or 3-dimensional trajectories are considered.
The afore-mentioned cases also apply to the case of trajectories, where it may be desirable to ei-
ther determine objects which move together (online correlation methods), or determine trajectories
which have similar shape (offline shape methods). In the latter case, the exact time at which the
trajectories were created may be of less importance. This chapter will carefully address the case
of multivariate time-series clustering, and will use spatiotemporal data as specific application do-
main of interest. While spatiotemporal data is used as a specific case in this chapter, because it
provides the only known set of multivariate clustering methods, the techniques for spatiotempo-
ral data clustering can be generalized to any bivariate and possibly non-spatial time-series data, by
“pretending” that the two series correspond to a trajectory in 2-dimensional space. Furthermore, the
core techniques for trajectory-based methods can also be generalized to higher dimensional multi-
variate time-series, by treating them as n-dimensional trajectories. Therefore, the existing research
on trajectory clustering provides some of the most powerful results on how multivariate time series
clustering can be properly addressed.
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15.3 Online Correlation-based Clustering

Online correlation-based clustering methods are closely related to the problem of forecasting.
Such methods are typically based on clustering the streams on the basis of their correlations with
one another in their past window of history. Thus, the similarity function between the different series
uses an intra-stream regression function in order to capture the correlations across different streams.

These methods are typically based on windows of the immediate history. Specifically, a window
of length p is used for regression analysis, and the different series are clustered on the basis of these
trends. Some of the most common methods for segmenting such streams define regression-based
similarity functions on the previous window of history. Note that two streams in the same cluster
need not be positively correlated. In fact, two streams with perfect negative correlation may also be
assumed to belong to the same cluster, as long as the predictability between the different streams
is high. This is quite often the case in many real scenarios in which some streams can be predicted
almost perfectly from others.

15.3.1 Selective Muscles and Related Methods

The Selective Muscles method [57] is designed to determine the k best representatives from the
current time series which can be used in order to predict the other series. This approach can be
considered a version of the k-medoid clustering for online predictability-based clustering of time
series. One important aspect of the original Selective Muscles approach is that it was designed for
finding the k best representatives which predict one particular stream in the data. On the other hand,
in unsupervised correlation clustering, it is desirable to determine the best set of representatives
which can predict all the streams in the data. However, the two problems are almost exactly the
same in principle, since the same approach in Selective Muscles can be used with an aggregated
function over the different time series. The problem can be posed as follows:

Problem 15.3.1 Given a dependent variable Xi and d− 1 independent variables {Xj : j 
= i}, de-
termine the top b < d streams to pick, so as to minimize the expected estimation error.

Note that the estimation is performed with a standard model such as the Autoregressive (AR), or the
Autoregressive Integrated Moving Average (ARIMA) models. A more general version of the problem
does not treat any particular variable as special, and may be defined as follows:

Problem 15.3.2 Given d variables X1 . . .Xd, determine the top b < d streams to pick so as to mini-
mize the average estimation error over all d streams.

Note that while the second problem is slightly different from the first, and more relevant to online
clustering, it is no different in principle.

The approach in [57] uses a greedy method in order to select the k representatives for optimizing
the predictability of the other streams. The approach for selecting the representatives is as follows.
In each iteration, a stream is included in the representative set, which optimizes the estimation error.
Subsequently, the next stream which is picked is based on maximizing the aggregate impact on
the estimation error, considering the streams which have already been picked. In each iteration, the
stream is added to the set of representatives, for which the incremental impact on the estimation
error is as large as possible.

However, the technique in [57] is optimized in order to pick the k streams which optimize a
specific dependent variable. A method in [2] uses the greedy approach in order to prick the streams
with the use of the formulation discussed in Problem 15.3.2. A graph-based representation is used to
model the dependencies among the streams with the use of a linkage structure. A greedy algorithm



362 Data Clustering: Algorithms and Applications

Algorithm CorrelationCluster(Sensors Streams: [1 . . .n]
NumberO f Streams : k;

begin
J = Randomly sampled set of k sensor nodes;

At the next time stamp do
repeat

Add a sensor to J, which leads to

maximum decrease in regression error;

Drop the sensor from J which leads to

least increase of regression error;

until(J did not change in last iteration)

end

FIGURE 15.1: Dynamically Maintaining Cluster Representatives

is used in order to pick the optimal set of representatives. It has been shown in [2] that the approach
has an approximation bound of (e−1)/e over the optimal choice of representatives.

A method in [1] performs the clustering directly on the streams by defining a regression-based
similarity function. In other words, two streams are deemed to be similar, if it is possible to predict
one stream from the other. Otherwise the immediate window of history is used in order to cluster the
streams. The work in [1] is a general method, which also associates a cost of selecting a particular
representative. In general, for the clustering problem, it is not necessary to model costs. A simplified
version of the algorithm, in which all costs are set to the same value is provided in Figure 15.1. The
similarity between two sensors i and j is equal to the regression error in predicting stream j from
stream i with the use of any linear model. A particular form of this model has been discussed in
[1]. Note that the similarity function between streams i and j is not symmetric, since the error of
predicting stream i from stream j is different from the error of predicting stream j from stream i.

These methods for online correlation based stream clustering are very useful in many applica-
tions, since it is possible to select small subsets of streams, from which all the other streams can
be effectively predicted. A number of other methods, which are not necessarily directly related to
muscles select representatives from the original data streams. Such methods are typically used for
sensor selection.

15.3.2 Sensor Selection Algorithms for Correlation Clustering

Sensor selection algorithms are naturally related to correlation clustering. This is because such
methods typically pick a representative set of streams which can be used in order to predict the other
streams in the data. The representative streams are used as a proxy for collecting streams from all the
different streams. Such an approach is used in order to save energy. This naturally creates clusters
in which each stream belongs to the cluster containing a particular representative. A number of
techniques have been designed in recent years in order to determine correlations between multiple
streams in real time [42, 47, 57, 58]. The techniques in [42, 47] use statistical measures in order to
find lag-correlations and forecast the behavior of the underlying data stream. The works in [2, 15]
propose methods for sensor selection with the use of domain-specific linkage knowledge and utility-
feedback, respectively. Methods for observation selection are proposed in [26], when the importance
of a sensor-set can be pre-modeled as a submodular function. Methods for using adaptive models
for time-series prediction were proposed in [56]. The method in [57] uses linear regression in order
to determine the correlations in the underlying data and use them for forecasting. The technique in
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[58] proposes general monitoring techniques to determine statistical correlations in the data in real
time.

Correlation clustering algorithms in time series can also be used in order to monitor key changes
in the correlation trends in the underlying stream. This is because when the correlations between
the different streams change over time, this leads to changing membership of streams in different
clusters in the data. Such changes are relevant to determining key temporal anomalies in the data,
and are discussed in [4].

15.4 Similarity and Distance Measures

For more conventional shape-based clustering algorithms, the use of similarity and distance
measures is crucial. In [33] Liao classifies time series distance measures into three classes:

(a) feature-based

(b) model-based

(c) shape-based

While this classification makes sense and analyzes in depth the proposed time series distance mea-
sures and their differences, it lacks information about whether each distance measure is appropriate
for comparing multivariate time series as well or not. Over the last few years, multivariate time se-
ries clustering has attracted the interest of the time series research community as it has a variety of
interesting applications. In this sense our study of similarity / distance measures that are used in time
series clustering is supplementary to that of Liao [33] and provides another interesting insight. One
of the most important decisions when performing time series clustering is the similarity / distance
measure that will be chosen in order to compare the time series. Given a time series similarity mea-
sure, time series clustering can be performed with one of the several proposed techniques that will
be reviewed in the next section. Time series similarity has been a long and deeply studied problem
for the past two decades. In the literature one can find many proposed distance measures, with each
of them being appropriate for different applications and having specific advantages and disadvan-
tages. Many classification schemes have been proposed regarding time series similarity measures.
A popular classification criterion is the time series representation scheme that is assumed by the
various measures, as the time series can be represented either by the raw data or by transformations
of the original data such as the frequency transformation representations (Discrete Fourier Transfor-
mation (DFT), Discrete Wavelet Transformation (DWT)) or other representation models (Landmark
and Important Points Representation, ARIMA Model and LPC Cepstral Coefficient Representation,
Symbolic Representation, Signature Representation [10]). In this section we employ the raw data
representation, where a time series T of length n is represented as an ordered sequence of values
T = [t1, t2, , tn]. T is called raw representation of the time series data. Another important feature and
classification criterion when classifying similarity / distance measures for time series is whether
a measure is appropriate for univariate or multivariate time series. In this section we review the
most commonly used similarity / distance measures when it comes to time series clustering and
distinguish them to univariate and multivariate measures.

15.4.1 Univariate Distance Measures

In this subsection, we shortly present some similarity / distance measures that are widely used
by the majority of time series clustering methods proposed in the literature and reviewed in this
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chapter. The distance/similarity measures presented here handle one-dimensional time series and
most of them are extended by many multidimensional time series similarity / distance approaches
that will be described in the next subsection.

15.4.1.1 Lp Distance

The Lp-norm is a distance metric, since it satisfies all of the non-negativity, identity, symmetry
and the triangle inequality conditions. An advantage of the Lp-norm is that it can be computed in
linear time to the length of the trajectories under comparison, thus its time complexity is O(n), n
being the length of the time series. In order to use the Lp-norm, the two time series under comparison
must be of the same length.

The Minkowski of order p or the Lp-norm distance, being the generalization of Euclidean dis-
tance, is defined as follows:

Lp−norm(T1,T2) = DM,p(T1,T2) = p

√
n

∑
i=1

(T1i−T2i)p (15.1)

The Euclidean Distance between two one-dimensional time series T1 and T2 of length n is a special
case of the Lp-norm for p = 2 and is defined as:

DE(T1,T2) = L2−norm =

√
n

∑
i=1

(T1i−T2i)2 (15.2)

L1-norm (p=1) is named the Manhattan distance or city block distance.

15.4.1.2 Dynamic Time Warping Distance

Dynamic Time Warping (DTW) is a well known and widely used shape-based distance measure.
DTW computes the warping path W = w1,w2, ...,wK with max(m,n)≤ K ≤ m+n−1 of minimum
distance for two time series of lengths m and n.

DTW stems from the speech processing community [44] and has been very popular in the liter-
ature of time series distance measures [Berndt Clifford 1994 KDD]. Moreover, it has been extended
by many approaches to handle the multi-dimensional case of trajectory matching. With use of dy-
namic programming DTW between two one-dimensional time series T1 and T2 of length m and n
respectively can be computed as follows:

(a) DDTW(T1,T2) = 0, if m = n = 0

(b) DDTW(T1,T2) = ∞, if m = n = 0

(c) DDTW(T1,T2) = dist(T11,T21)+minFactor, otherwise

where minFactor is computed as:

minFactor = min

⎧⎪⎨⎪⎩
DDTW(Rest(T1),Rest(T2))

DDTW(Rest(T1),T2)

DDTW(T1,Rest(T2))

where dist(T1,1,T2,1) is typically the L2-norm. The Euclidean Distance, as long as all Lp-norms,
described in 15.4.1.1, performs an one-to-one mapping between the data points of the time series
under comparison. Thus, it can be seen as a special case of the DTW distance, which performs an
one-to-many mapping. DTW is a more robust distance measure than Lp-norm because it allows time
shifting and thus matches similar shapes even if they have a time phase difference. An important
point is that DTW does not satisfy the triangular inequality which could be a problem while indexing
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time series. However, in the literature there are several lower bounds that serve as solutions for
indexing DTW offering faster performance [53]. Another advantage of DTW over Lp-norm is that
DTW can handle different sampling intervals in the time series. This is a very important feature
especially for long time series that span many years as the data sampling strategy may change over
long time.

15.4.1.3 EDIT Distance

EDIT distance (ED) comes from the field of string comparison and measures the number of
insert, delete and replace operations that are needed to make two strings of possibly different lengths
identical to each other. More specifically, the EDIT distance between two strings S1 and S2 of length
m and n respectively is computed as follows:

(a) DED(S1,S2) = m, if n = 0

(b) DED(S1,S2) = n, if m = 0

(c) DED(S1,S2) = DED(Rest(S1),Rest(S2)), if S11 = S21

(d) DED(S1,S2) = min

⎧⎪⎨⎪⎩
DED(Rest(S1),Rest(S2))+1

DED(Rest(S1),S2)+1

DED(S1,Rest(S2))+1

, otherwise

Although ED for strings is proven to be a metric distance, the two ED-related time series distance
measures DTW and Longest Common Subsequence (LCSS) that will be described in the next sub-
section are proven not to follow the triangle inequality. Lei Chen [9] proposed two extensions to
EDIT distance, namely Edit distance with Real Penalty (ERP) to support local time shifting and
Edit Distance on Real sequence (EDR) to handle both local time shifting and noise in time series
and trajectories. Both extensions have a high computational cost, so Chen proposes various lower
bounds, indexing and pruning techniques to retrieve similar time series more efficiently. Both ERP
and DTW can handle local time shifting and measure the distance between two out of phase time
series effectively. An advantage that ERP has over DTW is that the former is a metric distance func-
tion, whereas the latter is not. DTW does not obey triangle inequality, and therefore traditional index
methods cannot be use to improve efficiency in DTW-based applications. On the other hand, ERP
is proved to me a metric distance function [9], and therefore traditional access methods can be used.
EDR, as a distance function, proves to be more robust than Euclidean distance, DTW and ERP and
more accurate than LCSS that will be described in the next subsection. EDR is not a metric, thus
the author proposes three non-constraining pruning techniques (mean value Q-grams, near triangle
inequality and histograms) to improve retrieval efficiency.

15.4.1.4 Longest Common Subsequence

The Longest Common Subsequence (LCSS) distance is a variation of EDIT distance described
in 15.4.1.3 [50]. LCSS allows time series to stretch in the time axis and does not match all elements,
thus being less sensitive to outliers than Lp-norms and DTW. Specifically, the LCSS distance be-
tween two real-valued sequences S1 and S2 of length m and n respectively is computed as follows:

(a) DLCSS,δ,ε(S1,S2) = 0, if n = 0 or m = 0

(c) DLCSS,δ,ε(S1,S2) = 1+DLCSS,δ,ε(HEAD(S1),HEAD(S2))
if |S1,m−S2,m|< ε and |m−n| ≤ δ

(d) max

{
DLCSS,δ,ε(HEAD(S1),S2)

DLCSS,δ,ε(S1,HEAD(S2))
, otherwise
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where HEAD(S1) is the subsequence [S1,1,S1,2, ...,S1,m−1], δ is an integer that controls the maximum
distance in the time axis between two matched elements and ε is a real number 0< ε< 1 that controls
the maximum distance that two elements are allowed to have to be considered matched, as depicted
in Figure 15.2.

FIGURE 15.2: LCSS distance, thresholds δ and ε

Apart from being used in time series clustering, LCSS distance is often used in domains like
speech recognition and text pattern mining. Its main drawback is that often is needed to scale ore
transform the one sequence to the other. A detailed study of LCSS variations and algorithms is
presented in [5].

15.4.2 Multivariate Distance Measures

A metric distance function, called Edit distance with Real Penalty (ERP), is proposed that can
support local time shifting in time series and trajectory data. A second distance function, Edit Dis-
tance on Real sequence (EDR) is proposed to measure the similarity between time series or trajec-
tories with local time shifting and noise [10].

15.4.2.1 Multidimensional Lp Distance

The Lp-norm between two d-dimensional time series T1 and T2 of length n extends the Lp-norm
for the one-dimensional case and is defined as:

Lp−norm(T1,T2) = DM,p(T1,T2) =
p

√
n

∑
i=1

(T1i−T2i)p = p

√√√√ n

∑
i=1

d

∑
j=1

(T1i j−T2i j)p (15.3)

As in the one-dimensional case, multidimensional Lp-norm has been proven to be very sensitive
to noise and to local time shifting [28]. A wide variety of methods described in this section, ei-
ther use the Euclidean Distance or expand it, in order to define new distance measures. Lee et al.
use the multidimensional Euclidean Distance, namely the L2-norm, to compare multidimensional
time series [18]. They define the distance between two multivariate sequences of equal length as
the mean Euclidean Distance among all corresponding points in the sequences. For the case where
the two compared sequences are not of same length, their approach slides the shorter one over the
longer one, and the overall distance is defined as the minimum of all mean distances, computed as
described above. Lin and Su [36] use the Euclidean Distance in order to define the distance from a
point p to a trajectory T as follows: Dpoint(p,T ) = minq∈T ED(p,q) where ED(p,q) represents the
Euclidean Distance between points p and q. Dpoint is used to define the one way distance (OWD)
from one trajectory T1 to another trajectory T2 as the integral of the distance from points of T1 to tra-
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jectory T2, divided by the length of T1. OWD is not symmetric, so the distance between trajectories
T1 and T2 is the average of their one way distances: D(T1,T2) =

1
2 · (DOWD(T1,T2)+DOWD(T2,T1)).

Similarly, using an alternate grid representation for trajectories, Lin and Su, define the distance be-
tween two grid cells as their Euclidean Distance, and through it they define the distance between
two trajectories [36]. Moreover, they provide a semi-quadratic algorithm with complexity O(mn)
for grid trajectory distance computation, where n is the length of trajectories and m is the number
of local min points. The grid OWD computation algorithm turns out to be faster than the quadratic
complexity needed to compute the DTW between two trajectories. The experimental evaluation
proves that OWD outperforms DTW in accuracy and performance. However, OWD does not take
into account the time information in trajectories, so no discussion about trajectories with different
sampling rates can be made. Frentzos et al. [13] focus on the problem of identifying spatiotempo-
rally similar trajectories, by taking into account the time information in trajectories, except for their
spatial shapes. They introduce a dissimilarity metric, DISSIM, between two trajectories Q and R by
integrating their Euclidean Distance over a definite time interval when both Q and R are valid. This
way, DISSIM takes into account the time dimension in both trajectories. Moreover, DISSIM can be
used for trajectories with different sampling rates, if the non-recorded data points are approximated
by linear interpolation, assuming that the objects follow linear movements. The linear-interpolation
technique for missing values can be applied to LCSS and EDR measures too, as pointed out in [13].
Lee et al. solve the problem of searching for similar multidimensional sequences in a database by
computing the distance between two sequences through their MBRs [28]. The database sequences
as well as the query sequence are partitioned into optimal subsequences that are represented by their
MBR. The query processing is based on these MBRs, so scanning and comparing the entire data se-
quences is avoided. The distance between two MBRs is defined as the minimum Euclidean Distance
between the two corresponding hyper-rectangles. Based on this distance, the authors introduce two
lower-bounding distance metrics and propose a pruning algorithm to efficiently process similarity
queries.

15.4.2.2 Multidimensional DTW

DTW (Dynamic Time Warping) between two d-dimensional time series T1 and T2 of length m
and n respectively is defined as the one-dimensional case, that is described in 15.4.1.2.

Just like in the one-dimensional case, multidimensional DTW allows stretching in time axis,
matches all elements and is extensively used in speech recognition domain. DTW, in contrast to Eu-
clidean Distance, does not require the two time series under comparison to be of the same length and
is not sensitive to local time shifting. However, DTW is not a metric, since it doesn’t follow triangle
inequality and its time complexity is O(mn), which means that it is computationally expensive for
long time series and is useful only for short ones, comprised of a few thousand points. Moreover,
DTW, like Euclidean Distance, has been proven to be sensitive to noise. [48] contains a very detailed
description of the computation and the semantics of DTW. Vlachos et al. apply DTW on handwrit-
ing data [53]. Before comparing two trajectories, these are transformed into a rotation invariant
Angle/Arc-Length space in order to remove the translation, rotation and scaling components. In the
new space, the technique of warped matching is used, in order is to compensate for shape varia-
tions. Salvador and Chan propose FastDTW, an approximation of DTW in linear time and space
[48]. Their approach creates multiple resolutions of the compared time series, coarsening them and
representing them with fewer points. Then the standard DTW is run over the lowest resolution and
the produced wrap path is passed over to the next higher resolution. Finally the path is refined and
this process continues until the original resolution of the time series is reached. FastDTW, being a
suboptimal approximation of DTW and producing errors up to 19.2%, is faster because the number
of cells it evaluates scales linearly with the length of the time-series. Through experimental evalua-
tion, the authors prove the accuracy and efficiency improvements over Sakoe-Chiba bands and data
abstraction, which are two other popular DTW approximations [45]. However, the authors do not
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report results on multidimensional time series, so the performance of FastDTW when applied on
this type of data has to be examined.

15.4.2.3 Multidimensional LCSS

Vlachos et al. proposed two non-metric distance functions as an extension of LCSS for multidi-
mensional time series. The method proved to be robust to noise, especially when compared to DTW
and ERP [50]. LCSS does not depend on continuous mapping of the time series, thus the approaches
using or extending it tend to focus on the similar parts between the examined sequences. LCSS, in
contrast to Euclidean Distance, by not taking into account unmatched elements and by matching
only the similar parts allows trajectories to stretch in the time axis. DTW and Euclidean Distance
try to match every element, so they are more sensitive to outliers. However, when using LCSS the
time series under comparison must have the same sampling rates. In [50] the two-dimensional LCSS
between two two-dimensional trajectories T1 and T2 of length m and n respectively is computed as
follows:

(a) DLCSS,δ,ε(T1,T2) = 0, if n = 0 or m = 0

(c) DLCSS,δ,ε(T1,T2) = 1+DLCSS,δ,ε(HEAD(T1),HEAD(T2))
if |T1,m,x−T2,n,x|< ε and |T1,m,y−T2,n,y|< ε and |i− j| ≤ δ

(d) max

{
DLCSS,δ,ε(HEAD(T1),T2)

DLCSS,δ,ε(T1,HEAD(T2))
, otherwise

where HEAD(T1), δ and ε are defined as in 15.4.1.4. Two-dimensional LCSS can easily be extended
to d dimensions.

15.4.2.4 Multidimensional Edit Distance

In 2005, Chen et al. proposed EDR, Edit Distance on Real sequence, in order address the prob-
lem of comparing real noisy trajectories with accuracy and robustness, claiming that EDR is more
robust and accurate than DTW, LCSS, ERP and Euclidean Distance [9]. EDR is defined as the num-
ber of insert, delete or replace operations to convert a trajectory T1 into another T2. Specifically,
applying the Edit Distance on sequences of real numbers, rather than strings as it was originally
proposed in [10] by Levenshtein, the authors define EDR as follows:

(a) EDR(T1,T2) = m, if n = 0

(b) EDR(T1,T2) = n, if m = 0

(d) EDR(T1,T2) = min

⎧⎪⎨⎪⎩
EDR(Rest(T1),Rest(T2))+ sc

EDR(Rest(T1),T2)+ sc

EDR(T1,Rest(T2))+ sc

, otherwise

where sc = 0 if T11 and T21 match, and sc = 1 otherwise. Elements T1i and T2i are supposed to match
if the distance between them in all dimensions is below a threshold ε, similarly to the way LCSS
distance described in 15.4.1.4 and 15.4.2.3 defines matching. This way, EDR manages to cope with
noisy multivariate time series by not being affected by outliers and to handle shifting in the time
axis like ERP distance. In their experimental evaluation, Chen et al. prove their claims about the
improvements of EDR over DTW, ERP and LCSS when applied on noisy sequences.
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15.4.2.5 Multidimensional Subsequence Matching

There is a variety of methods, proposed for multidimensional subsequence matching, that can be
used for data mining tasks such as clustering and classification. SPRING is a dynamic-programming
based method that identifies the subsequences of evolving numerical streams that are closest to a
query in constant space and linear time in the dataset size [46].

Kotsifakos et al. have introduced SMBGT, a subsequence matching method, that allows for gaps
in both the query and the target sequences and constrains the maximum match length between the
two [25]. In their study, they apply SMBGT to build a Query-By-Humming system that given a
hummed query song, retrieves the top K most similar songs in a database. The proposed similarity
measure, SMBGT, given a query Q and a target sequence X , finds the subsequence of X that best
matches Q. The experimental evaluation of the proposed similarity measure was performed on 2-
dimensional time series of notes of arbitrary length. Given sequences Q and X and their respective
subesequences Q[qs,qe] and X [xs,xe] of equal length, SMBGT(Q,X) is defined as follows. Let GQ
and GX be the indices of Q[qs,qe] and X [xs,xe] in Q and X . If qπi ≈ε xγi ,∀πi ∈ GQ ,∀γi ∈ GX , i =
1, ..., |GQ|, and

πi+1−πi−1≤ β,γi+1− γi−1≤ α, (15.4)

then, the pair {Q[qs,qe],X [xs,xe]} is a common bounded-gapped subsequence of Q and X . The
longest such subsequence with xs− xe ≤ r is called SMBGT(Q,X). ε controls tolerance, α and β
control allowed gaps in sequences X and Q repsectively, and r controls maximum alignment length.
A graphical example of SMBGT distance in two dimensions is illustrated in Figure 15.3.

FIGURE 15.3: SMBGT distance between a query sequence Q and a database sequence X

In the experimental evaluation is shown that the main advantage of SMBGT over compared
subsequence matching methods (SPRING, Edit distance and DTW) is that it can handle high noise
levels better. In some applications, like the studied Query-By-Humming problem, this is extremely
important. Other approaches that perform subsequence matching are described in [19, 5, 6].

15.5 Shape-based Time Series Clustering Techniques

In this section we review the major and most widely used techniques for shape-based time series
clustering. The two most popular approaches are k-means clustering and hierarchical clustering.
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Most techniques either extend or use one of these two clustering methods, thus we classify the
reviewed approaches accordingly.

15.5.1 k-means Clustering

One of the most widely used clustering techniques is k-means clustering and this fact holds
for time series data clustering as well. k-means is a simple partitioning clustering algorithm, as it
groups similar objects in the same cluster and, using an iterative refinement technique, it minimizes
an objective error function. A general description of the algorithm is the following:

1. Find k initial cluster centers by selecting k random objects

2. Assign each object to the most similar cluster. The most similar cluster is the cluster with the
closest center, according to some distance function, e.g. Euclidean, DTW, etc.

3. Recalculate the k cluster centers by averaging all the assigned objects for each cluster

4. Repeat steps 2. and 3. until cluster centers no longer move. The objective error function,
which is the sum of squared errors among each cluster center and its assigned objects has
been minimized.

The complexity of k-means algorithm is O(k ·N ·r ·D), where k is the number of desired clusters,
N is the number of objects to be clustered (which equals the size of the dataset), r is the number
of iterations until convergence is reached and D is the dimensionality of the object space [37]. In
a slight modification of k-means algorithm, called k-medoids clustering, in Step 3. each cluster
center is represented by the cluster object that is located nearest to the cluster center. For clustering
large datasets of time series, k-means and k-medoids are preferred over other clustering methods,
due to their computational complexity. However, both k-means and k-medoids require an initial
cluster center selection which affects the clustering results, as both are hill-climbing algorithms,
converging on a local and not a global optimum. The main disadvantage of k-means is that the
number k of clusters must be specified a priori. This imposes the possibility that the optimal number
of clusters for a specific dataset is not known before the clustering process, so k-means will produce
a sub-optimal clustering result.

Many k-means time series clustering approaches use Euclidean distance as a distance metric and
a corresponding averaging technique to compute new cluster centers at each step. However, DTW
distance is considered a better distance for most time series data mining applications. Until very
recently and the work of Meesrikamolkul et al. [38] there was no DTW-based k-means clustering
approach with satisfying performance. In step 3. of the algorithm an averaging approach is needed
in order to calculate the k new cluster centers. Unfortunately, DTW averaging produces sequences
of equal or greater length than the original ones, thus decreasing a clustering system’s accuracy,
because the new cluster centers do not preserve the characteristics of the cluster objects. In [38] the
authors propose a shape-based k-means clustering technique that uses DTW as distance measure and
improves the time complexity of DTW averaging. In their approach, called Shape-base Clustering
for Time Series (SCTS), they propose a DTW averaging method they call Ranking Shape-based
Template Matching Framework (RSTMF), where a cluster center is calculated by averaging a pair
of time series with Cubic-spline Dynamic Time Warping (CSDTW) averaging. RSTMF computes
an approximate ordering of the sequences before averaging, instead of calculating the DTW distance
between all pairs of sequences within each cluster before selecting the most similar pair. DTW is
a computationally expensive distance and therefore DTW-based k-means clustering using DTW
averaging can become also computationally expensive.

Vlachos et al. proposed an anytime variation of the k-means algorithm that is based on an initial
approximation of the raw data by wavelets [52]. As the process is repeated, the approximation be-
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comes finer and the process stops when the approximation resemples the original data or the cluster-
ing results do not change. Their approach reduces the running time of original k-means and improves
the quality of clustering results. Moreover, they demonstrate that time series can be effectively ap-
proximated by higher level representations while still preserving their shape characteristics useful
to classification or clustering tasks. According to the Liao algorithm classification, the algorithm
of Vlachos et al. is placed in the feature-based category, as it operates on a reduced-dimensionality
approximation of the original time series using the Haar wavelet basis. In [35] the same team of
researchers describes an extension to the work presented in [52], where the same approach is fol-
lowed, in this work with an Expectation Maximization (EM) method serving the clustering process.
EM is rather a soft version of k-means than a fundamentally different approach, in the sense that
each data object has a degree of membership in each cluster, whereas in k-means each object must
belong to exactly one cluster. The major difference between EM and k-means is that EM produces
a richer variety of cluster shapes than k-means, which favors spherical clusters.

15.5.2 Hierarchical Clustering

There are two types of hierarchical clustering, agglomerative and divisive. Agglomerative hi-
erarchical clustering starts with regarding each data object as a different cluster and continues by
searching the most similar pair of clusters. Then the most similar pair is merged into one cluster and
the process continues until the desired number of clusters is reached.

Agglomerative hierarchical clustering has a variety of options for choosing which two clusters
are the closest to each other and thus should be merged in the current step. Some of them are listed
below:

• Single linkage: In single linkage selection, the distance between two clusters is defined as
the shortest distance among all their member objects. Specifically, the single-link distance
between clusters Ci and Cj is the following:

DSL(Ci,Cj) = minx ∈Ci,y ∈Cj(dist(x,y)) (15.5)

where dist is the chosen distance measure.

• Complete linkage: In complete linkage selection, the distance between two clusters is de-
fined as the longest distance among all their member objects. Specifically, the complete-link
distance between clusters Ci and Cj is the following:

DCL(Ci,Cj) = maxx ∈Ci,y ∈Cj(dist(x,y)) (15.6)

where dist is the chosen distance measure.

• Average linkage: In average linkage selection, the distance between two clusters is defined as
the average distance among all their member objects. Specifically, the average-link distance
between clusters Ci and Cj is the following:

DAV (Ci,Cj) = avg x ∈Ci,y ∈Cj(dist(x,y)) (15.7)

where dist is the chosen distance measure.

Divisive hierarchical clustering is the inverse process of agglomerative hierarchical clustering in that
it starts by regarding the whole dataset as a single cluster and continues by recursively dividing it
into smaller ones.

Hierarchical clustering has better visualization capabilities than k-means, as the clustering pro-
cess forms a dendrogram. In contrast to k-means, it takes no parameters and can be stopped and



372 Data Clustering: Algorithms and Applications

traced back at any point to the desired clustering level. Its major drawback is its quadratic compu-
tational complexity which makes hierarchical clustering practically useful only for small datasets.
As opposed to k-means clustering, hierarchical algorithm is a deterministic algorithm, which means
that when applied on the same dataset it provides the same clustering results in every run.

In [18] the authors perform an evaluation of clustering methods applied on long time series
of medical data and implement agglomerative hierarchical clustering. Their experimental results
show that complete-linkage cluster selection produces more reasonable clusters and better formed
dendtrograms, in that the input data sequences are more uniformly distributed in the output clusters.
However, the superiority of complete-linkage selection over other methods is not proven neither
believed to hold on all datasets and clustering applications.

In [17] the authors propose a hierarchical clustering method followed by a k-means finetuning
process using DTW distance, where the objective function that is minimized is a sum of DTW
distances from each object to a prototype of the cluster it belongs to. The cluster prototype can be
the DTW average of the objects belonging to the cluster, which has been proven to be inaccurate
[41], the cluster medoid or a locally optimal prototype that has been computed with a warping path
based local search.

15.5.3 Density-based Clustering

In [12] Ester et al. propose DBSCAN as a way to identify clusters of points utilizing the fact that
inter-cluster density is higher than that among points that belong to different clusters. The intuition
behind their approach is that objects belonging to a cluster must be surrounded by a minimum
number of objects at a small distance, thus defining the notion of neighborhood density. In DBSCAN
algorithm, points that are located in a neighborhood of high density are defined as core points,
whereas points that do not have a core point in their neighborhood are defined as noise points and
are discarded. Clusters are formed around core points and clusters that are in the same neighborhood
are merged.

Ertöz et al. argue that traditional DBSCAN cannot be used effectively in high dimensional data
such as time series, because the notion of Euclidean density is meaningless as the number of dimen-
sions increases [11]. Instead, they propose the use of the k-nearest neighbor approach to multivariate
density estimation, where a point is considered to be in a region with high probability density if it has
a lot of higly similar neighbors. Using this notion, they eliminate noise and outliers, by identifying
dense clusters in the data.

15.5.4 Trajectory Clustering

While multidimensional time series can be used to represent trajectories1, another commonly
accepted interpretation is that a trajectory is a (data type) representing the movement of an ob-
ject. In the past couple of decades, Moving Objects Databases have become a research trend of
their own, and various representation methods, storage and indexing techniques, along with spatio-
temporal queries processing methodologies have been introduced[16, 60]. Clustering and mining of
spatio-temporal trajectories is of interest in various application domains such as traffic management,
transportation optimizations, ecological studies of animals motions/migrations, etc.

Vlachos et al. define a trajectory as set of positional information of a moving object ordered
by time [53]. Lin and Su [36] disregard the time information in trajectories and focus on the shape
information only. They point out that continuous representation of trajectories is usually costly and
difficult to compute, so they represent trajectories in terms of line segments sequences. Specifically
each trajectory is defined as an ordered sequence of points T = [p1, p2, ..., pn] that are connected
with straight line segments. Alternatively, Chen et al. propose to explicitly incorporate the time-

1For that matter, a trajectory can be perceived as a special case of multidimensional time series.
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values in the representation – hence, a trajectory S in the two-dimensional plane is defined as a
sequence of triples S = [(t1;s1x ;s1y), ...,(tn;snx ;sny)] [9].

A fair amount of work has been devoted to trajectory clustering, where not only shape but also
speed and direction are important. Some methods [43] also discuss the online correlation aspect
of trajectory clustering, though these methods are not discussed in detail in this chapter. Globally,
the efforts can be grouped in several categories: relative motion patterns, flocks, convoys, moving
clusters and swarms (cf. [20]). Going in great details about the peculiarities of each category of
works is beyond the scope of this chapter, therefor, in the sequel we provide an overview of a
few techniques in order to illustrate some specific issues (and solutions) arising in the domain of
trajectories clustering.

Lee et al. [29] describe a trajectory clustering approach that belongs to the category of density-
based clustering approaches. For a given collection of trajectories, the proposed method can operate
on trajectories of different lengths and produces a set of clusters and a representative trajectory
for each cluster. The authors argue on the meaningfulness of subtrajectory clustering, therefore the
clusters they generate are sets of trajectory partitions. A trajectory partition is a line segment pi p j,
where pi and p j (i < j) are points from the trajectory. The representative trajectory for each cluster
is a trajectory partition that is common to all the trajectories that belong to that cluster. Trajectory
partitions that belong to the same cluster have a relatively small distance to each other, according to
the respective distance function which operates on line segments and corresponds to the weighted
sum of the: perpendicular distance, parallel distance and angle distance (cf. [29]). After partition-
ing the trajectories, the method proceeds to the line segment clustering process based on DBSCAN
(discussed in [12]). The main difference to DBSCAN is that in line segment clustering which is
applied here, not all density connected groups of line segments can become clusters, because many
line segments can belong to the same trajectory. Thus, each cluster that contains line segments from
less than a desired number of trajectories, is discarded. For the computation of the representative
trajectory for each cluster, the authors use an average direction vector and sweep a vertical line
across the line segments in its direction. The complexity of the proposed algorithm is O(n2) if no
spatial index is used, and O(n logn) otherwise, with n being the total number of line segments that
are produced by the partitioning process. In the subsequent work ([30]) trajectory-based and region-
based clustering were combined to build a feature generation framework for trajectory classification.
Region-based clustering disregards movement information and clusters regions of trajectories that
are mostly of one class. The trajectory-based clustering extension the previous work [29] by using
class label information in the clustering process. After trajectory partitioning, region-based clus-
tering is performed and the partitions that can not be represented by homogeneous regions are the
input of the trajectory-based clustering module. The proposed framework generates a hierarchy of
features in a top-down approach, namely features produced by region-based clustering do not in-
clude movement patterns and are thus of higher level whereas trajectory-clustering features are less
general.

One observation regarding the above approaches is that they do not properly incorporate the tem-
poral dimension of the trajectories (i.e., they work with routes). One of the first works that brought
the temporal awareness in the realm of clustering spatio-temporal trajectories clustering was [23],
which introduced the concept of a moving cluster – set of objects that move close to each other for
a given time duration. One can think of it as a temporal sequence of spatial clusters, preserving the
property that the number of common objects among consecutive clusters is maintained above a cer-
tain threshold Θ. An example of a moving cluster with Θ≥ 75% (i.e., 3/4 of the objects are within a
cluster at each time-instant) is shown in the left portion of Figure 15.4. A concept that uses different
criteria for grouping the trajectories is the one of convoys [21] – which corresponds to a group that
has at least m objects who are density-connected with respect to distance e and cardinality m during
k consecutive time-instants. For comparison, the right portion of Figure 15.4 shows the formation
of a convoy of three trajectories over three consecutive time-instants, illustrating the difference with
the moving clusters.
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FIGURE 15.4: Trajectories Grouping: Moving Clusters and Convoys

Many other criteria for grouping trajectories have been proposed, generating different corre-
sponding models like, for example, dynamic/evolving convoys, flocks, swarms – and we refer the
reader to [20] for a recent survey. We close this section with data-driven observations regarding
trajectories clustering – given that in the recent years, the GPS traces and sensor-based location data
are becoming widely available:

• The sheer volume of the (location,time) data may become large-enough to incur high compu-
tation cost for clustering trajectories. Hence, often times, some simplification techniques may
be employed to reduce the size of the data [7], before proceeding with the clustering.

• The data streams are often subject to imprecision in the measurements as well as noise during
communication/transmission. Hence, in order to improve the efficiency and effectiveness of
the clustering techniques, it may be desirable to apply trajectory smoothing techniques as a
pre-processing step to their clustering [8].

15.6 Time Series Clustering Applications

Time series clustering is a very interesting domain and has increasingly many applications. The
widespread smartphone networks and mobile computing environments as long as the corresponding
active communities present a field where multidimensional spatiotemporal trajectory clustering is
important and necessary. Location-oriented applications and services can use trajectory clustering
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techniques to improve query evaluation performance. One example is route recommendations, as
touristic guides can benefit from identifying similar user routes to recommend places or tours to
users. In Figure 15.5 is illustrated an example of how a route recommendation touristic application
would utilize trajectory clustering information to classify a new user and recommend paths to follow.

The online scenario is particularly common in financial markets, machine monitoring and
anomaly detection. In fact, since outliers and clusters are connected together by a complementary
relationship, multivariate regression models are often used in order to identify broad trends in the
data. Data points which do not match this broad trend are declared as outliers [4].

In another example, mobile social networking applications can avoid controversial privacy con-
cerns by using distributed techniques to identify and use similar trajectories in their network without
disclosing the traces, as the SmartTrace system [27]. Such systems provide the functionality of near-
est neighbor search, where a user can determine other users that have exposed similar spatiotemporal
behavior, like visiting the same places, without knowing the exact trajectories or revealing their tra-
jectory either. Both centralized and distributed approaches have been proposed to evaluate trajectory
similarity queries, while the former serve applications where the transfer of data to the central site is
inexpensive and the latter are appropriate for environments with expensive or not always connected
mediums, like wireless sensor networks [59] or smartphone networks.

FIGURE 15.5: Query Trajectory Q represents the route of a user of a mobile route-recommendation
application. The application performs trajectory clustering and classifies the user to Cluster 1 (con-
taining trajectories R1, R2 and R3), thus it recommends paths similar to that users of Cluster 1
followed.

It becomes apparent that trajectory clustering is suitable for applications where privacy and
anonymity are needed. A classic example of such cases is social sensing applications [43].

In another example, video surveillance and tracking systems can largely benefit from trajectory
and time series clustering, both due to the insight in scene monitoring that movement clustering pro-
vides and to privacy and security issues that have arisen. Abnormal events like pedestrians crossing
the street or dangerous vehicle movements can be represented as outliers to clusters of normal
movement patterns [22]. In [22] the authors use a hierachical clustering method to overcome the
overfitting in HMM trajectory similarity that is often used in surveillance video analysis, where
video events are represented as object trajectories.

Automatic counting of pedestrians in detection and tracking systems is another application ex-
ample. In [3] the authors propose a method to reduce the difference between the number of tracked
pedestrians and the real number of individuals, as most detection and tracking systems overestimate
the number of targets. The authors apply agglomerative hierarchical trajectory clustering, assuming
that trajectories belonging to the same human body are more similar to each other than trajectories
produced by the movement of different individuals. In this process they employ different trajectory
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representation schemes, including time series and independent component analysis representation,
and different distance/similarity measures, including Hausdorff Distance and LCSS.

Time series clustering is necessary in a variety of other domains, including music retrieval [25,
31, 39], speech recognition [54, 49] and financial and socio-economic time series applications [24,
14].

15.7 Conclusions

Time series data has diverse formulations because of the variety of applications in which it can
be used. The two primary formulations for time series clustering use online and offline analysis. The
application domains for these cases are quite different. The online formulation is often used for real
time analysis and applications such as financial markets or sensor selection. The online scenario is
also relevant to social sensing applications. The offline scenario is more useful for applications in
which the key shapes in the data need to be discovered for diagnostic purposes.
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